九年级数学锐角三角函数1
- 格式:pdf
- 大小:1.00 MB
- 文档页数:9
24.1锐角的三角函数——锐角的正切(第一课时)授课对象: 中学九年级班教学安排:一课时授课教师:一、教学背景分析(一)教材分析:1.教材的地位及作用《锐角的三角函数》是沪科版九年级数学上册第24章第一节的内容。
锐角的三角函数的概念是以前面学习的相似三角形、勾股定理的知识为基础的,本章内容是三角学中最基础的内容,也是今后进一步学习三角学的必要知识准备。
2.教材处理本节教材共分三课时完成,;第一课时是正切概念的建立及其简单应用;第二课时是正弦、余弦概念的建立及其简单应用;第三课时是综合应用。
(二)学情分析:九年级的学生具备了一定的逻辑思维能力和推理能力。
通过以前的合作学习,具备了一定的合作交流的能力.二、教学目标知识与技能: 1. 理解锐角正切(tanA)、坡度、坡角的意义;2.学会根据定义求锐角的正切值.过程与方法: 1. 经历锐角的正切的探求过程,体会数形结合的思想方法.2.三角函数的学习中,初步体验探索、讨论、论证对学习数学的重要性。
情感态度价值观:1. 在活动中培养学生乐于探究、合作交流的习惯。
2. 感受数学来源于生活又应用于生活,从而激发学生学习数学的兴趣。
三、教学重、难点教学重点:锐角的正切、坡度、坡角的定义。
教学难点:理解Rt△中一个锐角的对边与其邻边比值的对应关系。
四、教学用具多媒体课件(PPT)、几何画板五、教学过程(一)创设情境、导入新课(5分钟)利用多媒体播放“人民英雄纪念碑——民族的自豪”短片,引导学生思考:如何测量出人民英雄纪念碑的高度呢?要求学生自主探究,积极思考,回答测量高度的方法,教师引导学生分析,如直接测量法和相似法的弊端,从而导入新课——锐角的正切。
(板书课题)【设计意图】通过视频的展示,让学生身临其境地感受人民英雄纪念碑的雄伟,激发学生强烈的爱国热情和民族自豪感,同时,通过对纪念碑高度的测量自然地导入今天的教学重点。
体现新课标的要求:在关注学生数学学习水平的同时,关注学生德育教育和情感态度的发展。
《锐角三角函数》评课记录1.情境引入好,立意高。
从比萨斜塔的倾斜度这个实际问题抽象出有关于直角三角形的数学问题,进一步说明直角三角形我们已经研究了角和角的关系、边和边的关系,还可以研究边和角的关系;如果研究了边和角的关系,那么这个实际问题就可以得到解决,说明了研究直角三角形的边角关系既是我们数学本身的需要,也是实际生活的需要。
自然而然的引入新课教学。
2.注重知识的形成过程。
在引导学生得出正弦定义的过程中,教师从含有30°、45°、60°的直角三角形入手,到一般的直角三角形,得出“在直角三角形中,当锐角值一定时,它的对边与斜边的比值也随之固定”这样一个结论,体现了从特殊到一般的思想方法。
在课堂上,无论是在探究定义的过程中,还是后面运用定义求锐角的正弦值,死死扣住锐角的对边与斜边的比值,在学生的脑海中反复建立这样一个模型。
3.对教材进行了相关的处理,是在用教材,而不是教教材。
一是把例题的第二个图形放到了练习当中,教师讲解了一个图形后学生应该已经掌握,让学生自己独立完成效果更好。
二是增加了练习二,培养了学生的逆向思维,并训练了学生的几何直观能力。
课堂证明,这两个处理是成功的。
4.最后的反思小结部分,设计了两个问题,第一个问题主要是回顾本节课的知识点。
第二个问题是“研究锐角正弦的思路是如何构建的?”这个问题主要是引导学生回顾得到正弦定义的过程,体会数学思想方法。
从生活实际来看,我们有已知直角三角形的某些边求角的问题;从数学本身来看,对直角三角形而言,我们研究了角与角的关系,边与边的关系,还可以研究边与角的关系。
为此,我们从30°、45°和60°角的特殊直角三角形入手,到一般的直角三角形,证明了当锐角一定时,它的对边与斜边的比也是固定值,得到正弦的定义,蕴含了从特殊到一般的思想方法。
把整节课的思路重新为学生理了一遍,加深了学生的印象。
5.总的来说,本堂课从发现和提出需要研究的问题开始,引导学生从已有的知识出发,从具体事例中抽象、归纳出一般结论,获得数学概念、原理。
浙教版数学九年级下册1.1《锐角三角函数》教案一. 教材分析浙教版数学九年级下册1.1《锐角三角函数》是本册教材的第一课时,主要介绍锐角三角函数的定义及概念。
本节课内容是学生对初中数学中三角函数知识的初步接触,对于培养学生的数学思维能力、逻辑推理能力以及解决实际问题的能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的数学基础,对函数的概念有一定的了解。
但是,对于锐角三角函数的定义和应用,学生可能还存在一定的困惑。
因此,在教学过程中,教师需要关注学生的认知水平,通过实例讲解,让学生更好地理解和掌握锐角三角函数的知识。
三. 教学目标1.了解锐角三角函数的定义和概念;2.能够运用锐角三角函数解决实际问题;3.培养学生的数学思维能力、逻辑推理能力以及解决实际问题的能力。
四. 教学重难点1.教学重点:锐角三角函数的定义和概念;2.教学难点:如何运用锐角三角函数解决实际问题。
五. 教学方法采用问题驱动法、实例讲解法、小组合作法等教学方法,引导学生主动探究、积极思考,提高学生的数学素养。
六. 教学准备1.准备相关的生活实例和图片;2.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实际问题,如测量身高、角度等,引导学生思考如何利用数学知识解决这些问题。
从而引出锐角三角函数的概念。
2.呈现(10分钟)讲解锐角三角函数的定义和概念,让学生了解锐角三角函数的基本性质。
通过示例,让学生掌握如何运用锐角三角函数解决实际问题。
3.操练(10分钟)让学生分组讨论,选取一个生活实例,运用锐角三角函数进行解决。
教师巡回指导,为学生提供帮助。
4.巩固(5分钟)选取一些练习题,让学生独立完成,巩固所学知识。
教师及时批改,给予反馈。
5.拓展(5分钟)引导学生思考:除了生活中的实例,还有哪些领域会用到锐角三角函数?让学生了解锐角三角函数在实际应用中的广泛性。
6.小结(5分钟)对本节课的主要内容进行总结,让学生明确所学知识的重难点。
浙教版数学九年级下册1.1《锐角三角函数》教学设计一. 教材分析《锐角三角函数》是浙教版数学九年级下册第一章第一节的内容。
本节课主要介绍了锐角三角函数的定义及性质,包括正弦、余弦、正切函数。
通过本节课的学习,学生能够理解锐角三角函数的概念,掌握各函数的定义及性质,并能运用其解决实际问题。
二. 学情分析九年级的学生已经具备了一定的函数知识,对函数的概念和性质有一定的了解。
但锐角三角函数的概念和性质较为抽象,学生可能难以理解和接受。
因此,在教学过程中,教师需要注重引导学生通过实例来理解抽象的锐角三角函数概念,并通过大量的练习来巩固所学知识。
三. 教学目标1.知识与技能:理解锐角三角函数的概念,掌握正弦、余弦、正切函数的定义及性质。
2.过程与方法:通过实例分析,引导学生运用锐角三角函数解决实际问题。
3.情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.重点:锐角三角函数的概念及其性质。
2.难点:正弦、余弦、正切函数的定义及性质。
五. 教学方法1.情境教学法:通过生活实例引入锐角三角函数的概念,引导学生理解其应用。
2.讲授法:讲解锐角三角函数的定义及性质,引导学生进行思考。
3.实践操作法:让学生通过实际操作,巩固所学知识。
4.小组讨论法:分组讨论,培养学生的合作意识。
六. 教学准备1.教学课件:制作课件,展示锐角三角函数的定义及性质。
2.实例材料:准备相关的生活实例,用于引入锐角三角函数的概念。
3.练习题:准备适量的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如建筑工人测量高度、航海员测定方向等,引导学生思考如何利用三角函数解决问题。
通过实例引入锐角三角函数的概念。
2.呈现(15分钟)讲解锐角三角函数的定义及性质,包括正弦、余弦、正切函数。
利用课件展示各函数的图像,帮助学生理解其性质。
3.操练(15分钟)让学生分组进行实践操作,运用锐角三角函数解决实际问题。
第1节锐角三角函数第1课时正切1.经历探索直角三角形中边角之间关系的过程.2.理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明.3.能够运用tan A,sin A,cos A表示直角三角形中两边的比.4.能够根据直角三角形中的边角关系进行简单的计算.1.经历三个锐角三角函数的探索过程,确信三角函数的合理性,体会数形结合的数学思想.2.在探索锐角三角函数的过程中,初步体验探索、讨论、验证对学习数学的重要性.1.通过锐角三角函数概念的建立,使学生经历从特殊到一般的认识过程.2.让学生在探索、分析、论证、总结获取新知识的过程中体验成功的喜悦,从解决实际问题中感悟数学的实用性,培养学生学习数学的兴趣.【重点】1.理解锐角三角函数的意义.2.能利用三角函数解三角形的边角关系.【难点】能根据直角三角形的边角关系进行简单的计算1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.2.能够用tan A表示直角三角形中两直角边的比,表示生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算.3.理解正切、倾斜程度、坡度的数学意义,加强数学与生活的联系.1.体验数形之间的联系,逐步学习利用数形结合思想分析问题和解决问题.提高解决实际问题的能力.2.体会解决问题的策略多样性,发展实践能力和创新精神.1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成实事求是的态度以及独立思考的习惯.【重点】1.从现实情境中探索直角三角形的边角关系.2.理解正切、倾斜程度、坡度的数学意义,加强数学与生活的联系.【难点】理解正切的意义,并用它来表示生活中物体的倾斜程度、坡度等.【教师准备】多媒体课件.【学生准备】1.自制4个直角三角形纸板.2.复习直角三角形相似的判定和直角三角形的性质.导入一:课件出示:你知道图中建筑物的名字吗?是的,它就是意大利著名的比萨斜塔,是世界著名建筑奇观,位于意大利托斯卡纳省比萨城北面的奇迹广场上,是奇迹广场三大建筑之一,也是意大利著名的标志之一,它从建成之日起便由于土层松软而倾斜.【引入】应该如何来描述它的倾斜程度呢?学完本节课的知识我们就能解决这个问题了.[设计意图]创设新颖、有趣的问题情境,以比萨斜塔的倾斜程度激发学生的学习兴趣,从而自然引出课题,并且为学生探究梯子的倾斜程度埋下伏笔.导入二:课件出示:四个规模不同的滑梯A,B,C,D,它们的滑板长(平直的)分别为300cm,250cm,200cm,200cm;滑板与地面所成的角度分别为30°,45°,45°,60°.【问题】四个滑梯中哪个滑梯的高度最高[设计意图]利用学生所熟悉的滑梯进行引导,使学生有亲切感,滑梯与课本中引用梯子比较类似,学生的探究思路会比较顺畅.(一)探究新知请同学们看下图,并回答问题.探究一:问题1课件出示:在下图中,梯子AB和EF哪个更陡?你是怎样判断的?你有几种判断方法?小组讨论后展示结果:1组:梯子AB较陡.我们组是借助量角器量倾斜角,发现∠ABC>∠EFD,根据倾斜角越大,梯子就越陡,可以得到梯子AB较陡.师:哪组还有不同的判定方法?2组:我们也是认为梯子AB较陡.我们组是分别计算AC与BC的比,ED与FD的比,发现前者的比值大,根据铅直高度与水平宽度的比越大,梯子就越陡,可以得到梯子AB较陡.3组:我们组的方法和1组的大致相同,借助倾斜角来判断,不过不是测量,我们是过E作EG∥AB 交FD于G,就可以清晰比较∠ABC与∠EFD的大小了.4组:我们组发现这两架梯子的高度相同,水平宽度越小,梯子就越陡,所以我们也认为梯子AB较陡.探究二:问题2课件出示:在下图中,梯子AB和EF哪个更陡?你是怎样判断的?学生会类比问题1给出的四种判断方法,只要说得合理即可.问题3课件出示:在下图中,梯子AB和EF哪个更陡?你是怎么判断的?多给学生思考和讨论的时间.代表发言:AB和EF的倾斜度一样.由于两个直角三角形的两直角边的比值相等,再加上夹角相等,可以判定两个直角三角形相似,根据相似三角形的对应角相等,可以证明两个倾斜角相等,所以AB和EF的倾斜度一样.教师引导:我们发现当直角三角形的两直角边的比值相等时,梯子的倾斜度一样,请大家判断一下在问题2与问题3中,两直角边的比值与倾斜度有什么关系?请继续探究下面的问题.问题4课件出示:在下图中,梯子AB和EF哪个更陡?你是怎样判断的?教师引导:我们观察上图直观判断梯子的倾斜程度,即哪一个更陡,可能就比较困难了.能不能从上面的探究中得到什么启示呢生讨论后得出:思路1:梯子EF较陡,因为∠EFD>∠ABC,根据倾斜角越大,梯子就越陡.思路2:梯子EF较陡,因为>,根据铅直高度与水平宽度的比越大,梯子就越陡.师生共同总结:在日常的生活中,我们判断哪个梯子更陡,应该从梯子AB 和EF 的倾斜角大小,或垂直高度和水平宽度的比的大小来判断.做一做:请通过计算说明梯子AB 和EF 哪一个更陡呢?生独立解答,代表展示:∵==,==,<,∴梯子EF 比梯子AB 更陡.[设计意图]通过探究逐层深入的问题,让学生经历由简单到复杂、由特殊到一般的探究过程,既对已学知识和生活经验进行了回味和运用,也让学生的思想逐步向本节课的中心“两直角边之比”靠近.[知识拓展]梯子的倾斜程度的判定方法:(1)梯子的倾斜程度和倾斜角有关系,倾斜角越大,梯子就越陡.(2)梯子的倾斜程度和铅直高度与水平宽度的比有关系,铅直高度与水平宽度的比越大,梯子就越陡.(二)再探新知课件出示:【想一想】如图所示,小明想通过测量B 1C 1及AC 1,算出它们的比,来说明梯子的倾斜程度;而小亮则认为,通过测量B 2C 2及AC 2,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗?(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系生很容易得出两个三角形相似.由生说明理由:∵∠B 2AC 2=∠B 1AC 1,∠B 2C 2A =∠B 1C 1A =90°,∴Rt△AB 1C 1∽Rt△AB 2C 2.(2)和有什么关系?由于Rt△AB 1C 1∽Rt△AB 2C 2,所以有=.(3)如果改变B 2在梯子上的位置呢?由此你得出什么结论?生先独立思考后分组讨论.生得出结论:改变B 2在梯子上的位置,铅直高度与水平宽度的比始终相等.想一想:现在如果改变∠A 的大小,∠A 的对边与邻边的比值会改变吗?生讨论得出:∠A 的大小改变,∠A 的对边与邻边的比值会改变.∠A 的对边与邻边的比只与∠A 的大小有关系,而与它所在直角三角形的大小无关.【总结提升】由于直角三角形中的锐角A 确定以后,它的对边与邻边的比也随之确定,因此我们有如下定义:如图所示,在Rt△ABC 中,如果锐角A 确定,那么∠A 的对边与邻边之比便随之确定,这个比叫做∠A 的正切(tangent ),记作tan A ,即tan A =.当锐角A变化时,tan A的值也随之变化.能力提升:如果∠A+∠B=90°,那么tan A与tan B有什么关系?生讨论得出结论:tan A=,即任意锐角的正切值与它的余角的正切值互为倒数.【议一议】前面我们讨论了梯子的倾斜程度,在课本图1-3中,梯子的倾斜程度与tan A有关系吗?学生思考后,统一答案:tan A的值越大,梯子越陡.(反之,梯子越陡,tan A的值越大)[设计意图]此环节的设计是为了突出概念的形成过程,帮助学生理解概念.通过让学生参与、动手操作,让学生学会由特殊到一般、数形结合及函数的思想方法,提高学生分析问题和解决问题的能力.[知识拓展]正切的注意事项:(1)tan A是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”.(2)tan A没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比.(3)tan A不表示“tan”乘以“A”.(4)初中阶段,我们只学习直角三角形中锐角的正切.(教材例1)如图所示表示甲、乙两个自动扶梯,哪一个自动扶梯比较陡?想一想:要判断哪个自动扶梯比较陡,只需求出什么即可?生思考后得出:比较甲、乙两个自动扶梯哪一个陡,只需分别求出tanα,tanβ的值进行比较大小即可,正切值越大,扶梯就越陡.要求学生独立解答,代表展示:解:甲梯中,tanα==.乙梯中,tanβ==.因为tanα>tanβ,所以甲梯更陡.[设计意图]通过对例题的解答让学生初步学会运用“正切”这一数学工具判断梯子的倾斜程度,同时规范学生的解题步骤,培养良好的解题习惯.课件出示:如图所示,有一山坡在水平方向上每前进100m就升高60m,那么山坡的坡度(即tanα)就是: i=tanα==.结论:坡面与水平面的夹角(α)称为坡角,坡面的铅直高度与水平宽度的比称为坡度(或坡比),tanα=,即坡度等于坡角的正切.[设计意图]正切在日常生活中的应用很广泛,通过正切刻画梯子的倾斜程度及坡度的数学意义,密切数学与生活的联系,使学生明白学习数学就是为了更好地应用数学,为生活服务.[知识拓展]坡度与坡面的关系:坡度越大,坡面越陡.(1)正切的定义:tan A=.(2)梯子的倾斜程度与tan A的关系(∠A和tan A之间的关系):tan A的值越大,梯子越陡.(3)坡度(或坡比)的定义:i=tanα=.1.在Rt△ABC中,∠C=90°,AB=13,AC=12,则tan A等于()A.B. C. D.解析:∵在Rt△ABC中,∠C=90°,AB=13,AC=12,∴BC=5,∴tan A=.故选B.2.如图所示,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是()A.B.C.D.解析:认真读图,在以∠AOB的O为顶点的直角三角形里求tan∠AOB的值,由图可得tan∠AOB=.故选B.3.(2014·温州中考)如图所示,在△ABC中,∠C=90°,AC=2,BC=1,则tan A的值是.解析:tan A==.故填.4.河堤横断面如图所示,堤高BC=5m,迎水坡AB的坡度是1∶(坡度是坡面的铅直高度BC与水平宽度AC之比),则AB的长是.解析:在Rt△ABC中,BC=5,tan A=1∶,∴AC=5,∴AB==10(m).故填10m.第1课时(1)正切的定义:tan A=.(2)梯子的倾斜程度与tan A的关系(∠A和tan A之间的关系):tan A的值越大,梯子越陡.(3)坡度(或坡比)的定义:i=tanα=.一、教材作业【必做题】1.教材第4页随堂练习第1,2题.2.教材第4页习题1.1第1,2题.【选做题】教材第4页习题1.1第3,4题.二、课后作业【基础巩固】1.如图所示,在Rt△ABC中,∠C=90°,AC=6,BC=8,则tan A的值为()A. B. C. D.2.小明沿着坡度为1∶2的山坡向上走了1000m,则他升高了()A.500mB.200mC.500mD.1000m3.已知斜坡的坡度为i=1∶5,如果这一斜坡的高度为2m,那么这一斜坡的水平距离为m.【能力提升】4.(2015·山西中考)如图所示,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2B.C.D.5.如图所示,将以A为直角顶点的等腰直角三角形ABC沿直线BC平移得到△A'B'C',使点B'与C重合,连接A'B,则tan∠A'BC'的值为.6.如图所示,在锐角三角形ABC中,AB=10cm,BC=9cm,△ABC的面积为27cm2.求tan B的值.7.某商场为方便顾客使用购物车,准备将滚动电梯的坡面坡度由1∶1.8改为1∶2.4(如图所示).如果改动后电梯的坡面长为13m,求改动后电梯水平宽度增加部分BC的长.【拓展探究】8.如图所示,在△ABC中,AB=AC,BD是AC边上的中线,若AB=13,BC=10,试求tan∠DBC的值.【答案与解析】1.D(解析:∵在Rt△ABC中,∠C=90°,AC=6,BC=8,∴tan A===.故选D.)2.B(解析:设铅直高度为x m,∵坡度为1∶2,∴水平宽度为2x m,由勾股定理得x2+(2x)2=10002,解得x=200.∴他升高了200m.故选B.)3.10(解析:∵斜坡的坡比是1∶5,∴=.∴=,∴斜坡的水平距离为=10m.故填10.)4.D(解析:如图所示,连接AC,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan B==.故选D.)5.(解析:如图所示,过A'作A'D⊥BC',垂足为D.在等腰直角三角形A'B'C'中,易知A'D是底边上的中线,∴A'D=B'D=.∵BC=B'C',∴tan∠A'BC'===.故填.)6.解:如图所示,过点A作AH⊥BC于H,∵S=27,∴×9×AH=27,∴AH=6.∵AB=10,∴BH===8,∴tan△ABCB===.7.解:在Rt△ADC中,AD∶DC=1∶2.4,AC=13,由AD2+DC2=AC2,得AD2+(2.4AD)2=132,∴AD=±5(负值不合题意,舍去),∴DC=12.在Rt△ABD中,∵AD∶BD=1∶1.8,∴BD=5×1.8=9,∴BC=DC-BD=12-9=3(m).答:改动后电梯水平宽度增加部分BC的长为3m.8.解:如图所示,过点A,D分别作AH⊥BC,DF⊥BC,垂足分别为点H,F.∵BC=10,AH⊥BC,AB=AC,∴BH=5.∵AB=13,∴AH==12,在Rt△ACH中,AH=12,易知AH∥DF,且D为AC中点,∴DF=AH=6,∴BF=BC=,∴在Rt△DBF中,tan∠DBC==.本节课是三角函数部分的第一节概念教学,教学内容比较抽象,学生不易理解.为此结合初中学生身心发展的特点,运用实验教学、直观教学,唤起和加深学生对教学内容的体会和了解,并培养和发展学生的观察、思维能力,这是贯彻“从生动的直观到抽象的思维,并从抽象的思维到实践”的认识规律,能使学生学习数学的过程成为积极的、愉快的和富有想象的过程,使学习数学的过程不再是令人生畏的过程.概念教学由学生熟悉的实例入手,引导学生观察、分析、动手、动脑、动口多种感官参与,并组织学生积极参与小组成员间合作交流.通过由特殊到一般、具体到抽象的探索过程,紧紧围绕着函数概念,引出正切概念,再通过相应的典型题组练习巩固概念.并且在教学过程中,注重了阶段性的反思小结,使学生能够及时总结知识和方法.本节课的开放性还不够,探究梯子倾斜程度时,学生的一些奇思妙想没有给予展示机会.第一个环节内容设计多了一些,所以导致后面的教学处理上稍显仓促.对第一个环节的处理力求更加简洁,并大胆放手让学生去探索、去发现,真正让学生成为学习的主人.随堂练习(教材第4页)1.解:能.tan C====.2.解:根据题意,得AB=200,BC=55,则AC===5,所以山的坡度为=≈0.286.习题1.1(教材第4页)1.解:∵BC===12,∴tan A==,tan B==.2.解:∵tan A==,BC=3,∴AC=BC=.4.tan A=.学生学习时首先通过情境题了解本节课学习的主要任务,做到有的放矢,然后利用“由一般到特殊”的数学思想,通过三个探究活动逐步得出梯子的倾斜程度与tan A的关系(∠A和tan A之间的关系),在探究的过程中可以通过自主探究与合作交流的方式抓住重点,突破难点.学生在运用正切解决问题时,一定要注意其前提条件——在直角三角形中,找准直角是解题的关键.而有些题目需要作辅助线构造直角三角形,也可以通过角度的转化进行求解,同时还要注意数形结合思想的运用.如图所示,设计建造一条道路,路基的横断面为梯形ABCD,设路基高为h,两侧的坡角分别为α,β.已知h=2m,α=45°,tanβ=,CD=10m.求路基底部AB的宽.〔解析〕如图所示,过D,C分别作下底AB的垂线,垂足分别为E,F.在Rt△ADE和Rt△BCF中,可根据h的长以及坡角的度数或坡比的值,求出AE,BF的长,进而可求得AB的值.解:如图所示,过D作DE⊥AB于E,过C作CF⊥AB于F,∴DE∥CF.∵四边形ABCD为梯形,∴AB∥CD,∴EF=CD=10m.∴四边形DCFE为矩形.在Rt△ADE中,α=45°,DE=h=2m,∴CF=DE=h=2m.在Rt△BCF中,tanβ=,CF=2m,∴BF=2CF=4(m).故AB=AE+EF+BF=AE+CD+BF=2+10+4=16(m).答:路基底部AB的宽为16m.[解题策略]此题主要考查了坡度问题的应用,求坡度、坡角问题通常要转换为解直角三角形的问题,必要时应添加辅助线,构造出直角三角形.。