南京大学-气体放电中等离子体的研究解析
- 格式:doc
- 大小:697.50 KB
- 文档页数:14
气体放电等离子体实验报告气体放电等离子体实验报告引言:气体放电等离子体实验是一项重要的物理实验,通过对气体放电现象的研究,可以深入了解等离子体的性质和行为。
本实验旨在通过观察和分析气体放电等离子体的特性,揭示等离子体的基本原理和应用。
实验目的:1. 研究气体放电的基本特性,如放电现象、放电形态等;2. 探索气体放电等离子体的性质,如等离子体的密度、温度等;3. 分析气体放电等离子体的应用领域,如等离子体在光谱分析、材料处理等方面的应用。
实验材料和装置:1. 气体放电实验装置:包括气体放电管、高压电源、电流表、电压表等;2. 气体:常见的气体有氢气、氦气、氮气等;3. 实验记录仪器:如摄像机、数据采集器等。
实验步骤:1. 准备实验装置,并确保安全;2. 连接高压电源和气体放电管,调节电压和电流;3. 打开电源,观察气体放电管内的放电现象;4. 记录放电的形态、颜色、亮度等特征;5. 测量放电管两端的电压和电流,并记录数据;6. 调节电压和电流,观察放电现象的变化;7. 使用摄像机或数据采集器记录实验过程;8. 分析实验数据,得出结论。
实验结果与分析:经过实验观察和数据分析,我们发现不同气体在不同电压和电流条件下,产生了不同的放电形态和颜色。
例如,在低压条件下,氢气放电呈现出红色的辐射,而在高压条件下,氢气放电呈现出紫色的辐射。
这是因为不同气体的原子结构和能级分布不同,导致其放电现象也不同。
通过实验数据的分析,我们还可以计算出等离子体的密度和温度。
根据普朗克公式和玻尔兹曼关系,我们可以利用放电管两端的电压和电流数据,推导出等离子体的密度和温度。
这对于等离子体物理学的研究具有重要意义。
实验应用:气体放电等离子体在许多领域都有广泛的应用。
例如,在光谱分析中,气体放电等离子体可以用于分析物质的成分和结构。
通过观察等离子体在不同波长下的辐射光谱,可以确定样品中的元素和化合物。
此外,气体放电等离子体还可以应用于材料处理。
气体辉光放电与等离子体物理气体辉光放电是一种发光的现象,在低压下,通过在气体中施加电场而产生的等离子体导电现象。
这种现象在我们日常生活中随处可见,例如荧光灯、氖灯等。
气体辉光放电的研究不仅仅是对这种现象的深入理解,也是研究等离子体物理的重要一环。
辉光放电的基本原理是:当在两个电极之间施加高电压时,电场足够强以致将气体分子电离,形成正负离子对。
这些离子在电场的作用下加速运动,在与气体分子碰撞或与其他离子碰撞时,发生能量交换,导致离子再次发射能量。
这一能量会以光的形式辐射出来,形成气体辉光放电现象。
气体辉光放电的研究对于等离子体物理的发展至关重要。
等离子体是第四态物质,由正、负离子和电子组成,具有导电性和态密度较高的特点。
由于气体辉光放电是一种产生等离子体的方法,在研究等离子体的性质和应用方面有着广泛的应用。
首先,气体辉光放电可以用于研究等离子体的基本性质。
通过在气体中加入适量的斯塔克效应试剂,可以调整电子及离子能级。
通过测量气体中的辉光发射光谱,可以得到气体中的能级分布、相互作用以及辉光强度等信息。
这些数据可以帮助我们进一步理解等离子体的行为规律。
其次,气体辉光放电还是等离子体制备中的一种常用方法。
利用气体辉光放电可以产生强度较高的等离子体,进而用于材料表面处理、等离子体光谱研究以及等离子体化学反应等方面。
例如,利用气体辉光放电可以有效地去除材料表面的有机物污染,并增加其表面能,从而提高材料的附着力和光学性能。
此外,气体辉光放电还在环境污染治理、能源利用等方面发挥着重要的作用。
在环境污染治理方面,气体辉光放电技术可以用于废气处理、废水处理以及固体废弃物处理等。
这是因为气体辉光放电在等离子体化学反应中产生了一系列活性物种,可以高效地降解有机物、净化废气和废水。
在能源利用方面,将气体辉光放电与等离子体催化相结合,可以提高气体转化效率,实现能源的高效利用。
总之,气体辉光放电是一种发光现象,通过在气体中施加电场产生等离子体物理现象。
气体放电等离子体实验报告气体放电等离子体实验报告引言:气体放电等离子体实验是一项重要的实验,通过在气体中施加电场,使气体分子电离并形成等离子体。
这一实验具有广泛的应用领域,如等离子体物理、光谱学、材料科学等。
本报告将详细介绍气体放电等离子体实验的过程、实验装置和实验结果。
实验过程:1. 实验准备首先,我们准备了实验所需的材料和设备,包括气体放电管、电源、电压表、电流表等。
然后,我们对实验装置进行了检查和调试,确保其正常工作。
2. 实验操作将气体放电管连接到电源上,并设置合适的电压和电流。
然后,通过调节电压和电流的大小,控制气体放电管中的等离子体形成和维持。
3. 数据记录在实验过程中,我们记录了气体放电管中的电压和电流变化情况,并观察了等离子体的形态和颜色变化。
同时,我们还测量了等离子体的温度、密度等参数。
实验装置:实验装置主要包括气体放电管、电源、电压表、电流表和数据记录设备。
1. 气体放电管气体放电管是实验中最关键的部分,它由玻璃管和两个电极组成。
玻璃管内充满了待研究的气体,如氢气、氮气等。
电极通过电源提供电场,使气体分子电离并形成等离子体。
2. 电源电源是为气体放电管提供电场的设备,它可以提供不同电压和电流的输出。
通过调节电源的输出参数,可以控制等离子体的形成和维持。
3. 电压表和电流表电压表和电流表用于测量气体放电管中的电压和电流。
通过监测电压和电流的变化,可以了解等离子体的形成和消失过程。
4. 数据记录设备数据记录设备用于记录实验过程中的各种参数,如电压、电流、等离子体的形态和颜色等。
通过对这些数据的分析,可以得出实验结果并进行进一步的研究。
实验结果:在实验过程中,我们观察到了气体放电管中的等离子体形态和颜色的变化。
随着电压和电流的增加,等离子体的亮度和密度逐渐增加。
同时,等离子体的颜色也发生了变化,从无色逐渐变为蓝色、紫色等。
我们还测量了等离子体的温度和密度,发现随着电压和电流的增加,等离子体的温度和密度也随之增加。
气体放电中等离子体的研究剖析气体放电等离子体是指气体中发生放电现象的状态,其中电子被激发或离开原子而形成的电离态称为等离子体。
气体放电等离子体在物理、化学、材料科学等领域具有广泛的应用,如气体放电放电器件、等离子体化学反应、等离子体刻蚀等。
气体放电等离子体的研究主要涉及其形成机制、物理特性以及相应的应用。
首先,气体放电等离子体的形成机制可以通过电子碰撞、电离辐射、感应耦合等方式实现。
当气体分子受到能量输入时,其分子结构会发生改变,电子被激发或离开原子,形成带正电荷的离子和带负电荷的电子,从而形成等离子体。
不同放电方式下,等离子体的形成机制有所不同,需要通过实验和理论模拟方法进行研究。
其次,气体放电等离子体的物理特性与等离子体中的电子和离子的动力学行为密切相关。
在强电场的作用下,电子受到加速,与气体分子碰撞产生电子能量损失和电离过程,导致等离子体的发光和放电现象。
不同气体的放电特性也有所不同,气体放电等离子体可以呈现出不同的色彩和辐射特性,如辉光放电、正离子束等。
通过对等离子体的物理特性的研究,可以了解等离子体的动态演化过程和能量传输机制,为应用研究提供理论和实验依据。
最后,气体放电等离子体的应用广泛,包括能源、环境、光电等领域。
在能源领域,气体放电等离子体可以用于气体分子的激发和电离,促进高能粒子的合成和加速,从而用于核聚变、等离子体激光和粒子加速器等研究。
在环境领域,气体放电等离子体可以通过电子能量损失和电离过程产生活性物种,从而用于大气中污染物的降解和消除。
在光电领域,气体放电等离子体可以用于光源、显示器和光电器件等的制造和改进。
综上所述,气体放电等离子体的研究对了解其形成机制、物理特性以及应用具有重要意义。
通过对等离子体的研究,可以深入理解等离子体的动态行为和能量传输机制,并可以广泛应用于能源、环境、光电等领域中。
未来的研究需要进一步深入,结合实验和理论模拟方法,对气体放电等离子体的形成机制、动力学行为和应用进行深入研究,以推动相关领域的发展和创新。
等离子体放电实验报告等离子体放电实验报告引言:等离子体是一种由带正电荷的离子和带负电荷的电子组成的高度电离的气体。
等离子体放电实验是一种常见的物理实验,通过施加电场或电压,使气体中的原子或分子电离,形成等离子体,并观察等离子体的放电现象。
本实验旨在探究等离子体放电的特性和规律。
实验设备和方法:1. 实验设备:- 玻璃管:用于容纳气体和形成等离子体的容器;- 电源:用于提供电场或电压;- 气体:常用的气体有氩气、氢气等;- 电压表和电流表:用于测量电场强度和电流。
2. 实验方法:- 将玻璃管充满所选气体;- 将电源接入玻璃管两端,施加适当的电压;- 观察等离子体的放电现象,并记录电流和电场强度的变化;- 改变电压、气体种类或气体压强,重复实验并记录观察结果。
实验结果与分析:1. 放电现象:在实验中,我们观察到等离子体放电时,玻璃管内的气体会发出明亮的光芒,且电流表会显示出电流的变化。
放电现象的强弱和稳定性与电压的大小、气体种类和气体压强有关。
2. 放电规律:- 电压与放电强度的关系:实验中发现,随着电压的增加,放电强度也增加。
当电压达到一定值时,放电强度会迅速增加,形成较强的等离子体。
- 气体种类与放电强度的关系:不同气体的放电特性不同。
例如,氩气放电强度较大,而氢气放电强度较小。
这是因为气体中的原子或分子电离能不同,导致放电特性的差异。
- 气体压强与放电强度的关系:实验中发现,当气体压强较低时,放电强度较小;当气体压强较高时,放电强度较大。
这是因为气体压强的增加会增加原子或分子电离的机会,从而增强放电现象。
实验讨论与应用:1. 实验讨论:- 等离子体放电实验是研究等离子体物理性质的重要手段,通过实验可以深入了解等离子体的形成、结构和特性。
- 等离子体放电现象在自然界和工业中广泛存在。
例如,闪电就是大气中的等离子体放电现象,等离子体放电技术也被应用于气体放电灯、等离子体刻蚀等领域。
2. 应用展望:- 等离子体放电技术在材料加工、环境治理、能源研究等方面具有广阔的应用前景。
等离子体物理学解析等离子体的行为与应用等离子体是一种高度激发的物质状态,由正负离子和自由电子组成。
它具有独特的物理性质,广泛存在于自然界中,如太阳和星球的核心、闪电、离子体喷流等。
等离子体的行为和应用在现代科学和工业中起着重要的作用。
本文将对等离子体的基本行为以及其在能源、材料和生物医学等领域的应用进行解析。
一、等离子体的行为解析等离子体的基本行为受到电磁力的影响,其主要特点包括电离、电导、等离子体振荡等。
1. 电离:等离子体在外界电场或高温条件下会发生电离,原子或分子中的电子被剥离,形成正负离子。
这使得等离子体具有良好的电导性质。
2. 电导:等离子体的电导性使得其能够传导电流。
等离子体中的离子和电子在电场的作用下移动,形成电流。
这种电流的传输性质使得等离子体在能源产生和传输方面具有重要意义。
3. 等离子体振荡:等离子体中的带电粒子受到外界激励,会出现振荡行为。
这种振荡可以产生电磁波,例如无线电波和激光。
等离子体振荡现象也被广泛应用于通信、雷达和医学诊断等领域。
二、等离子体在能源领域的应用解析等离子体在能源领域的应用主要包括核聚变、等离子体状态的太阳能利用、等离子体在核电站中的应用等。
1. 核聚变:等离子体的高温和高压条件使得核聚变成为可能。
核聚变是太阳和恒星内部能量来源的基础,也是未来几乎清洁无限能源的希望。
通过控制等离子体的行为,科学家致力于实现可控核聚变技术,为人类提供可持续的能源解决方案。
2. 太阳能利用:太阳是一个巨大的等离子体球,其能量可以被高温等离子体捕获并利用。
通过等离子体工艺和技术,利用太阳能的效率可大大提高。
例如,等离子体太阳能发电技术可以将太阳能转化为可用电能,为人们的日常生活和工业生产提供绿色能源。
3. 核电站中的应用:等离子体在核电站中起着至关重要的作用。
例如,等离子体物理学的研究可帮助科学家理解等离子体状态下的核反应,并改进核电站的设计和运行。
此外,等离子体技术也用于核废料处理、核燃料制备等领域,为核能发展提供了支持。
气体放电中等离子体的研究一.实验目的1.了解气体放电中等离子体的特性。
2.利用等离子体诊断技术测定等离子体的一些基本参量。
二.实验原理1.等离子体及其物理特性等离子体定义为包含大量正负带点粒子、而又不出现净空间电荷的电离气体。
也就是说,其中正负电荷密度相当,整体上呈现电中性。
等离子体可分为等温等离子体和不等温等离子体,一般气体放电产生的等离子体属不等温等离子体。
等离子体有一系列不同于普通气体的特性:(1)高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。
(2)带正电的和带负电的粒子密度几乎相等。
(3)宏观上是电中性的。
2.等离子体的主要参量描述等离子体的一些主要参量为:(1)电子温度e T 。
它是等离子体的一个主要参量,因为在等离子体中电子碰撞电离是主要的,而电子碰撞电离与电子的能量有直接关系,即与电子温度相关联。
(2)带电粒子密度。
电子密度为e n ,正离子密度为i n ,在等离子体中e i n n 。
(3)轴向电场强度L E 。
表征为维持等离子体的存在所需的能量。
(4)电子平均动能e E 。
(5)空间电位分布。
此外,由于等离子体中带电粒子间的相互作用是长程的库伦力,使它们在无规则的热运动之外,能产生某些类型的集体运动,如等离子振荡,其振荡频率f称为朗缪尔频率或等离子体频率。
电子p振荡时辐射的电磁波称为等离子体电磁辐射。
3.稀薄气体产生的辉光放电本实验研究的是辉光放电等离子体。
图2.1 辉光放电的光强,点位和电场分布辉光放电是气体导电的一种形态。
当放电管内的压强保持在10100Pa时,在两电极上加高电压,就能观察到管内有放电现象。
辉光分为明暗相间的8 个区域,在管内两个电极间的光强、电位和场强分布如图2.1所示。
8个区域的名称为阿斯顿区,阴极辉区,阴极暗区,负辉区,法拉第暗区,正辉区,阳极暗区,阳极辉区。
其中正辉区是我们感兴趣的等离子区。
4.单探针与双探针法测量原理测试等离子体的方法被称为诊断。
第二章、PECVD南京大学扬州光电研究院第一部分、工艺原理1.1.PECVD的基本原理PECVD全称为Plasma Enhanced Chemical Vapor Deposition,即等离子体增强化学气相沉积。
它的基本原理是在密闭反应腔中通入制程气体,通过控制制程气体的流量及反应腔真空泵的抽气速率使气压维持在某一设定值。
再向反应腔输入直流、高频或微波功率,产生气体放电,形成等离子体。
在等离子体中,由于低速电子与制程气体分子碰撞,除产生正、负离子外,还会产生大量的活性基,从而可大大增强反应气体的活性。
因此,在相对较低的温度下,即可发生反应,实现薄膜沉积。
例如,沉积Si3N4薄膜,若采用NPCVD或LPCVD,需要1000℃的高温,而采用PECVD,则在300℃左右即可。
1.2.PECVD的主要应用领域PECVD目前已广泛应用于一些绝缘介质薄膜的低温沉积,如SiO2、Si3N4等。
在LED 芯片制造中,可用PECVD沉积SiO2膜作为抗干法刻蚀的掩蔽层或起绝缘作用的电隔离层。
在超大规模集成电路制造中,铝电极布线后,作为最终保护膜的Si3N4膜以及层间绝缘的SiO2膜都成功地采用了PECVD技术。
此外,应用于太阳能电池及液晶显示器的氢化非晶硅(a-Si:H)也适合采用PECVD制备。
1.3.PECVD中的化学反应基本反应式:沉积SiO2薄膜:3SiH4 (g) + 6N2O (g) →3SiO2 (s) + 4NH3 (g) +4N2 (g)沉积Si3N4薄膜:3SiH4 (g) + 4NH3 (g) →Si3N4 (s) + 12H2 (g)注:PECVD沉积的薄膜,其成分不一定完全满足化学配比。
第二部分、设备原理2.1.PECVD的反应腔图1为典型的PECVD反应腔示意图。
腔体中有一对平行板式的电极(即图中的Top electrode和Lower electrode),这表明等离子体的功率输入方式为电容耦合方式。
等离子体物理学的研究等离子体物理学是研究等离子体性质、行为和应用的学科。
等离子体是一种物质状态,介于气体和固体之间,具有高温和高电离程度。
它在自然界中广泛存在,例如太阳、恒星和闪电都包含着等离子体。
等离子体物理学的研究对于科学技术和工程应用具有重要的意义。
它可以用于研究和探索核聚变能源、粒子加速器、等离子体处理技术以及太空物理学等领域。
本文将介绍等离子体物理学的基本概念、研究方法和应用。
一、等离子体的定义和特性等离子体是由电离的原子或分子以及自由电子组成的物质状态。
它具有高温和高电离度,通常呈现出电中性和宏观的性质。
在等离子体中,自由电子和正离子之间存在相互作用,这种相互作用决定了等离子体的性质和行为。
等离子体的一些重要特性包括电导率高、热导率高、具有不可压缩性、可对电磁场产生响应等。
这些特性使得等离子体在各种应用中具有独特的优势和潜力。
二、等离子体物理学的研究方法等离子体物理学的研究方法主要包括实验研究和理论模拟。
实验研究通过建立实验装置,利用各种测量手段来观察和研究等离子体的性质和行为。
常见的实验手段包括等离子体诊断技术、光谱分析技术和等离子体装置等。
理论模拟是通过建立数学模型和计算方法,模拟等离子体的行为和特性。
这种方法可以提供对等离子体基本理论的深入理解,预测等离子体的动力学行为以及研究等离子体与外界环境的相互作用。
三、等离子体物理学的应用等离子体物理学的研究成果在科学研究和工程应用中有着广泛的应用。
以下将介绍几个典型的应用领域:1. 等离子体聚变能源等离子体聚变是模仿太阳核聚变反应,在地球上实现可控性核聚变的重要方法。
研究聚变等离子体的特性、动力学行为以及聚变反应的控制方法对于聚变能源的研发至关重要。
2. 粒子加速器等离子体加速结构可以用来加速带电粒子,可应用于粒子加速器和医学放射治疗等领域。
通过研究等离子体束流动力学行为和射频加速理论,可以提高粒子加速器的效率和精度。
3. 等离子体处理技术等离子体处理技术是利用等离子体对物质进行表面改性和处理的方法。
气体放电中等离子体的研究一.实验目的1.了解气体放电中等离子体的特性。
2.利用等离子体诊断技术测定等离子体的一些基本参量。
二.实验原理1.等离子体及其物理特性等离子体定义为包含大量正负带点粒子、而又不出现净空间电荷的电离气体。
也就是说,其中正负电荷密度相当,整体上呈现电中性。
等离子体可分为等温等离子体和不等温等离子体,一般气体放电产生的等离子体属不等温等离子体。
等离子体有一系列不同于普通气体的特性:(1)高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。
(2)带正电的和带负电的粒子密度几乎相等。
(3)宏观上是电中性的。
2.等离子体的主要参量描述等离子体的一些主要参量为:(1)电子温度e T 。
它是等离子体的一个主要参量,因为在等离子体中电子碰撞电离是主要的,而电子碰撞电离与电子的能量有直接关系,即与电子温度相关联。
(2)带电粒子密度。
电子密度为e n ,正离子密度为i n ,在等离子体中e i n n 。
(3)轴向电场强度L E 。
表征为维持等离子体的存在所需的能量。
(4)电子平均动能e E 。
(5)空间电位分布。
此外,由于等离子体中带电粒子间的相互作用是长程的库伦力,使它们在无规则的热运动之外,能产生某些类型的集体运动,如等离子振荡,其振荡频率f称为朗缪尔频率或等离子体频率。
电子p振荡时辐射的电磁波称为等离子体电磁辐射。
3.稀薄气体产生的辉光放电本实验研究的是辉光放电等离子体。
图2.1 辉光放电的光强,点位和电场分布辉光放电是气体导电的一种形态。
当放电管内的压强保持在10100Pa时,在两电极上加高电压,就能观察到管内有放电现象。
辉光分为明暗相间的8 个区域,在管内两个电极间的光强、电位和场强分布如图2.1所示。
8个区域的名称为阿斯顿区,阴极辉区,阴极暗区,负辉区,法拉第暗区,正辉区,阳极暗区,阳极辉区。
其中正辉区是我们感兴趣的等离子区。
4.单探针与双探针法测量原理测试等离子体的方法被称为诊断。
等离子体诊断有探针法,霍尔效应法,微波法,光谱法等。
本次实验中采用探针法。
分单探针法和双探针法。
(1)单探针法。
探针是封入等离子体中的一个小的金属电极。
以放电管的阳极或阴极作为参考点,改变探针电位,测出相应的探针电流,得到探针电流与其电位之间的关系,即探针伏安特性曲线,如图2.2所示。
图2.2 单探针伏安特性曲线可以推导出电子电流的对数和探针点位的关系:ln p eeU I C kT =+可见电子电流的对数和探针点位成线性关系,电子温度e T 为:()11600e e T K k tg tg φφ==⋅电子平均动能e E 和平均速度e v 为:32e e E kT =8ee ekT v m π=于是可以求得等离子区的电子密度0042ee e eI Im n eSv eSkT π==(2)双探针法单探针法有一定的局限性,因为探针的电位要以放电管的阳极或阴极点位作为参考点,而且一部分放电电流对探极电流有所贡献,造成探极电流过大和特性曲线失真。
双探针法是在放电管中装两根探针,相隔一段距离L 。
双探针法的伏安特性曲线如图2.3所示。
图2.3 双探针伏安特性曲线在坐标原点,如果两根探针之间没有电位差,它们各自得到的电流相等,所以外电流为零。
然而,一般说来,由于两个探针所在的等离子体电位稍有不同,所以外加电压为零时,电流不是零。
随着外加电压逐步增加,电流趋于饱和。
最大电流是饱和离子电流。
双探针法有一个重要的优点,即流到系统的总电流决不可能大于饱和离子电流。
这是因为流到系统的电子电流总是与相等的离子电流平衡。
从而探针对等离子体的干扰大为减小。
由双探针特性曲线,通过下式可求得电子温度12012i i e U i i I I e dUT k I I dI=⋅=+电子密度为2s e eI Mn eSkT =式中M 是放电管所充气体的离子质量,S 是两根探针的平均表面面积。
I 是正离子饱和电流。
三.实验仪器本实验仪器有等离子体物理实验组合仪、接线板和等离子体放电管。
四.实验步骤本实验我们采用的是电脑化X-Y函数记录仪直接记录探针电位和探针电流,自动绘出伏安特性曲线,并使用等离子体实验辅助分析软件算出等离子体参量。
实验中用了单探针法和双探针法两种方法。
1.单探针法测等离子体参量接通仪器主机总电源、测试单元电源、探针单元电源和放电单元电源按前述方法使放电管放电,将放电电流调到需要值。
接通X-Y函数记录仪电源,选择合适的量程。
在接线板上选择合适的电阻。
将选择开关置“自动”,则探针电压输出扫描电压,当需要回零时,按“清零”按钮,电压又从零开始扫描。
让函数记录仪自动记录探针的U-I特性曲线。
由于等离子体电位在几分钟内可能有25%的漂移,逐点法测试时间较长,会使得到的曲线失真,而用X-Y记录仪测量比较快,所以,可得到比逐点法好的曲线。
运行等离子体实验辅助分析软件,将数据文件打开。
进行处理,求得电子温度等主要参量。
2、双探针法实验方法与单探针法相同,同样可用逐点记录和用X-Y函数记录仪测量。
五.数据处理1.单探针法(1)实验参数与计算机的计算结果 实验参数列表如下:表5.1.1 单探针实验参数等离子体参量的计算机计算结果:表5.1.2 单探针实验计算机计算结果下面根据实验测得点的数据来计算等离子体参量,并与计算机计算结果做比较。
(2)()()I A U V -关系图像由实验测得点的数据可以画出下列图像:图5.1.1 ()()I A U V -关系图像图5.1.2 ()()ln I A U V -关系图像对于单探针法,需要计算出图像左端的切线(第一切线)与右端的切线(第二切线),下面对图像两端分别取若干点进行线性拟合以求斜率。
(3)图像的第一切线方程做曲线的切线,图像结果如下:图5.1.3 图像第一切线10个取样点的()()ln I A U V -关系图像参数拟合结果为:参数 拟合结果 95%置信区间斜率(1k ) 0.33150.3199, 0.3431截距(1D ) -19.58 -20.04, -19.13线性相关系数99.8%表5.1.3 第一切线的拟合结果所以第一切线的方程为()()ln 0.331519.58I A U V =⋅-(4)图像的第二切线方程做曲线的切线,图像结果如下:图5.1.4 图像第二切线10个取样点的()()ln I A U V -关系图像参数拟合结果为:参数 拟合结果 95%置信区间斜率(2k ) 0.026990.02635, 0.02764截距(2D ) -6.245 -6.281, -6.209线性相关系数99.9%表5.1.3 第二切线的拟合结果所以第二切线的方程为()()ln 0.02699 6.245I A U V =⋅-(5)等离子体的主要参量联立两切线方程()()()()ln 0.02699 6.245ln 0.02699 6.245I A U V I A U V =⋅-⎧⎪⎨=⋅-⎪⎩ 可求出交点坐标为()43.79,5.06S V -,即0043.79, 6.33U V I mA ==又10.3315tan k φ==,故1160034992e T K tan φ== 1937.24102e e E kT J -==⋅61.1610/e v m s ==⋅ 1730024168.2710/e e eI I n n m eSv e d v π===⋅ 与计算机计算结果对比为:表5.1.4 单探针实验手动计算结果与计算机计算值比较2.双探针法(1)实验参数与计算机的计算结果 实验参数列表如下:表5.2.1 双探针实验参数等离子体参量的计算机计算结果:表5.2.2 单探针实验计算机计算结果可见双探针法与单探针法的实验结果处于同一个数量级,所以两种方法的结果可以说是基本一致。
下面根据实验测得点的数据来计算等离子体参量,并与计算机计算结果做比较。
(2)()()I A U V -关系图像由实验测得点的数据可以画出下列图像图5.2.1 ()()I A U V -关系图像(3)等离子体参量把0U =处附近的伏安特性曲线近似看做直线段,并近似计算其斜率 取两点()0.315,37.25A V A μ--与()0.319,71.79B V A μ,故直线的斜率40 1.7210/A BA BI I k tan A V U U φ--===⋅-与计算机计算结果41.510/c k A V -=⋅的误差为14.6%又饱和电流1463i I A μ=,2394i I A μ=-,0.45d nm =,40l mm =所以120129368i i e U i i I I e dU T K k I I dI=⋅==+17322 1.5210/s s e e eI I M Mn n m eSkT e dl kT π===⋅ 与计算机计算结果的误差分别为16.3%,1.33%六.误差分析本实验通过记录一系列点的数据来计算等离子体的参量,并将单探针实验结果与双探针实验结果,计算机计算结果与手动计算结果分别做比较。
从实验结果来看,单探针实验与双探针实验结果处于同一数量级,两种方法都是可行的,但是从原理上讲双探针法的误差更小,因为双探针法流到探针的总电流决不可能大于饱和离子电流。
这是因为流到系统的电子电流总是与相等的离子电流平衡。
从而探针对等离子体的干扰大为减小。
另外双探针法不需要参考电位,受放电系统接地情况的影响较小。
单探针法也有其优点,单探针法可以通过伏安特性曲线得到双探针法无法获得的悬浮电位及空间电位。
在确定图像5.12.的切线方程时,取了图像端点处的若干点,作直线拟合然后近似看做是切线,这里由于曲线并不是直线,所以用直线方程拟合时必然有一定误差,整个图像为一凸函数图像,所以在左下端的拟合结果与真实切线斜率相比偏小,而右上端偏大,这就是为什么tan φ的手动计算结果比计算机计算结果要小。
对于单探针法,由于整个图像是两段曲线在0U =处拼接起来的,所以在0U =的曲线斜率必然会受到影响,比较好的做法是在两条曲线上分别取点计算斜率,然后求其平均值作为0U =的曲线斜率。
对于探针,离子鞘层的厚度随p U 增大而改变,造成探针等效表面积改变,从而使到达探针表面的电子数偏离理论值。
另外当探极电位p U 接近等离子体的空间电位s U 时,由于探针的边缘效应,事实上离子鞘层的厚度随p U 增大而增大,其结果是探针等效表面积增大,探针电流也持续增大,在本实验条件下不能达到饱和,这就造成了一定的误差。
此外要得到较好的实验结果,一般应在能产生辉光放电的压强和放电电流范围内,增大压强,减小放电电流,使探针离阳极较近。
七.思考题1.气体放电中的等离子体有什么特性?答:(1)高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。