如何选择放电管 (2)
- 格式:docx
- 大小:270.27 KB
- 文档页数:5
放电管的原理选型及应用1. 放电管的基本原理放电管是一种电子器件,用于控制电流的传导。
其基本原理是利用气体放电的特性,通过控制电流和电压,使得放电管在工作时能够保持在激活和关闭状态之间。
2. 放电管的选型要点选择合适的放电管对于电路设计和性能的影响非常重要。
以下是放电管选型的一些要点:2.1 工作电压和电流放电管的工作电压和电流应根据具体的应用需求进行选取。
一般来说,工作电流和电压应在放电管的额定值范围内。
过高的电压和电流可能导致放电管损坏或性能下降。
2.2 放电方式放电管可以通过不同的方式进行放电,常见的方式有直流放电和交流放电。
根据实际需求选择适合的放电方式。
2.3 快速响应时间放电管的响应时间也是选择的重要考虑因素。
对于一些需要快速放电的应用,如电子闪光灯或激光器控制等,需要选择具有快速响应时间的放电管。
2.4 放电管的封装形式放电管的封装形式也需要考虑。
常见的封装形式包括插针式封装、表面贴装封装等。
根据具体的安装环境和要求进行选择。
3. 放电管的应用领域放电管由于其特殊的电特性,在许多领域都有广泛的应用。
3.1 电子闪光灯放电管常被用于电子闪光灯中的电路控制,能够实现高压快速放电,产生强大的闪光效果。
3.2 激光器控制激光器控制需要精确地控制电流和电压,放电管能够提供快速的开关控制,并保持在激活和关闭状态之间,从而实现激光器的精确控制。
3.3 电池管理系统放电管在电池管理系统中也有重要的应用。
通过放电管的控制,能够实现电池的快速放电,保护电池的性能和安全。
3.4 电力电子领域在电力电子领域,放电管常被应用于电源电路和开关电路中,实现电流和电压的控制。
4. 放电管的优势和劣势4.1 优势•快速响应时间,适用于需要精确控制的应用•高可靠性和长寿命,适用于长期稳定运行的场景•多种封装形式,适应不同的安装环境•强大的电流和电压控制能力4.2 劣势•需要外部电源供电•对工作环境的稳定性要求较高•成本较高,相对其他器件而言较昂贵5. 结论放电管作为一种重要的电子器件,其在控制电流传导和保护电路中扮演着重要角色。
放电管参数详解放电管是一种用于吸收多余电压或电流的电子元件,具有高效、快速、安全等优点,广泛应用于电源系统、电力网络等领域。
本文将对放电管的各个参数进行详细解释。
1.直流电阻(DC Resistance)直流电阻是指放电管在直流电流下的电阻值,通常用欧姆(Ω)表示。
在一定电压下,放电管的直流电阻会影响其工作电流和功耗。
一般来说,低直流电阻的放电管具有更高的效率,但同时也可能对电路造成更大的压降。
2.绝缘电阻(Insulation Resistance)绝缘电阻是指放电管两端的绝缘材料所具有的电阻值,通常用兆欧(MΩ)表示。
高绝缘电阻的放电管具有更好的绝缘性能,可以更好地保护电路和设备。
3.放电时间(Discharge Time)放电时间是指放电管在触发后完成放电所需的时间,通常用纳秒(ns)表示。
放电时间的长短取决于放电管的容量和电压,以及触发条件。
在电源系统等领域,放电时间的合理选择可以有效地保护设备和电路。
4.触发电压(Trigger Voltage)触发电压是指使放电管开始放电所需的最低电压,通常用伏特(V)表示。
触发电压的大小取决于放电管的类型、结构、介质材料等因素。
在选择放电管时,需要考虑其触发电压与系统的工作电压范围是否匹配。
5.最大反向电压(Maximum Reverse Voltage)最大反向电压是指放电管所能承受的最大反向电压,通常用伏特(V)表示。
在使用放电管时,应确保其最大反向电压不低于电路中的最高电压。
6.最大正向电流(Maximum Forward Current)最大正向电流是指放电管所能承受的最大正向电流,通常用安培(A)表示。
在选择放电管时,需要考虑其最大正向电流是否满足系统的工作电流需求。
7.工作温度范围(Operating Temperature Range)工作温度范围是指放电管能够正常工作的温度范围,通常用摄氏度(℃)表示。
在不同温度下,放电管的性能和可靠性可能会有所不同,因此在选择放电管时需要考虑其工作温度范围是否适合应用场景的需求。
放电管介绍及选型(详解)放电管特性及选用吴清海放电管的分类放电管主要分为气体放电管和半导体放电管,其中气体放电管由烧结的材料不同分为玻璃气体放电管和陶瓷气体放电管,玻璃气体放电管和陶瓷气体放电管具有相同的特性。
气体放电管主要有密封的惰性气体组成,由金属引线引出,用陶瓷或是玻璃进行烧结。
其工作原理为,当加在气体放电管两端的电压达到气体电离电压时,气体放电管由非自持放电过度到自持放电,放电管呈低阻导通状态,可以瞬间通过较大的电流,气体放电管击穿后的维持电压可以低到30V以内。
气体放电管同流量大,但动作电压较难控制。
半导体放电管由故态的四层可控硅结构组成,当浪涌电压超过半导体放电管的转折电压V BO 时放电管开始动作,当放电管动作后在返送装置,的作用下放电管两端的电压维持在很低(约20V以下)时就可以维持其在低阻高通状态,起到吸收浪涌保护后级设备的作用。
半导体放电管的保护机理和应用方式和气体放电管相同。
半导体放电管动作电压控制精确,通流量较小。
放电管动作后只需要很低的电压即可维持其低阻状态,所以放电管属于开关型的SPD。
当正常工作时放电管上的漏电流可忽略不计;击穿后的稳定残压低,保护效果较好;耐流能力较大;在使用中应注意放电管的续流作用遮断,在适当场合中应有有效的续流遮断装置。
气体放电管气体放电管:气体放电管由封装在小玻璃管或陶瓷管中相隔一定距离的两个电极组成;其电气性能主要取决于气体压力,气体种类,电极距离和电极材料;一般密封在放电管中的气体为高纯度的惰性气体。
放电管主要由:电极、陶瓷管(玻璃管)、导电带、电子粉、Ag-Cu焊片和惰性气体组成。
在放电管的两电极上施加电压时,由于电场作用,管内初始电子在电场作用下加速运动,与气体分子发生碰撞,一旦电子达到一定能量时,它与气体分子碰撞时发生电离,即中性气体分子分离成电子和阳离子,电离出来的电子与初始电子在行进过程中还要不断地再次与气体分子碰撞发生电离,从而电子数按几何级数增加,即发生电子雪崩现象,另外,电离出来的阳离子也在电场作用下向阴极运动,与阴极表面发生碰撞,产生二次电子,二次电子也参加电离作用,一旦满足: r(ead-1)=1 时放电管由非自持放电过渡到自持放电,管内气体被击穿,放电管放电,此时放电电压称为击穿电压Vs。
气体放电管的使用技巧气体放电管是一种广泛应用于不同领域的技术装置。
它利用气体放电产生的光、热、声等性质,用于照明、通信、科研等各种用途。
然而,要正确并高效地使用气体放电管,掌握一些使用技巧是非常重要的。
本文将从选购、安装、维护几个方面,介绍气体放电管的使用技巧。
1. 选购气体放电管在选购气体放电管时,首先需要了解不同类型的放电管及其特点。
例如,氖灯、氙灯、氩氖(Ar/Ne)混合灯等常见的气体放电管,其光谱和亮度都有所不同。
因此,根据实际应用场景和需求,选择适合的放电管是至关重要的。
其次,考虑使用寿命和稳定性。
不同的气体放电管在使用寿命上可能有所差异,有些放电管可能在长时间使用后逐渐失去亮度或产生色偏。
因此,在选购时务必要仔细核对相关参数和说明。
另外,还要留意品牌和质量信誉,选择合适的供应商和品牌,以确保使用寿命和稳定性。
最后,还需要考虑购买成本与维护成本之间的平衡。
气体放电管在购买后,常常需要维护、更换一些零部件。
因此,在购买时要考虑到维护成本,并权衡总体的经济性。
2. 安装气体放电管正确的安装方法对于气体放电管的使用和效果都至关重要。
首先,安装时要确保放电管的连接部件牢固可靠,避免在使用过程中松动或掉落。
其次,要选择合适的安装位置和角度,以充分利用光线和热量的传播。
除此之外,在室内安装时需注意通风和散热,避免过热对放电管造成损害。
另外,对于需要长时间持续工作的放电管,考虑到散热问题,可以采取一些散热措施,如加装风扇或散热片,以保证放电管的温度在正常范围内。
3. 维护气体放电管维护对于气体放电管的寿命和稳定性至关重要。
首先,定期清洁放电管的表面是必要的,以确保其光线的传播效果。
可以使用一些清洁剂和柔软的布进行清洁,但要避免使用过多的水或液体接触放电管。
另外,注意定期更换放电管的零部件,如电极、滤光片等,以保持其正常工作状态。
根据使用情况和厂家的建议,也可以定期进行检查和维护,以确保放电管的性能和使用寿命。
如何选择放电管凡是有过电压发生的地方,就有放电管的用武之地,但要用好放电管则需要根据实际工作线路参考放电管的各项指标选用适当的放电管,否则会适得其反。
以下是在设计及使用时必须注意的几点:1.放电管的加入不能影响线路的正常工作,这就要保证放电管的直流击穿电压的下限值必须高于线路的最大正常工作电压。
据此确定所需放电管的标称直流击穿电压值。
例如:在电话线的过电压防护中,常态时,电话线两线间的电压为48V,但当振铃信号来时,两线间的峰值电压可达175V左右,因此,此时选用的气体放电管的直流击穿电压的下限值必须高于175V,考虑到留点余量,所以一般选用直流击穿电压值下限为190V(标称直流击穿电压值为230V)的气体放电管,如H2R8-230。
2.确定线路所能承受的最高瞬时电压值,要确保放电管的冲击击穿电压值必须低于此值。
以确保当瞬间过压来临时,放电管的反映速度快于线路的反映速度,抢先一步将过电压限制在安全值。
这是放电管的一个最重要的指标。
例如:上例所述的电话线上,如果只用于保护一般的电话机,则只需选用冲击击穿电压小于800V(实测典型值为650V左右)的放电管,但若被保护对象为更精密的设备(如传真机等),则可选用实测典型值不到400V。
3.根据线路中可能窜入的冲击电流强度,确定所选用放电管必须达到的耐冲击电流能力(如:在室外一般选用10kA以上等级;在入室端一般选用5kA等级;在设备终端处一般选用1kA左右等级)。
4.当过电压消失后,要确保放电管及时熄灭,以免影响线路的正常工作。
这就要求放电管的过保持电压尽可能高,以保证正常线路工作电压不会引起放电管的持续导通(即续流问题)。
由于放电管有一个特点是:维持放电管持续放电的电压值要远小于放电管的击穿电压值。
一般用户没有测试条件,无法判定此项指标好坏,在此提供一种简单判定办法,以标称直流击穿电压为230V的放电管为例:找一可调直流稳压电源,在其输出串联一51K左右限流电阻再接到放电管的二电极,将输出电压由小逐渐调高直至放电管放电,然后再慢慢调低电源输出电压,观察放电管熄灭时的电压值,一般的放电管此值均为60V左右,而国际上一流公司的放电管此值可以做到200V左右。
三极放电管简介及参数三极放电管的结构三极放电管的结构示意图,它是由纯铁电极、镍铬钴合金帽、银铜焊帽和陶瓷管体等主要部件构成的。
在三极放电管中增加了镍铬钴合金圆筒,作为第三电极,即接地电极。
1—银铜焊帽 2-金属管帽2—接地电极 4-电极引线5-陶瓷管三极放电管的主要参数1.直流放电电压:在上升陡度低于100V/s的电压作用下,放电管开始放电的电压值称为其直流放电电压。
由于放电具有分散性,围绕着这个平均值还需要同时给出允许的偏差上限和下限值。
2.冲击放电电压:在具有规定上升陡度的暂态电压脉冲作用下,放电管开始放电的电压值称为其冲击放电电压。
由于放电管的响应时间或动作时延与电压脉冲的上升陡度有关,对于不同的上升陡度,放电管的冲击放电电压是不相同的。
一些制造厂通常是给出在上升陡度为1KV/μs的冲击放电电压值,实际上,出于一般应用的考虑,还应给出放电管在100V/μs、500V/μs、1KV/μs、5KV/μs 和10KV/μs等不同上升陡度下的冲击放电电压,以尽量包括在各种保护应用环境中可能遇到的暂态过电压上升陡度范围。
3.工频耐受电流:放电管通过工频电流5次,使管子的直流放电电压及绝缘电阻无明显变化的最大电流称为其工频耐受电流。
当应用于一些交流供电线路或易于受到供电线路感应作用的通讯线路时,应注意放电管的工频耐受问题。
经验表明,感应工频电流较小,一般不大于5A,但其持续时间却很长;供电线路上的过电流很大,可高达数百安培,但由于继电保护装置的动作,其持续时间却很短,一般不超过5s。
4.冲击耐受电流:将放电管通过规定波形和规定次数的脉冲电流,使其直流放电电压和绝缘电阻不会发生明显变化的最大值电流峰值称为管子的冲击耐受电流。
这一参数总是在一定波形和一定通流次数下给出的,制造厂常给出在8/20μs波形下通流10次的冲击耐受电流,也有给出在10/1000μs波形下通流300次的冲击耐受电流。
5.绝缘电阻和极间电容:放电管的绝缘电阻很大,制造厂给出的该参数值一般为绝缘电阻的初始值,约为数千兆欧,在放电管的不断使用过程中,绝缘电阻值将会降低。
放电管型号参数如下:
1. 氘气放电管:主要用于微波和毫米波技术中的放大器、振荡器和开关等方面。
常用工作频率范围在10GHz ~ 90GHz之间。
2. 铝电解放电管:主要用于汽车点火系统、医疗设备以及工业高频设备的点焊机、轧辊、切割等部件。
其耐压电流范围一般在0.5A ~ 20A之间。
3. 钴放电管:主要用于雷达信号发射、电视信号放大器以及太阳能电池板的电池低温测试等领域。
其居里温度常数一般为678K。
4. 汞弧放电管:主要用于紫外线灯管、荧光灯、紫外线杀菌器等电器设备中。
其最高工作温度可达500°C左右。
5. 氖气放电管:主要用于视觉效果和装饰灯具中,使用电压一般在70V ~ 120V 之间。
UN Semiconductor
玻璃放电管(SPG)选型技巧
优恩半导体(UN)
玻璃放电管的选型:
玻璃放电管既可以用作电源电路的保护,也可以用作信号电路的保护;既可以用作共模保护,也可以用作差模保护。
但只能用在浪涌电流不大于3kA的地方。
直流击穿电压VS的选择:直流击穿电压VS的最小值应大于可能出现的最高电源峰值电压或最高信号电压的1.2倍以上。
在有可能出现续流的地方(如电源电路)使用时,必须串联限流电阻或自恢复保险丝,防止玻璃放电管击穿后长时间导通而损坏。
玻璃放电管运用领域:
1.对电话、传真、调制解调器、程控电话交换机、配线架、网络等通信设备和数字传输设备,作浪涌电流保护;
2.传感线上作浪涌电流保护;
3.有线电视(CATV)系统的浪涌电流保护;
4.用作CRT监视器、电脑彩显和彩电静电保护;
5.轿车音频系统、无线电通信设备上作静电保护。
unsemi。
放电管的原理及选型使1、产品简述陶瓷气体放电管(Gas Tube)是防雷保护设备中应用最广泛的一种开关器件,无论是交直流电源的防雷还是各种信号电路的防雷,都可以用它来将雷电流泄放入大地。
其主要特点是:放电电流大,极间电容小(≤3pF),绝缘电阻高(≥109Ω),击穿电压分散性较大(±20%),反应速度较慢(最快为0.1~0.2μs).按电极数分,有二极放电管和三极放电管(相当于两个二极放电管串联)两种。
其外形为圆柱形,有带引线和不带引线两种结构形式(有的还带有过热时短路的保护卡).2、工作原理气体放电管由封装在充满惰性气体的陶瓷管中相隔一定距离的两个电极组成。
其电气性能基本上取决于气体种类、气体压力以及电极距离,中间所充的气体主要是氖或氩,并保持一定压力,电极表面涂以发射剂以减少电子发射能。
这些措施使得动作电压可以调整(一般是70伏到几千伏),而且可以保持在一个确定的误差范围内。
当其两端电压低于放电电压时,气体放电管是一个绝缘体(电阻Rohm〉100MΩ)。
当其两端电压升高到大于放电电压时,产生弧光放电,气体电离放电后由高阻抗转为低阻抗, 使其两端电压迅速降低,大约降几十伏。
气体放电管受到瞬态高能量冲击时,它能以10-6秒量级的速度,将其两极间的高阻抗变为低阻抗,通过高达数十千安的浪涌电流。
3、特性曲线Vs导通电压,Vg辉光电压,Vf弧光电压,Va熄弧电压4、主要特性参数①直流击穿电压Vsdc:在放电管上施加100V/s的直流电压时的击穿电压值。
这是放电管的标称电压,常用的有90V、150V、230V、350V、470V、600V、800V等几种,我们有最高3000V、最低70V的。
其误差范围:一般为±20%,也有的为±15%。
②脉冲(冲击)击穿电压Vsi:在放电管上施加1kV/μs的脉冲电压时的击穿电压值。
因反应速度较慢,脉冲击穿电压要比直流击穿电压高得多。
陶瓷气体放电管对低上升速率和高上升速率电压的响应如下图所示。
气体放电管原理选型及应用原理:气体放电管采用陶瓷密闭封装,内部由两个或数个带间隙的金属电极,充以惰性气体(氩气或氖气)构成,基本外形如图1所示。
当加到两电极端的电压达到使气体放电管内的气体击穿时,气体放电管便开始放电,并由高阻变成低阻,使电极两端的电压不超过击穿电压。
气体放电管的主要参数1)反应时间指从外加电压超过击穿电压到产生击穿现象的时间,气体放电管反应时间一般在μs数量极。
2)功率容量指气体放电管所能承受及散发的最大能量,其定义为在固定的8×20μs电流波形下,所能承受及散发的电流。
3)电容量指在特定的1MHz频率下测得的气体放电管两极间电容量。
气体放电管电容量很小,一般为≤1pF。
4)直流击穿电压当外施电压以500V/s的速率上升,放电管产生火花时的电压为击穿电压。
气体放电管具有多种不同规格的直流击穿电压,其值取决于气体的种类和电极间的距离等因素。
5)温度范围其工作温度范围一般在-55℃~+125℃之间。
6)绝缘电阻是指在外施50或100V直流电压时测量的气体放电管电阻,一般>1010Ω。
气体放电管的应用示例1)电话机/传真机等各类通讯设备防雷应用如图3所示。
特点为低电流量,高持续电源,无漏电流,高可靠性。
图3 通讯设备防雷应用2)气体放电管和压敏电阻组合构成的抑制电路图4是气体放电管和压敏电阻组合构成的浪涌抑制电路。
由于压敏电阻有一致命缺点:具有不稳定的漏电流,性能较差的压敏电阻使用一段时间后,因漏电流变大可能会发热自爆。
为解决这一问题在压敏电阻之间串入气体放电管。
但这又带来了缺点就是反应时间为各器件的反应时间之和。
例如压敏电阻的反应时间为25ns,气体放电管的反应时间为100ns,则图4的R2,G,R3的反应时间为150ns,为改善反应时间加入R1压敏电阻,这样可使反应时间为25ns。
图4 气体放电管和压敏电阻配合应用3)气体放电管在综合浪涌保护系统中的应用自动控制系统所需的浪涌保护系统一般由二级或三级组成,利用各种浪涌抑制器件的特点,可以实现可靠保护。
强效应玻璃放电管SPG强效应玻璃放电管是一种靠內部微间隙放电的一种保护器件,在电极微间隙之间充有稳定的隋性气体,并采用玻璃壳和杜镁丝头在高温下烧结密封而形成的•它具有快速的响应速度,响应时间≤1nS,•它是一种开关型并联于线路中旁路于浪涌电流一种防雷型保护器件•电压规格从70V~6000V,耐突波电流能力在8/20uS 雷击下可达500A、1000A、2000A、3000A 等,不同的耐电流能力可适应于不同国内、国际标准的测试•体积小,目前最小可达Φ1.4*3.4•在同等电压规格情况下,残压是所有气体式开关型器件中最低的•电容值低,一般只有几皮法•无极性,安装方便简捷•绝缘阻抗高、不易老化,可靠性强,能长期在湿度环境比较恶劣的情况下继续保持高阻值,这是其它保护器件一般都不能达到的•专用于高频通迅信号线路进行防护,一般不能直接用在有源电路上进行防护,在有源线路中它必须配合限压型(MOV、HYPERFIX)的保护器件来同时使用由于强效应玻璃放电管存在续流的问题而不能直接用在有源电路上进行保护,因而在有源产品上的防护必须要利用限压型的保护器件(压敏电阻或防雷型的HYPERFIX等限压型器件)配合使用。
强效应玻璃放电管广泛应用消费通迅产品中保护半导体及敏感器件,以防IC免受瞬间过电压的冲击和而受损坏•通讯设备过压抗雷击保护:如ADSL、MODEM、CATV、IC卡电话机、以太网交换机、网卡、语音分离器、电话机、传真机、RS485、RS232端口等。
•电子设备的静电防护:CRT显示器、汽车音频系统、电子电器产品的ESD&EMC 防护等•电子电器设备电源部分的过压抗雷击保:变频空调、变频电源、传真机电源、小家电产品等。
君耀强效应玻璃放电管产品符合于RoHS WEEE相应的条款并通过相应的检测机构检验,满足其相应的测试标准: IEC61000-4-5、ITU K21、UL等标准强效应玻璃放电管选型原则¾DC spark-over voltage 代表直流击穿电压,以100V/S 速率,放电电流<0.5mA 下所测试出的电压,依据不同的规格有不同的精确度范围10%、20%、30%等;¾Insulation Resistance 代表绝缘阻值,针对不同规格,在1分钟时间之内采用对应的测试电压下所测试的阻值;¾Maximum Capacitance 最大静态电容值,在1KHz-6VMAX 下进行测试;¾Surge current capacity 依据指定的雷击波形情况下,浪涌承受耐电流能力;强效应玻璃放电管电压的选取DC spark-over voltage :直流击穿电压必须大于被保护电路的最大工作电压由于强效玻璃放电管脉冲击穿电压较高,一般在选型设计的时候要采用二级雷击防护思想来进行考虑 , 以避免残压高而使被保护电路IC受损.强效应玻璃放电管通流量的选取一般依据客户产品防雷测试等级的要求进行选取,来决定所选放电管的通流量及相应的尺寸规格。
半导体放电管TSS的介绍以及应用领域概述:半导体放电管TSS是基于开关型晶闸管原理和结构的一种二端负阻器件,用于保护敏感易损的集成电路,使之免受瞬间雷电和过电压的冲击而造成的损坏。
高端的固体放电管产品采用了先进的离子注入技术和玻璃钝化工艺,产品具有准确导通、响应速度快、浪涌吸收能力强、可靠性高、稳定性强等特点。
应用领域:由于半导体放电管的开关特性和稳定性等产品优势,因此被广泛应用于交换机、电话机、传真机、配线架、XDSL、ADSL、G-PON、通讯接口、通讯发射设备等一切需要过电压保护的领域,以保护其后端的芯片免受瞬态过电压的冲击和破坏。
在当今世界微电子及通讯设备高速发展的今天,半导体放电管已经成为通讯和消费类电子行业过压保护的首选分立器件。
半导体放电管的正确选用方法:1、反向击穿电压VBR必须大于被保护电路的最大工作电压。
如在POTS应用中,最大振铃电压(150V)的峰值电压(150*1.41=212.2V)和直流偏压峰值(56.6V)之和为268.8V,所以应选择VBR大于268.8V的器件。
又如在ISDN应用中,最大DC电压(150V)和最大信号电压(3V)之和为153V,所以应选择VBR大于153V的器件。
2、转折电压VBO必须小于被保护电路所允许的最大瞬间峰值电压。
3、若要使半导体放电管通过大的浪涌电流后自复位,器件的维持电流IH必须大于系统所能能提供的电流值。
即:IH(系统电压/源阻抗)。
4、最大瞬间峰值电流IPP必须大于通讯设备标准的规定值。
如FCC Part68A类型的IPP应大于100A;Bellcore 1089的IPP应大于25A。
5、半导体放电管处于导通状态(导通)时,所损耗的功率P应小于其额定功率Pcm,Pcm=KVT*IPP,其中K由短路电流的波形决定。
对于指数波,方波,正弦波,三角波K值分别为1.00,1.4,2.2,2.8。
本文由深圳市瑞隆源电子有限公司提供,专业制造各种防雷器,避雷器,放电管,陶瓷气体放电管等。
放电管得原理及选型使1、产品简述陶瓷气体放电管(Gas Tube)就是防雷保护设备中应用最广泛得一种开关器件,无论就是交直流电源得防雷还就是各种信号电路得防雷,都可以用它来将雷电流泄放入大地.其主要特点就是:放电电流大,极间电容小(≤3pF),绝缘电阻高(≥109Ω),击穿电压分散性较大(±20%),反应速度较慢(最快为0、1~0、2μs)。
按电极数分,有二极放电管与三极放电管(相当于两个二极放电管串联)两种。
其外形为圆柱形,有带引线与不带引线两种结构形式(有得还带有过热时短路得保护卡)。
2、工作原理气体放电管由封装在充满惰性气体得陶瓷管中相隔一定距离得两个电极组成。
其电气性能基本上取决于气体种类、气体压力以及电极距离,中间所充得气体主要就是氖或氩, 并保持一定压力,电极表面涂以发射剂以减少电子发射能。
这些措施使得动作电压可以调整(一般就是70伏到几千伏),而且可以保持在一个确定得误差范围内。
当其两端电压低于放电电压时,气体放电管就是一个绝缘体(电阻Rohm〉100MΩ).当其两端电压升高到大于放电电压时,产生弧光放电,气体电离放电后由高阻抗转为低阻抗,使其两端电压迅速降低,大约降几十伏。
气体放电管受到瞬态高能量冲击时,它能以10-6秒量级得速度,将其两极间得高阻抗变为低阻抗,通过高达数十千安得浪涌电流。
3、特性曲线Vs导通电压,Vg辉光电压,Vf弧光电压,Va熄弧电压4、主要特性参数①直流击穿电压Vsdc:在放电管上施加100V/s得直流电压时得击穿电压值。
这就是放电管得标称电压,常用得有90V、150V、230V、350V、470V、600V、800V等几种,我们有最高3000V、最低70V得.其误差范围:一般为±20%,也有得为±15%。
②脉冲(冲击)击穿电压Vsi:在放电管上施加1kV/μs得脉冲电压时得击穿电压值。
因反应速度较慢,脉冲击穿电压要比直流击穿电压高得多。
放电管特性及选用吴清海放电管的分类放电管主要分为气体放电管和半导体放电管,其中气体放电管由烧结的材料不同分为玻璃气体放电管和陶瓷气体放电管,玻璃气体放电管和陶瓷气体放电管具有相同的特性。
气体放电管主要有密封的惰性气体组成,由金属引线引出,用陶瓷或是玻璃进行烧结。
其工作原理为,当加在气体放电管两端的电压达到气体电离电压时,气体放电管由非自持放电过度到自持放电,放电管呈低阻导通状态,可以瞬间通过较大的电流,气体放电管击穿后的维持电压可以低到30V以内。
气体放电管同流量大,但动作电压较难控制。
半导体放电管由故态的四层可控硅结构组成,当浪涌电压超过半导体放电管的转折电压V BO时放电管开始动作,当放电管动作后在返送装置,的作用下放电管两端的电压维持在很低(约20V以下)时就可以维持其在低阻高通状态,起到吸收浪涌保护后级设备的作用。
半导体放电管的保护机理和应用方式和气体放电管相同。
半导体放电管动作电压控制精确,通流量较小。
放电管动作后只需要很低的电压即可维持其低阻状态,所以放电管属于开关型的SPD。
当正常工作时放电管上的漏电流可忽略不计;击穿后的稳定残压低,保护效果较好;耐流能力较大;在使用中应注意放电管的续流作用遮断,在适当场合中应有有效的续流遮断装置。
气体放电管气体放电管:气体放电管由封装在小玻璃管或陶瓷管中相隔一定距离的两个电极组成;其电气性能主要取决于气体压力,气体种类,电极距离和电极材料;一般密封在放电管中的气体为高纯度的惰性气体。
放电管主要由:电极、陶瓷管(玻璃管)、导电带、电子粉、Ag-Cu 焊片和惰性气体组成。
在放电管的两电极上施加电压时,由于电场作用,管内初始电子在电场作用下加速运动,与气体分子发生碰撞,一旦电子达到一定能量时,它与气体分子碰撞时发生电离,即中性气体分子分离成电子和阳离子,电离出来的电子与初始电子在行进过程中还要不断地再次与气体分子碰撞发生电离,从而电子数按几何级数增加,即发生电子雪崩现象,另外,电离出来的阳离子也在电场作用下向阴极运动,与阴极表面发生碰撞,产生二次电子,二次电子也参加电离作用,一旦满足: r(ead-1)=1 时放电管由非自持放电过渡到自持放电,管内气体被击穿,放电管放电,此时放电电压称为击穿电压Vs。
⽓体放电管(简称GDT)选型攻略GDT是⽓体放电管缩写词,(gas discharge tube)实质是⼀种密封在陶瓷腔体中的放电间隙,腔体中充有惰性⽓体以稳定放电管的放电电压。
其主要特点是通流能量⼤,可达数⼗千安,绝缘电阻极⾼,⽆漏流,⽆⽼化失效,⽆极性双向保护,静态电容极⼩,特别适⽤于⾼速⽹络通讯设备的粗保护。
可⼴泛⽤于各种电源及信号线的第⼀级雷击浪涌保护。
浪拓电⼦(LT)供应的GDT产品分为三⼤类:➣2电极⽓体放电管(GDT)·标准贴⽚式(SMD), 2电极·标准引线, 2-电极·薄形⽔平表⾯贴装系列·⾼电压系列·⾼电流系列·快速反应系列➣3电极⽓体放电管(GDT)·标准贴⽚式(SMD), 3-电极·标准引线, 3-电极·⾼电压, 3-电极·快速反应系列, 3-电极➣混和系列(复合式)⽓体放电管(GDT)·⽆续流GDT·过压组合式保护器陶瓷⽓体放电管选型指南· 在直流电路中⽓体放电管的标称电压选择为⼯作电压的1.8倍:在交流电路中选择为⼯作电压有效值的2.5倍。
· ⽓体放电管标称电流容量应⼤于被保护电路的可能最⼤浪涌冲击容量。
· 由于⽓体放电管有续流,⽓体放电管⼀般不可使⽤在直流电路中,除⾮直流⼯作电压低于⽓体放电管的击穿维持电压。
浪拓电⼦-陶瓷⽓体放电管全系列.pdf (923.05 KB, 下载次数: 2)◆浪拓电⼦提供的陶瓷⽓体放电管(GDT)包括多个品种,产品封装形式覆盖了SMD1206、SMD1210、SMD1812、φ5、φ5.5、φ8、φ8.3、φ16、φ30等各种标准封装形式,满⾜您不同应⽤环境的设计需求。
此帖出⾃信息发布论坛。
气体放电管基础知识2.1气体放电管2.1.1简介气体放电管是在放电间隙内充入适当的气体介质,配以高活性的电子发射材料及放电引燃机构,通过银铜焊料高温封接而制成的一种特殊的金属陶瓷结构的气体放电器件。
它主要用于瞬时过电压保护,也可作为点火开关。
在正常情况下,放电管因其特有的高阻抗(>1000MΩ)及低电容(<2pF)特性,在它作为保护元件接入线路中时,对线路的正常工作几乎没有任何不利的影响。
当有害的瞬时过电压窜入时,放电管首先被击穿放电,其阻抗迅速下降,几乎呈短路状态,此时,放电管将有害的电流通过地线或回路泄放,同时将电压限制在较低的水平,消除了有害的瞬时过电压和过电流,从而保护了线路及元件。
当过电压消失后,放电管又迅速恢复到高阻抗状态,线路继续正常工作。
气体放电管是一种间隙式的防雷保护元件,它在通信系统的防雷保护中已获得了广泛应用。
放电管常用于多级保护电路中的第一级或前两级,起泄放雷电暂态过电流和限制过电压作用。
由于放电管的极间绝缘电阻很大,寄生电容很小,对高频电子线路的雷电防护具有明显的优势。
气体放电管的基本特点是:通流量容量大,绝缘电阻高,漏电流小。
但残压高,反应时间慢(≤100ns),动作电压精度较低,有续流现象。
Figure 1气体放电外观图2.1.2气体放电的伏安特性气体放电管的伏安特性通常与管子的哪些电极间施加什么极性的电压没有关系。
现以一个直流放电电压为150V的二极放电管为例,来说明放电管伏安特性的基本特征。
下图是按电子元件伏安特性的惯用画法,即以电压为自便量,画作横坐标;以电流为应变量,画作纵坐标。
由于电流的范围很大,其变化常达几个数量级,所以电流用对数坐标表示。
如图所示的伏安特性上,当逐渐增加两电极间的电压时,放电管在A点放电,A点的电压称为放电管的直流放电电压。
在A到B之间的这段伏安特性上,其斜率(即动态电阻du/di)是负的,称为负阻区。
如果200V的直流电压源经1MΩ的电阻加到放电管上,放电管即工作在此区间,这时的放电具有闪变特征。
陶瓷气体放电管,如何正确选型?陶瓷气体放电管,都是干货,看完就明白了陶瓷气体放电管,简称GDT,是一种开关型过压防雷保护元器件。
众所周知,陶瓷气体放电管GDT广泛应用于防雷工程的第一级或第二级保护上,常与限压型防雷保护器件综合应用。
不论是各种信号电路的防雷还是交直流电源的防雷,都可以借助陶瓷气体放电管将强大的雷电流泄放入大地,对高频电子线路的保护有着明显的优越性。
接下来,跟着专业的电路保护专家东沃电子,一起来揭开陶瓷气体放电管那层神秘的面纱,再也不怕被忽悠了!陶瓷气体放电管工作原理陶瓷气体放电管,其内部是由一个或多个放电间隙内充有惰性气体组成的密闭器件,其电气性能跟气体种类、气体压力和电极距离三者相关,主要应用于瞬时大电压的过电压保护。
其惰性气体主要是氖或氩,并保持一定的压力,同时电极表面涂以发射剂减少电子发射能。
陶瓷气体放电管工作原理是并联在电路中,在正常情况,由其独有的高阻抗和低电容特性,几乎对电路不产生任何影响;但,一旦有异常浪涌涌现时,GDT以纳秒级的响应速度被击穿放电,使得其阻抗下降,呈短路状态,将浪涌电流通过地线转接给大地,从而达到电路防护作用;当异常浪涌消失,GDT迅速回到了高阻状态,电路正常运行。
陶瓷气体放电管特性揭秘东沃电子,在研发、生产电路保护器件方面拥有精湛的技术水平和丰富的研发经验,为广大客户提供高品质的保护器件产品,只为电路更安全。
东沃电子结合陶瓷气体放电管的实际应用,总结出几点特点,助力大家更好地了解陶瓷气体放电管。
√ 纳秒级响应速度√ 稳定的击穿电压√ 低电容特性√ 高绝缘电阻√ 无穿越电压√ 对原电路无影响,电路设计简单方便√ 无放射性,对人体、环境和生态无影响√ 高可靠性,不易损坏,使用期限长由于陶瓷器气体放电管独有的特性,广泛应用各种场合,是一种常用、高效的防雷保护器件。
陶瓷气体放电管选型原则陶瓷气体放电管,外形圆柱形,按照电极数,可分为二极管放电管和三级放电管两种,带引线和不带引线两种结构形式,型号繁多,如何选择正确型号陶瓷气体放电管是采购商最头痛的难题?东沃电子,一家专业的陶瓷气体放电管生产厂家,为您带来满满的陶瓷气体放电管选型干货:1、陶瓷气体放电管的加入前提条件是陶瓷气体放电管的直流击穿电压的下限值必须高于电路中的最大正常工作电压,才能不能影响电路正常工作。
气体放电管参数气体放电管是一种利用放电现象来产生光、热或其他形式能量的器件。
在气体放电管中,参数的选择对于其性能和稳定性至关重要。
下面将详细介绍气体放电管的参数及其作用。
1. 气体种类气体种类是气体放电管最基本的参数之一。
常见的气体种类包括氖气、氩气、氦气等。
不同的气体种类具有不同的电离能和放电特性,因此在选择气体种类时需要根据具体的应用需求来确定。
2. 电压电压是气体放电管中控制放电的重要参数。
通过调节电压的大小,可以控制气体放电管的放电亮度、稳定性和寿命。
一般来说,电压越高,放电亮度越大,但同时也会增加功耗和损耗。
3. 电流电流是气体放电管中流过的电子数量的参数。
电流的大小直接影响气体放电管的亮度和稳定性。
在设计气体放电管时,需要根据所需的亮度和功耗来确定合适的电流大小。
4. 管长和管径管长和管径是影响气体放电管放电性能的重要参数。
管长和管径的选择会影响气体放电管的放电稳定性、亮度和寿命。
通常情况下,较长的管长和较大的管径可以提高放电稳定性和亮度。
5. 温度温度是影响气体放电管性能的重要参数之一。
温度的变化会影响气体放电管的放电特性、稳定性和寿命。
在实际应用中,需要控制好气体放电管的工作温度,以确保其性能稳定。
6. 真空度真空度是影响气体放电管放电性能的重要参数之一。
适当的真空度可以提高气体放电管的放电稳定性和寿命。
在制造气体放电管时,需要保证管内的真空度达到一定要求。
总的来说,气体放电管的参数选择需要综合考虑各个参数之间的相互影响,以实现最佳的放电效果和稳定性。
通过合理选择气体种类、电压、电流、管长、管径、温度和真空度等参数,可以设计出性能优良的气体放电管,满足不同应用场景的需求。
希望本文对您了解气体放电管的参数有所帮助。
标称直流击穿电压直流击穿电压V允许偏差范围7590 150 230 250 300 350 470 600 800 1600 2500 3600 550025% 20%1.3 标称直流击穿电压Nominal DC spark-over voltage放电管直流击穿电压的标称值。
由生产厂家规定的直流击穿电压的额定值。
表1IR1.4 绝缘电阻Insulation ResistanceIR IRIR1. 直流击穿电压2. 冲击击穿电压3. 绝缘电阻上述三个参数是放电管的比较重要的参数,一般用户在产品交验时均要进行检查。
下面就讲讲上述三个参的测试方法:2.1 直流击穿电压Vsb. 电压上升速率:100V/sc. 输入电压:大于上限,小于下限值的三倍d. 回路电流:5-15mAa. 测试回路如图e. 存放:在黑暗中存放24小时f. 测试:每对极间正反测2次,无关极悬空,间隔不小于15分钟2.2 冲击击穿电压Vssb. 电压上升速率:1KV/μsc. C1 输入电压:大于试样最大冲击电压a. 测试回路如图d. 存放:在黑暗中存放15分钟e. 测试:每对极间正反测5次,无关极悬空,间隔不小于15分钟标称直流击穿电压测试电压V V 7025901502302503003504706008005001600250036005500501002501000Hiya 10/20042.3 绝缘电阻IRa. 测试电压如下,表2c. 测试台短路电流在10mA 以内b. 测试:每对极间i 测1次,无关极悬空表2 气体放电管结构与参数及其测试方法其实放电管还有三个电参数,它们主要是由设计决定的。
一般情况下,使用单位交验时不作检验。
它们是:4. 极间电容;5. 过保持电压;6. 三极管冲击横向电压。
对此三项参数感兴趣的同志,可参阅GB/T9043-1999的5.6、5.7、5.8和6.5、6.6、6.7。
气体放电管除了上述六大电参数外,还有机械参数等其它各种参数。
高压放电管的型号参数
高压放电管是一种特殊的电子元件,用于产生高电压、高能量的放电。
这种元件常用于电磁脉冲、雷击保护、气体放电灯、紫外线灯等场合,具有体积小、寿命长、启动电压低等特点,大大扩展了其应用领域。
高压放电管通常由以上、下电极、玻璃管、气体和辅助电路组成,其型号参数影响着其性能和特点。
下面我们将介绍高压放电管的型号参数及其意义。
1. 电极间隔
电极间隔是指高压放电管两个电极之间的距离。
一般来说,电极间隔越小,产生的电弧电压越低,启动电压越小,但能承受的电压和电流也越小。
2. 触发电压
触发电压是指高压放电管在高电压作用下,开始放电的电压阈值。
通常情况下,触发电压越低,起动电压越低,但是也容易出现误触发。
3. 电弧电压
电弧电压是指高压放电管放电时形成的电弧电压,一般来说,电弧电压越小,产生的能量和效果越好,但电弧电压也要足够高,才能保证放电的稳定性。
4. 最大承受电流
最大承受电流是指高压放电管能承受的最大电流值,超过该值会引起高压放电管的损坏。
一般来说,最大承受电流越大,高压放电管的耐久性也越好。
5. 放电功率
放电功率是指高压放电管放电时的输出功率。
通常来说,放电功率越大,产生的效果也越好,但是也需要考虑高压放电管的安全性能。
6. 工作电压
工作电压是指高压放电管的工作电压范围,在该范围内高压放电管能正常工作,超过该范围会引起放电的不稳定甚至损坏。
需要根据实际需求选择合适的工作电压。
综上所述,高压放电管的型号参数对其性能与应用有着决定性的影响,当选择高压放电管的时候,需要根据实际需求来进行选择。
目录
一、正在使用的陶瓷放电二极管Φ8X6 2R600L09 (1)
二、库存:BZ201M 玻璃放电管 1350只 (2)
三、TED485系列玻璃防雷管 (2)
四、GSM系列玻璃防雷管 (3)
五、如何选择放电管 (4)
一、正在使用的陶瓷放电二极管Φ8X6 2R600L09
陶瓷放电二极管(另一家的作参考)系列号:TC-2R8x6
外形尺寸
二、规格参数
二、库存:BZ201M 玻璃放电管 1350只
工作参数:
-> 玻璃强效放电管
三、TED485系列玻璃防雷管
产品特点及应用:
本产品具有响应速度快,启动残压低,绝缘电阻高,结电容小等优良特性。
特别适合于RS485 、RS422 、RS232等通讯端口的防雷保护。
外形尺寸及包装:(mm)
四、GSM系列玻璃防雷管
该放电管是我公司引进日本技术研制生产的微型突波吸收器(Micro-absorber)创造性的将半导体Si集成在气体放电管里,使该产品集气体放电管的大浪涌电流和半导体的高速响应于一体,克服了原气体放电管响应速度慢和半导体管耐浪涌电流弱的缺点、具有响应速度快、耐冲击、性能稳定、重复性好和寿命长等优点。
可广泛用于ADSL、ISDN、MODEM、FAX、TEL等通信设备的防雷防瞬态过电压保护,也可用于显示器的防静电与灭弧保护,是当今通讯设备最理想的保护元件。
产品特性
电流承受能力强:2000A (8/20μs)500A (10/700μs)静电容量小于2pF(1kHz),反应灵敏,钳制电压接近其直流转折电压,从而能及时有效地吸收瞬间高电压,动作速度明显优于普通气体放电管和其它保护单元。
更新换代容易,可直接替代LC滤波组件、热敏电阻、压敏电阻极其它过电压保护器件。
体积小,价格低廉,脉冲寿命长。
产品应用
微型突波吸收器产品有GS41、GS37、GS35和GSMD等系列,广泛应用于防止浪涌电流或过电压对设备造成损坏,应用如下:
1、电话、传真机、调制解调器、程控交换机、配线架、网络等通信设备和数字传输设备上,以用作浪涌保护。
2、有线电视(CATV)系统的浪涌电流保护。
3、用作CRT监视器、电脑彩显和彩显静电保护。
4、轿车音频系统、无线电通信设备上的馈线保护。
5、传感线路上的雷击保护。
6、 用户线路板(SLIC )的雷击保护。
7、 局用接入,交换,传输设备通讯端口的浪涌保护
系列尺寸
五、如何选择放电管
凡是有过电压发生的地方,就有放电管的用武之地,但要用好放电管则需要根据实际工作线路参考放电管的各项指标选用适当的放电管,否则会适得其反。
以下是在设计及使用时必须注意的几点:
1.放电管的加入不能影响线路的正常工作,这就要保证放电管的直流击穿电压的下限值必须高于线路的最大正常工作电压。
据此确定所需放电管的标称直流击穿电压值。
例如:在电话线的过电压防护中,常态时,电话线两线间的电压为48V ,但当振铃信号来时,两线间的峰值电压可达175V 左右,因此,此
时选用的气体放电管的直流击穿电压的下限值必须高于175V,考虑到留点余量,所以一般选用直流击穿电压值下限为190V(标称直流击穿电压值为230V)的气体放电管,如H2R8-230。
2.确定线路所能承受的最高瞬时电压值,要确保放电管的冲击击穿电
压值必须低于此值。
以确保当瞬间过压来临时,放电管的反映速度快于线路的反映速度,抢先一步将过电压限制在安全值。
这是放电管的一个最重要的指标。
例如:上例所述的电话线上,如果只用于保护一般的电话机,则只需选用冲击击穿电压小于800V(实测典型值为650V左右)的放电管,但若被保护对象为
更精密的设备(如传真机等),则可选用我公司放电管(实测典型值不到400V)。
3.根据线路中可能窜入的冲击电流强度,确定所选用放电管必须达到
的耐冲击电流能力(如:在室外一般选用10kA以上等级;在入室端一般选用
5kA等级;在设备终端处一般选用1kA左右等级)。
4.当过电压消失后,要确保放电管及时熄灭,以免影响线路的正常工作。
这就要求放电管的过保持电压尽可能高,以保证正常线路工作电压不会引起放电管的持续导通(即续流问题)。
由于放电管有一个特点是:维持放电管持续放电的电压值要远小于放电管的击穿电压值。
一般用户没有测试条件,无法判定此项指标好坏,在此提供一种简单判定办法,以标称直流击穿电压为
230V的放电管为例:找一可调直流稳压电源,在其输出串联一51K左右限流电阻再接到放电管的二电极,将输出电压由小逐渐调高直至放电管放电,然后再慢慢调低电源输出电压,观察放电管熄灭时的电压值,一般的放电管此值均为60V左右,而我公司以及国际上一流公司的放电管此值可以做到200V左右。
另外,我公司的专利产品H2S系列和H3S系列可专用于交流电源防雷,彻底解决了电源防护中的续流问题。
5.若过电压持续的时间很长,气体放电管的长时间动作将产生很高的
热量。
为了防止该热量所造成的保护设备或者终端设备的损坏同时也为了防止发生任何可能的火灾,气体放电管此时必须配上适当的短路装置,我们称之为FS装置(Fail-safe 即“失效保护装置”)。
如我们的H3R8-***F系列均配有FS 装置。