总习题
- 格式:ppt
- 大小:703.50 KB
- 文档页数:36
总习题一1. 在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内:(1)数列{x n }有界是数列{x n }收敛的________条件. 数列{x n }收敛是数列{x n }有界的________的条件.(2)f (x )在x 0的某一去心邻域内有界是)(lim 0x f x x →存在的________条件.)(lim 0x f x x →存在是f (x )在x 0的某一去心邻域内有界的________条件.(3) f (x )在x 0的某一去心邻域内无界是∞=→)(lim 0x f x x 的________条件.∞=→)(lim 0x f x x 是f (x )在x 0的某一去心邻域内无界的________条件.(4)f (x )当x →x 0时的右极限f (x 0+)及左极限f (x 0-)都存在且相等是)(lim 0x f x x →存在的________条件.解 (1) 必要, 充分. (2) 必要, 充分. (3) 必要, 充分. (4) 充分必要.2. 选择以下题中给出的四个结论中一个正确的结论: 设f (x )=2x +3x -2, 则当x →0时, 有( ).(A )f (x )与x 是等价无穷小; (B )f (x )与x 同阶但非等价无穷小; (C )f (x )是比x 高阶的无穷小; (D )f (x )是比x 低阶的无穷小.解 因为x x xx x f x x x x x x x x 13lim 12lim 232lim )(lim 0000-+-=-+=→→→→3ln 2ln )1ln(lim 3ln )1ln(lim 2ln 00+=+++=→→u u t t u t (令2x -1=t , 3x -1=u ) .所以f (x )与x 同阶但非等价无穷小, 故应选B .3. 设f (x )的定义域是[0, 1], 求下列函数的定义域: (1) f (e x ); (2) f (ln x ); (3) f (arctan x ); (4) f (cos x ).解 (1)由0≤e x ≤1得x ≤0, 即函数f (e x )的定义域为(-∞, 0]. (2) 由0≤ ln x ≤1得1≤x ≤e , 即函数f (ln x )的定义域为[1, e ].(3) 由0≤ arctan x ≤1得0≤x ≤tan 1, 即函数f (arctan x )的定义域为[0, tan 1].(4) 由0≤ cos x ≤1得2222ππππ+≤≤-n x n (n =0, ±1, ±2, ⋅ ⋅ ⋅),即函数f (cos x )的定义域为[2,22ππππ+-n n ], (n =0, ±1, ±2, ⋅ ⋅ ⋅). 4. 设⎩⎨⎧>≤=0 00)(x x x x f , ⎩⎨⎧>-≤=0 0 0)(2x x x x g ,求f [f (x )], g [g (x )], f [g (x )], g [f (x )].解 因为f (x )≥0, 所以f [f (x )]=f (x )⎩⎨⎧>≤=00x x x ;因为g (x )≤0, 所以g [g (x )]=0; 因为g (x )≤0, 所以f [g (x )]=0;因为f (x )≥0, 所以g [f (x )]=-f 2(x )⎩⎨⎧>-≤=0 002x x x .5. 利用y =sin x 的图形作出下列函数的图形:(1)y =|sin x |; (2)y =sin|x |; (3)2sin 2x y =.6. 把半径为R 的一圆形铁片, 自中心处剪去中心角为α的一扇形后围成一无底圆锥. 试将这圆锥的体积表为α的函数.解 设围成的圆锥的底半径为r , 高为h , 依题意有R (2π-α)=2πr , παπ2)2(-=R r ,παπαπαπ244)2(2222222-=--=-=R R R r R h . 圆锥的体积为παπαπαππ244)2(312222-⋅-⋅=RR V 22234)2(24a R -⋅-=πααππ(0<α<2π).7. 根据函数极限的定义证明536lim 23=---→x x x x .证明 对于任意给定的ε>0, 要使ε<----|536|2x x x , 只需|x -3|<ε, 取δ=ε, 当0<|x -3|<δ时, 就有|x -3|<ε, 即ε<----|536|2x x x , 所以536lim 23=---→x x x x .8. 求下列极限: (1)221)1(1lim -+-→x x x x ; (2))1(lim 2x x x x -++∞→;(3)1)1232(lim +∞→++x x x x ;(4)30sin tan lim x x x x -→; (5)x x x x x c b a 10)3(lim ++→(a >0, b >0, c >0); (6)x x x tan 2)(sin lim π→.解 (1)因为01)1(lim 221=+--→x x x x , 所以∞=-+-→221)1(1lim x x x x . (2))1()1)(1(lim )1(lim 2222x x x x x x x x x x x x ++++-+=-++∞→+∞→211111lim 1lim22=++=++=+∞→+∞→x x x x x x .(3)2121211)1221(lim )1221(lim )1232(lim ++∞→+∞→+∞→++=++=++x x x x x x x x x x21212)1221()1221(lim ++++=+∞→x x x xe x x x x x =++⋅++=∞→+∞→21212)1221(lim )1221(lim .(4)xx x x x x x x x x x x x cos )cos 1(sin lim )1cos 1(sin lim sin tan lim 303030-=-=-→→→21)2(2lim cos 2sin 2sin lim320320=⋅=⋅=→→x x x x x x x x x (提示: 用等价无穷小换).(5)x c b a c b a xx x x xx xx x x x x x x x cb ac ba 3333010)331(lim )3(lim -++⋅-++→→-+++=++,因为e c b a x x x c b a xx x x =-+++-++→330)331(lim , )111(lim 3133lim 00xc x b x a x c b a xx x x x x x x -+-+-=-++→→ ])1ln(1lim ln )1ln(1lim ln )1ln(1lim [ln 31000v c u b t a v u t +++++=→→→3ln )ln ln (ln 31abc c b a =++=, 所以 3ln 103)3(lim abc e c b a abc x x x x x ==++→. 提示: 求极限过程中作了变换a x -1=t , b x -1=u , c x -1=v .(6)xx x x xx x x tan )1(sin 1sin 12tan 2)]1(sin 1[lim )(sin lim -⋅-→→-+=ππ, 因为e x x x =-+-→1sin 12)]1(sin 1[lim π,x x x x x x x cos )1(sin sin limtan )1(sin lim 22-=-→→ππ01sin cos sin lim )1(sin cos )1(sin sin lim 222=+-=+-=→→x x x x x x x x x ππ,所以 1)(sin lim 0tan 2==→e x x x π.9. 设⎪⎩⎪⎨⎧≤+>=01sin )(2x x a x xx x f , 要使f (x )在(-∞, +∞)内连续, 应怎样选择数a ? 解 要使函数连续, 必须使函数在x =0处连续. 因为f (0)=a , a x a x f x x =+=--→→)(lim )(lim 200, 01sin lim )(lim 00==++→→xx x f x x ,所以当a =0时, f (x )在x =0处连续. 因此选取a =0时, f (x )在(-∞, +∞)内连续.10. 设⎪⎩⎪⎨⎧≤<-+>=-01 )1ln(0 )(11x x x e x f x , 求f (x )的间断点, 并说明间断点所属类形. 解 因为函数f (x )在x =1处无定义, 所以x =1是函数的一个间断点.因为0lim )(lim 1111==-→→--x x x e x f (提示-∞=--→11lim 1x x ),∞==-→→++1111lim )(lim x x x e x f (提示+∞=-+→11lim 1x x ),所以x =1是函数的第二类间断点.又因为0)1ln(lim )(lim 0=+=--→→x x f x x , ee xf x x x 1lim )(lim 110==-→→++,所以x =0也是函数的间断点, 且为第一类间断点.11. 证明()11 2111lim 222=++⋅⋅⋅++++∞→nn n n n . 证明 因为()11 211122222+≤++⋅⋅⋅++++≤+n n n n n n n n n , 且1111lim lim2=+=+∞→∞→n n n n n n , 1111lim 1lim 22=+=+∞→∞→nn n n n , 所以()11 2111lim 222=++⋅⋅⋅++++∞→nn n n n . 12. 证明方程sin x +x +1=0在开区间)2,2(ππ-内至少有一个根.证明 设f (x )=sin x +x +1, 则函数f (x )在]2,2 [ππ-上连续.因为2121)2 (πππ-=+--=-f , 22121)2 (πππ+=++=f , 0)2()2 (<⋅-ππf f ,所以由零点定理, 在区间)2,2 (ππ-内至少存在一点ξ, 使f (ξ)=0.这说明方程sin x +x +1=0在开区间)2,2 (ππ-内至少有一个根.13. 如果存在直线L : y =kx +b , 使得当x →∞(或x →+∞, x →-∞)时, 曲线y =f (x )上的动点M (x , y )到直线L 的距离d (M , L )→0, 则称L 为曲线y =f (x )的渐近线. 当直线L 的斜率k ≠0时, 称L 为斜渐近线.(1)证明: 直线L : y =kx +b 为曲线y =f (x )的渐近线的充分必要条件是 xx f k x x x )(lim),( -∞→+∞→∞→=, ])([lim),( kx x f b x x x -=-∞→+∞→∞→.(2)求曲线xe x y 1)12(-=的斜渐近线.证明 (1) 仅就x →∞的情况进行证明.按渐近线的定义, y =kx +b 是曲线y =f (x )的渐近线的充要条件是 0)]()([lim =+-∞→b kx x f x .必要性: 设y =kx +b 是曲线y =f (x )的渐近线, 则0)]()([lim =+-∞→b kx x f x ,于是有 0])([lim =--∞→xb k x x f x x ⇒0)(lim =-∞→k x x f x ⇒x x f k x )(lim∞→=, 同时有 0])([lim =--∞→b kx x f x ⇒])([lim kx x f b x -=∞→. 充分性: 如果xx f k x )(lim∞→=, ])([lim kx x f b x -=∞→, 则0])([lim ])([lim )]()([lim =-=--=--=+-∞→∞→∞→b b b kx x f b kx x f b kx x f x x x , 因此y =kx +b 是曲线y =f (x )的渐近线. (2)因为212lim lim 1=⋅-==∞→∞→x x x e x x x y k ,11)1ln(lim21)1(lim2]2)12[(lim ]2[lim 011=-+=--=--=-=→∞→∞→∞→t t e x x e x x y b t xx xx x , 所以曲线xe x y 1)12(-=的斜渐近线为y =2x +1.习题 2-21. 推导余切函数及余割函数的导数公式: (cot x )'=-csc 2x ; (csc x )'=-csc x cot x .解 x x x x x x x x 2sin cos cos sin sin )sin cos ()(cot ⋅-⋅-='=' x xx x x 22222csc sin 1sin cos sin -=-=+-=.x x xx x x cot csc sin cos)sin 1()(csc 2⋅-=-='='. 2. 求下列函数的导数: (1)1227445+-+=xx x y ; (2) y =5x 3-2x +3e x ; (3) y =2tan x +sec x -1; (4) y =sin x ⋅cos x ; (5) y =x 2ln x ; (6) y =3e x cos x ; (7)x x y ln =;(8)3ln 2+=xe y x ; (9) y =x 2ln x cos x ;(10)tt s cos 1sin 1++=;解 (1))12274()12274(14545'+-+='+-+='---x x x xx x y 2562562282022820x x x x x x +--=+--=---. (2) y '=(5x 3-2x +3e x )'=15x 2-2x ln2+3e x .(3) y '=(2tan x +sec x -1)'=2sec 2x +sec x ⋅tan x =sec x (2sec x +tan x ). (4) y '=(sin x ⋅cos x )'=(sin x )'⋅cos x +sin x ⋅(cos x )'=cos x ⋅cos x +sin x ⋅(-sin x )=cos 2x . (5) y '=(x 2ln x )'=2x ⋅ln x +x 2⋅x1=x (2ln x +1) .(6) y '=(3e x cos x )'=3e x ⋅cos x +3e x ⋅(-sin x )=3e x (cos x -sin x ).(7)22ln 1ln 1)ln (xx x xx x x x y -=-⋅='='. (8)3422)2(2)3ln (x x e x x e x e x e y x x x x -=⋅-⋅='+='. (9) y '=(x 2ln x cos x )'=2x ⋅ln x cos x +x 2⋅x1⋅cos x +x 2 ln x ⋅(-sin x )2x ln x cos x +x cos x -x 2 ln x sin x . (10)22)cos 1(cos sin 1)cos 1()sin )(sin 1()cos 1(cos )cos 1sin 1(t tt t t t t t t t s +++=+-+-+='++='.3. 求下列函数在给定点处的导数: (1) y =sin x -cos x , 求6π='x y 和4π='x y .(2)θθθρcos 21sin +=,求4πθθρ=d d .(3)553)(2x x x f +-=, 求f '(0)和f '(2) .解 (1)y '=cos x +sin x ,21321236sin 6cos 6+=+=+='=πππx y ,222224sin 4cos 4=+=+='=πππx y . (2)θθθθθθθθρcos sin 21sin 21cos sin +=-+=d d ,)21(4222422214cos 44sin 214πππππθρπθ+=⋅+⋅=+==d d .(3)x x x f 52)5(3)(2+-=', 253)0(='f , 1517)2(='f . 4. 以初速v 0竖直上抛的物体, 其上升高度s 与时间t 的关系是2021gt t v s -=.求:(1)该物体的速度v (t ); (2)该物体达到最高点的时刻. 解 (1)v (t )=s '(t )=v 0-gt . (2)令v (t )=0, 即v 0-gt =0, 得gv t 0=, 这就是物体达到最高点的时刻. 5. 求曲线y =2sin x +x 2上横坐标为x =0的点处的切线方程和法线方程. 解 因为y '=2cos x +2x , y '|x =0=2, 又当x =0时, y =0, 所以所求的切线方程为 y =2x , 所求的法线方程为x y 21-=, 即x +2y =0.6. 求下列函数的导数: (1) y =(2x +5)4 (2) y =cos(4-3x ); (3)23x e y -=; (4) y =ln(1+x 2); (5) y =sin 2x ; (6)22x a y -=; (7) y =tan(x 2); (8) y =arctan(e x ); (9) y =(arcsin x )2; (10) y =lncos x .解 (1) y '=4(2x +5)4-1⋅(2x +5)'=4(2x +5)3⋅2=8(2x +5)3. (2) y '=-sin(4-3x )⋅(4-3x )'=-sin(4-3x )⋅(-3)=3sin(4-3x ). (3)22233236)6()3(x x x xe x e x e y ----=-⋅='-⋅='.(4)222212211)1(11xx x x x x y +=⋅+='+⋅+='.(5) y '=2sin x ⋅(sin x )'=2sin x ⋅cos x =sin 2x . (6))()(21])[(22121222122'-⋅-='-='-x a x a x ay222122)2()(21xa x x x a --=-⋅-=-.(7) y '=sec 2(x 2)⋅(x 2)'=2x sec 2(x 2). (8)xx x x e e e e y 221)()(11+='⋅+='.(9) y '21arcsin 2)(arcsin arcsin 2x x x x -='⋅=.(10)x x x x x y tan )sin (cos 1)(cos cos 1-=-='⋅='.7. 求下列函数的导数: (1) y =arcsin(1-2x ); (2)211x y -=; (3)x e y x3cos 2-=;(4)xy 1arccos =;(5)xx y ln 1ln 1+-=;(6)x x y 2sin =;(7)x y arcsin =; (8))ln(22x a x y ++=; (9) y =ln(sec x +tan x ); (10) y =ln(csc x -cot x ).解 (1)2221)21(12)21()21(11xx x x x y --=---='-⋅--='.(2))1()1(21])1[(21212212'-⋅--='-='---x x x y222321)1()2()1(21xx x x x --=-⋅--=-.(3))3)(3sin (3cos )2()3(cos 3cos )(2222'-+'-='+'='----x x e x x e x e x e y xxx x )3sin 63(cos 213sin 33cos 21222x x e x e x e xxx +-=--=---.(4)1||)1()1(11)1()1(1122222-=---='--='x x x x x x x y . (5)22)ln 1(2)ln 1(1)ln 1()ln 1(1x x x x x x x y +-=+--+-='. (6)222sin 2cos 212sin 22cos x x x x x x x x y -=⋅-⋅⋅='. (7)2222121)(11)()(11x x x x x x y -=⋅-='⋅-='. (8)])(211[1)(12222222222'+++⋅++='++⋅++='x a x a x a x x a x x a x y 2222221)]2(211[1xa x x a x a x +=++⋅++=.(9) x xx x x x x x x x y sec tan sec sec tan sec )tan (sec tan sec 12=++='+⋅+='. (10) x xx x x x x x x x y csc cot csc csc cot csc )cot (csc cot csc 12=-+-='-⋅-='.8. 求下列函数的导数: (1)2)2(arcsin x y =;(2)2tan ln x y =;(3)x y 2ln 1+=; (4)xe y arctan=;(5)y =sin n x cos nx ; (6)11arctan -+=x x y ;(7)x x y arccos arcsin =;(8) y =ln[ln(ln x )] ; (9)x x x x y -++--+1111;(10)xx y +-=11arcsin .解 (1)'⋅=')2(arcsin )2(arcsin 2x x y)2()2(11)2(arcsin 22'⋅-⋅=x x x 21)2(11)2(arcsin 22⋅-⋅=x x . 242arcsin 2x x-=(2))2(2sec 2tan 1)2(tan 2tan 12'⋅⋅='⋅='x x x x x yx x x csc 212sec 2tan 12=⋅⋅=.(3))ln 1(ln 121ln 1222'+⋅+=+='x xx y )(ln ln 2ln 1212'⋅⋅+=x x xx x x 1ln 2ln 1212⋅⋅+=x x x 2ln 1ln +=.(4))(arctan arctan '⋅='x e y x )()(112arctan '⋅+⋅=x x e x)1(221)(11arctan 2arctanx x e x x e x x+=⋅+⋅=.(5) y '=n sin n -1x ⋅(sin x )'⋅cos nx +sin n x ⋅(-sin nx )⋅(nx )' =n sin n -1x ⋅cos x ⋅cos nx +sin n x ⋅(-sin nx )⋅n=n sin n -1x ⋅(cos x ⋅cos nx -sin x ⋅sin nx )= n sin n -1x cos(n +1)x . (6)222211)1()1()1()11(11)11()11(11x x x x x x x x x x y +-=-+--⋅-++='-+⋅-++='. (7)222)(arccos arcsin 11arccos 11x x x x x y -+-='22)(arccos arcsin arccos 11x x x x +⋅-=22)(arccos 12x x -=π.(8))(ln ln 1)ln(ln 1])[ln(ln )ln(ln 1'⋅⋅='⋅='x xx x x y)ln(ln ln 11ln 1)ln(ln 1x x x x x x ⋅=⋅⋅=.(9)2)11()121121)(11()11)(121121(x x x x x x x x xx y -++--+--+--++-++=' 22111xx -+-=. (10)2)1()1()1(1111)11(1111x x x xx x x x x y +--+-⋅+--='+-⋅+--=' )1(2)1(1x x x -+-=. 9. 设函数f (x )和g (x )可导, 且f 2(x )+g 2(x )≠0, 试求函数)()(22x g x f y +=的导数. 解 ])()([)()(212222'+⋅+='x g x f x g x f y )]()(2)()(2[)()(2122x g x g x f x f x g x f '+'⋅+=)()()()()()(22x g x f x g x g x f x f +'+'=.10. 设f (x )可导, 求下列函数y 的导数dxdy : (1) y =f (x 2);(2) y =f (sin 2x )+f (cos 2x ).解 (1) y '=f '(x 2)⋅(x 2)'= f '(x 2)⋅2x =2x ⋅f '(x 2). (2) y '=f '(sin 2x )⋅(sin 2x )'+f '(cos 2x )⋅(cos 2x )'= f '(sin 2x )⋅2sin x ⋅cos x +f '(cos 2x )⋅2cos x ⋅(-sin x ) =sin 2x [f '(sin 2x )- f '(cos 2x )]. 11. 求下列函数的导数: (1) y =ch(sh x ); (2) y =sh x ⋅e ch x ;(3) y =th(ln x ); (4) y =sh 3x +ch 2x ; (5) y =th(1-x 2); (6) y =arch(x 2+1); (7) y =arch(e 2x ); (8) y =arctan(th x );(9)xx y 2ch 21ch ln +=; (10))11(ch 2+-=x x y解 (1) y '=sh(sh x )⋅(sh x )'=sh(sh x )⋅ch x . (2) y '=ch x ⋅e ch x +sh x ⋅e ch x ⋅sh x =e ch x (ch x +sh 2x ) .(3))(ln ch 1)(ln )(ln ch 122x x x x y ⋅='⋅='. (4) y '=3sh 2x ⋅ch x +2ch x ⋅sh x =sh x ⋅ch x ⋅(3sh x +2) .(5))1(ch 2)1()1(ch 122222x x x x y --=-⋅-='.(6)222)1()1(112422++='+⋅++='x x x x x y .(7)12)(1)(142222-='⋅-='x xx x e e e e y . (8)xxx x x x x y 222222ch 1ch sh 11ch 1th 11)th ()th (11⋅+=⋅+='⋅+=' xx x 222sh 211sh ch 1+=+=. (9))ch (ch 21)ch (ch 124'⋅-'⋅='x xx x yx x xx x sh ch 2ch 21ch sh 4⋅⋅-=x x x x x x x x 323ch sh ch sh ch sh ch sh -⋅=-= x xxx x x 33332th ch sh ch )1ch (sh ==-⋅=.(10)'+-⋅+-⋅+-='+-⋅+-=')11()11(sh )11(ch 2])11(ch [)11(ch 2x x x x x x x x x x y)112(sh )1(2)1()1()1()112(sh 22+-⋅+=+--+⋅+-⋅=x x x x x x x x . 12. 求下列函数的导数: (1) y =e -x (x 2-2x +3); (2) y =sin 2x ⋅sin(x 2); (3)2)2(arctan x y =;(4)n x x y ln =;(5)t t t t ee e e y --+-=; (6)x y 1cos ln =;(7)x ey 1sin 2-=;(8)x x y +=;(9) 242arcsin x x x y -+=;(10)212arcsin tt y +=.解 (1) y '=-e -x (x 2-2x +3)+e -x (2x -2) =e -x (-x 2+4x -5).(2) y '=2sin x ⋅cos x ⋅sin(x 2)+sin 2x ⋅cos(x 2)⋅2x =sin2x ⋅sin(x 2)+2x ⋅sin 2x ⋅cos(x 2). (3)2arctan 44214112arctan 222x x x x y +=⋅+⋅='.(4)121ln 1ln 1+--=⋅-⋅='n n n n x x n x nx x x xy . (5)2222)1(4)())(())((+=+---++='-----t t t t t t t t t t t t e e e e e e e e e e e e y .(6)x x x x x x x y 1tan 1)1()1sin (1sec )1(cos 1sec 22=-⋅-⋅='⋅='. (7))1(1cos )1sin 2()1sin (21sin 21sin 22x x x e x ey x x -⋅⋅-⋅='-⋅='--x e x x1sin 222sin 1-⋅⋅=. (8))211(21)(21x xx x x x x y +⋅+='+⋅+='xx x x +⋅+=412.(9)2arcsin )2(421214112arcsin 22x x x x x x y =-⋅-+⋅-⋅+='.(10)22222222)1()2(2)1(2)12(11)12()12(11t t t t tt t t t t y +⋅-+⋅⋅+-='+⋅+-=' )1(|1|)1(2)1()1(2)1(1222222222t t t t t t t +--=+-⋅-+=.。
⾷品化学总习题2011(含答案)⾷品化学试题(⽔分)⼀、判断题1.结合⽔与体相⽔都能为微⽣物所利⽤。
(错,结合⽔不能)2.两份相同⽔份含量的⼲燥样品,温度越⾼的那份Aw越⼩。
(错,Aw越⼤)3.⾷品中的化学反应都是Aw越⼩,速度越⼩。
(错,⾮酶氧化反应不是)4.把Aw值降低到0.25――0.35的范围,就能有效地减慢或阻⽌酶促褐变的进⾏。
(错,0.25――0.30)5.⾷品中结合得最牢固的那部分⽔对⾷品的稳定性起重要作⽤。
(错,最不牢固)(1)⾷品中结合得最不牢固的那部分⽔对⾷品的稳定性起着重要作⽤。
()答:正确。
因为向⼲燥物质中增加⽔虽然能够稍微改变原来所含⽔的性质,但是当等温线的区间Ⅱ增加⽔时,区间Ⅰ⽔的性质⼏乎保持不变;同样,在区间Ⅲ内增加⽔,区间Ⅱ⽔的性质也⼏乎保持不变。
(2)从⾷品的贮藏性质和品质来看,⾷品的⽔分活度越低越好。
()答:错误。
⾷品中⼤多数反应的最⼩反应速度⼀般出现在⽔分活度为0.2~0.3附近,但当进⼀步降低⽔分活度,氧化反应的反应速度反⽽会增加,这对⾷品的品质有不利的影响。
1、温差相等的情况下,冷冻速度⽐解冻速更慢。
答:错。
冰的热扩散速度约为⽔的9倍,这表明在⼀定的环境条件下,冰的温度变化速度⽐⽔⼤得多。
因此在温差相等的情况下,冷冻速度⽐解冻速度更快。
2、根据⽔分活度与⾷品化学变化的关系来说,a w越低对⾷品的稳定性越好。
答:错。
降低⾷品的a w,可以延缓酶促褐变的⾮酶褐变的进⾏,减少⾷品营养成分的破坏,防⽌⽔溶性⾊素的分解。
但a w 过低,则会加速脂肪的氧化酸败,还能引起⾮酶褐变。
要使⾷品具有最⾼的稳定性,最好将a w保持在结合⽔范围内。
⼆、选择题1、以下不是⽔的结构特征的是(D)A ⽔是四⾯体的⽹状结构B ⽔之间的氢键⽹络是动态的C ⽔分⼦氢键键合的程度取决于温度D ⽔分⼦中两个O—H键之间的键⾓是104.5o2、⽔分⼦中两个O—H键之间的键⾓是(B)A 104.5oB 109o28/C 109oD 108o28’3、亲⽔性物质以何种⽅式与⽔作⽤(B)A 极性结合B 氢键键合4、以下哪种离⼦能够阻碍⽔形成⽹状结构(D)A Mg2+B Al3+C Ca2+D K+5、以下关于结合⽔的性质的说法错误的是(A)A 结合⽔的量与⾷品中有机⼤分⼦的极性基团的数量没有关系B 结合⽔不易结冰C 结合⽔不能作为溶质的溶剂D 在⼀定温度下结合⽔不能从⾷品中分离出来6、以下⽅法不能⽤来测量⽔分活度的是(C)A 冰点测定法B 相对湿度传感测定法C 卡尔费休法D 恒定相对湿度平衡室法7、吸湿等温线可分为三个区间进⾏讨论,在区间Ⅰ和区间Ⅱ的分界线位置的这部分⽔是哪种形式的⽔(B)A 化合⽔B 邻近⽔C 多层⽔D ⾃由⽔8、吸湿等温线可分为三个区间进⾏讨论,以下哪种形式的⽔不属于这三个区间所代表的⽔(C)A 化合⽔B 邻近⽔C 体相⽔D多层⽔9、下列⽔属于⾃由⽔的是(D)A 滞化⽔B ⽑细管⽔C ⾃由流动⽔D 多层⽔10、关于冰点与温度的关系下⾯描述错误的是(B)A 冰点以下成线性关系D 冰点以下⽔分活度与样品组分⽆关11、不同⾷品的⽔分含量有很⼤差别,试⽐较下列⾷品,⽔分含量最⾼的是(C )A:蜂蜜B:⾯包C:卷⼼菜D:⽜奶E:鸡F:酥油12、下列四种分⼦中分⼦间引⼒最⼩的是(B )A:H2O B:CH4 C:HF D:NH313、⼤多数耐盐细菌⽣长繁殖所需最低⽔分活度为0.75,那么普通酵母的——阈值最可能为(A )A:0.65 B:0.85 C:0.75 D:0.814、魏⽒芽孢杆菌繁殖⽣长时的——阈值为0.96,那其芽孢形成的最适——值为(A )A:0.942 B:0.963 C:0.993 D:0.97215、为达到较好的冷藏效果,下列哪个温度较适合(A )A:-18℃ B:0℃ C:-10℃ D:-25℃(1)⽔分⼦中O-H核间的距离、氧和氢的范德⽡尔斯半径分别为()A. 0.276nm;0.16nm;0.14nmB. 0.276nm;0.14nm;0.12nmC. 0.096nm;0.16nm;0.14nmD. 0.096nm;0.14nm;0.12nm(2)能与⽔形成笼形⽔合物的基团是()A. 具有氢键键合能⼒的中性基团B. ⾮极性物质C. 离⼦或离⼦基团D. 疏⽔性物质(3)下列说法错误的是( )A. ⾷品的回吸过程⼀般⽐解吸过程时的含⽔量更⾼。
总习题一1. 在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内:(1)数列{x n }有界是数列{x n }收敛的________条件. 数列{x n }收敛是数列{x n }有界的________的条件.(2)f (x )在x 0的某一去心邻域内有界是)(lim 0x f x x →存在的________条件.)(lim 0x f x x →存在是f (x )在x 0的某一去心邻域内有界的________条件.(3) f (x )在x 0的某一去心邻域内无界是∞=→)(lim 0x f x x 的________条件.∞=→)(lim 0x f x x 是f (x )在x 0的某一去心邻域内无界的________条件.(4)f (x )当x →x 0时的右极限f (x 0+)及左极限f (x 0-)都存在且相等是)(lim 0x f x x →存在的________条件.解 (1) 必要, 充分. (2) 必要, 充分. (3) 必要, 充分. (4) 充分必要.2. 选择以下题中给出的四个结论中一个正确的结论: 设f (x )=2x +3x -2, 则当x →0时, 有( ).(A )f (x )与x 是等价无穷小; (B )f (x )与x 同阶但非等价无穷小; (C )f (x )是比x 高阶的无穷小; (D )f (x )是比x 低阶的无穷小.解 因为x x xx x f x x x x x x x x 13lim 12lim 232lim )(lim0000-+-=-+=→→→→ 3ln 2ln )1ln(lim 3ln )1ln(lim 2ln 00+=+++=→→u u t t u t (令2x -1=t , 3x -1=u ) .所以f (x )与x 同阶但非等价无穷小, 故应选B .3. 设f (x )的定义域是[0, 1], 求下列函数的定义域: (1) f (e x ); (2) f (ln x ); (3) f (arctan x ); (4) f (cos x ).解 (1)由0≤e x ≤1得x ≤0, 即函数f (e x )的定义域为(-∞, 0]. (2) 由0≤ ln x ≤1得1≤x ≤e , 即函数f (ln x )的定义域为[1, e ].(3) 由0≤ arctan x ≤1得0≤x ≤tan 1, 即函数f (arctan x )的定义域为[0, tan 1]. (4) 由0≤ cos x ≤1得2222ππππ+≤≤-n x n (n =0, ±1, ±2, ⋅ ⋅ ⋅),即函数f (cos x )的定义域为[2,22ππππ+-n n ], (n =0, ±1, ±2, ⋅ ⋅ ⋅).4. 设⎩⎨⎧>≤=0 0 0)(x x x x f , ⎩⎨⎧>-≤=00)(2x x x x g , 求f [f (x )], g [g (x )], f [g (x )], g [f (x )].解 因为f (x )≥0, 所以f [f (x )]=f (x )⎩⎨⎧>≤=0 0 0x x x ;因为g (x )≤0, 所以g [g (x )]=0; 因为g (x )≤0, 所以f [g (x )]=0;因为f (x )≥0, 所以g [f (x )]=-f 2(x )⎩⎨⎧>-≤=0 002x x x .5. 利用y =sin x 的图形作出下列函数的图形:(1)y =|sin x |; (2)y =sin|x |; (3)2sin 2x y =.6. 把半径为R 的一圆形铁片, 自中心处剪去中心角为α的一扇形后围成一无底圆锥. 试将这圆锥的体积表为α的函数.解 设围成的圆锥的底半径为r , 高为h , 依题意有R (2π-α)=2πr , παπ2)2(-=R r ,παπαπαπ244)2(2222222-=--=-=R R R r R h . 圆锥的体积为παπαπαππ244)2(312222-⋅-⋅=R R V 22234)2(24a R -⋅-=πααππ(0<α<2π). 7. 根据函数极限的定义证明536lim 23=---→x x x x .证明 对于任意给定的ε>0, 要使ε<----|536|2x x x , 只需|x -3|<ε, 取δ=ε, 当0<|x -3|<δ时, 就有|x -3|<ε, 即ε<----|536|2x x x , 所以536lim 23=---→x x x x .8. 求下列极限:(1)221)1(1lim -+-→x x x x ; (2))1(lim 2x x x x -++∞→;(3)1)1232(lim +∞→++x x x x ;(4)30sin tan lim x x x x -→; (5)x x x x x c b a 10)3(lim ++→(a >0, b >0, c >0); (6)x x x tan 2)(sin lim π→.解 (1)因为01)1(lim 221=+--→x x x x , 所以∞=-+-→221)1(1lim x x x x . (2))1()1)(1(lim )1(lim 2222x x x x x x x x x x x x ++++-+=-++∞→+∞→211111lim 1lim22=++=++=+∞→+∞→x x x x x x .(3)2121211)1221(lim )1221(lim )1232(lim ++∞→+∞→+∞→++=++=++x x x x x x x x x x 21212)1221()1221(l i m++++=+∞→x x x x e x x x x x =++⋅++=∞→+∞→21212)1221(lim )1221(lim . (4)x x x x x x x x x x x x x cos )cos 1(sin lim )1cos 1(sin lim sin tan lim 303030-=-=-→→→ 21)2(2lim cos 2sin 2sin lim320320=⋅=⋅=→→x x x x x x x x x (提示: 用等价无穷小换).(5)x c b a c b a xx x x xx xx x x x x x x x cb ac ba 3333010)331(lim )3(lim -++⋅-++→→-+++=++,因为e c b a x x x c b a xx x x =-+++-++→330)331(l i m , )111(lim 3133lim 00xc x b x a x c b a xx x x x x x x -+-+-=-++→→ ])1l n (1lim ln )1ln(1lim ln )1ln(1lim [ln 31000v c u b t a v u t +++++=→→→3ln )ln ln (ln 31abc c b a =++=, 所以 3ln 103)3(lim abc e c b a abc x x x x x ==++→. 提示: 求极限过程中作了变换a x -1=t , b x -1=u , c x -1=v .(6)xx x x xx x x tan )1(sin 1sin 12tan 2)]1(sin1[lim )(sin lim -⋅-→→-+=ππ, 因为e x xx =-+-→1s i n 12)]1(sin1[lim π,x x x x x x x c o s )1(s i n s i n l i mt a n )1(s i n l i m 22-=-→→ππ 01s i nc o s s i n lim )1(sin cos )1(sin sin lim 222=+-=+-=→→x x x x x x x x x ππ,所以 1)(s i n lim 0tan 2==→e xx x π. 9. 设⎪⎩⎪⎨⎧≤+>=01sin )(2x x a x xx x f , 要使f (x )在(-∞, +∞)内连续, 应怎样选择数a ? 解 要使函数连续, 必须使函数在x =0处连续. 因为f (0)=a , a x a x f x x =+=--→→)(lim )(lim 200, 01sinlim )(lim 00==++→→xx x f x x , 所以当a =0时, f (x )在x =0处连续. 因此选取a =0时, f (x )在(-∞, +∞)内连续.10. 设⎪⎩⎪⎨⎧≤<-+>=-01 )1ln()(11x x x e x f x , 求f (x )的间断点, 并说明间断点所属类形. 解 因为函数f (x )在x =1处无定义, 所以x =1是函数的一个间断点.因为0lim )(lim 1111==-→→--x x x e x f (提示-∞=--→11lim 1x x ),∞==-→→++1111l i m )(l i m x x x e x f (提示+∞=-+→11lim1x x ), 所以x =1是函数的第二类间断点.又因为0)1ln(lim )(lim 0=+=--→→x x f x x , ee xf x x x 1lim )(lim 110==-→→++,所以x =0也是函数的间断点, 且为第一类间断点.11. 证明()11 2111lim222=++⋅⋅⋅++++∞→nn n n n . 证明 因为()11 211122222+≤++⋅⋅⋅++++≤+n n n n n n n n n , 且 1111lim lim 2=+=+∞→∞→n n n n n n , 1111lim 1lim 22=+=+∞→∞→nn n n n ,所以()11 2111lim222=++⋅⋅⋅++++∞→nn n n n . 12. 证明方程sin x +x +1=0在开区间)2,2(ππ-内至少有一个根.证明 设f (x )=sin x +x +1, 则函数f (x )在]2,2 [ππ-上连续.因为2121)2 (πππ-=+--=-f , 22121)2 (πππ+=++=f , 0)2()2 (<⋅-ππf f ,所以由零点定理, 在区间)2,2 (ππ-内至少存在一点ξ, 使f (ξ)=0.这说明方程sin x +x +1=0在开区间)2,2 (ππ-内至少有一个根.13. 如果存在直线L : y =kx +b , 使得当x →∞(或x →+∞, x →-∞)时, 曲线y =f (x )上的动点M (x , y )到直线L 的距离d (M , L )→0, 则称L 为曲线y =f (x )的渐近线. 当直线L 的斜率k ≠0时, 称L 为斜渐近线.(1)证明: 直线L : y =kx +b 为曲线y =f (x )的渐近线的充分必要条件是xx f k x x x )(l i m),( -∞→+∞→∞→=, ])([lim),( kx x f b x x x -=-∞→+∞→∞→.(2)求曲线xe x y 1)12(-=的斜渐近线.证明 (1) 仅就x →∞的情况进行证明.按渐近线的定义, y =kx +b 是曲线y =f (x )的渐近线的充要条件是 0)]()([lim =+-∞→b kx x f x .必要性: 设y =kx +b 是曲线y =f (x )的渐近线, 则0)]()([lim =+-∞→b kx x f x ,于是有 0])([l i m =--∞→xb k x x f x x ⇒0)(lim =-∞→k x x f x ⇒x x f k x )(lim∞→=, 同时有 0])([lim =--∞→b kx x f x ⇒])([lim kx x f b x -=∞→. 充分性: 如果xx f k x )(lim∞→=, ])([lim kx x f b x -=∞→, 则0])([lim ])([lim )]()([lim =-=--=--=+-∞→∞→∞→b b b kx x f b kx x f b kx x f x x x , 因此y =kx +b 是曲线y =f (x )的渐近线. (2)因为212lim lim 1=⋅-==∞→∞→x x x e x x x y k ,11)1l n (lim21)1(lim 2]2)12[(lim ]2[lim 011=-+=--=--=-=→∞→∞→∞→t t e x x e x x y b t x x x x x , 所以曲线xe x y 1)12(-=的斜渐近线为y =2x +1.习题 2-21. 推导余切函数及余割函数的导数公式: (cot x )'=-csc 2x ; (csc x )'=-csc x cot x .解 x x x x x x x x 2sin cos cos sin sin )sin cos ()(cot ⋅-⋅-='=' x xx x x 22222c s c s i n 1s i n c o s s i n -=-=+-=. x x xx x x c o t c s c s i n c o s )s i n 1()(c s c 2⋅-=-='='.2. 求下列函数的导数: (1)1227445+-+=xx x y ; (2) y =5x 3-2x +3e x ; (3) y =2tan x +sec x -1; (4) y =sin x ⋅cos x ; (5) y =x 2ln x ; (6) y =3e x cos x ; (7)x x y ln =;(8)3ln 2+=xey x ;(9) y =x 2ln x cos x ;(10)tt s cos 1sin 1++=;解 (1))12274()12274(14545'+-+='+-+='---x x x xx x y 2562562282022820x x x x x x +--=+--=---. (2) y '=(5x 3-2x +3e x )'=15x 2-2x ln2+3e x .(3) y '=(2tan x +sec x -1)'=2sec 2x +sec x ⋅tan x =sec x (2sec x +tan x ). (4) y '=(sin x ⋅cos x )'=(sin x )'⋅cos x +sin x ⋅(cos x )' =cos x ⋅cos x +sin x ⋅(-sin x )=cos 2x . (5) y '=(x 2ln x )'=2x ⋅ln x +x 2⋅x1=x (2ln x +1) .(6) y '=(3e x cos x )'=3e x ⋅cos x +3e x ⋅(-sin x )=3e x (cos x -sin x ).(7)22ln 1ln 1)ln (x x x xx x x x y -=-⋅='='. (8)3422)2(2)3ln (x x e x x e x e x e y x x x x -=⋅-⋅='+='. (9) y '=(x 2ln x cos x )'=2x ⋅ln x cos x +x 2⋅x1⋅cos x +x 2 ln x ⋅(-sin x )2x ln x cos x +x cos x -x 2 ln x sin x . (10)22)cos 1(cos sin 1)cos 1()sin )(sin 1()cos 1(cos )cos 1sin 1(t tt t t t t t t t s +++=+-+-+='++='.3. 求下列函数在给定点处的导数: (1) y =sin x -cos x , 求6π='x y 和4π='x y .(2)θθθρcos 21sin +=,求4πθθρ=d d .(3)553)(2x x x f +-=, 求f '(0)和f '(2) . 解 (1)y '=cos x +sin x , 21321236s i n6c o s 6+=+=+='=πππx y , 222224s i n4c o s 4=+=+='=πππx y . (2)θθθθθθθθρcos sin 21sin 21cos sin +=-+=d d ,)21(4222422214c o s 44s i n 214πππππθρπθ+=⋅+⋅=+==d d . (3)x x x f 52)5(3)(2+-=', 253)0(='f , 1517)2(='f . 4. 以初速v 0竖直上抛的物体, 其上升高度s 与时间t 的关系是2021gt t v s -=.求:(1)该物体的速度v (t ); (2)该物体达到最高点的时刻. 解 (1)v (t )=s '(t )=v 0-gt . (2)令v (t )=0, 即v 0-gt =0, 得gv t 0=, 这就是物体达到最高点的时刻. 5. 求曲线y =2sin x +x 2上横坐标为x =0的点处的切线方程和法线方程. 解 因为y '=2cos x +2x , y '|x =0=2, 又当x =0时, y =0, 所以所求的切线方程为 y =2x , 所求的法线方程为x y 21-=, 即x +2y =0.6. 求下列函数的导数: (1) y =(2x +5)4 (2) y =cos(4-3x ); (3)23x e y -=; (4) y =ln(1+x 2); (5) y =sin 2x ; (6)22x a y -=; (7) y =tan(x 2); (8) y =arctan(e x ); (9) y =(arcsin x )2; (10) y =lncos x .解 (1) y '=4(2x +5)4-1⋅(2x +5)'=4(2x +5)3⋅2=8(2x +5)3. (2) y '=-sin(4-3x )⋅(4-3x )'=-sin(4-3x )⋅(-3)=3sin(4-3x ). (3)22233236)6()3(x x x xe x e x e y ----=-⋅='-⋅='. (4)222212211)1(11xx x x x x y +=⋅+='+⋅+='.(5) y '=2sin x ⋅(sin x )'=2sin x ⋅cos x =sin 2x .(6))()(21])[(22121222122'-⋅-='-='-x a x a x ay222122)2()(21xa x x x a --=-⋅-=-.(7) y '=sec 2(x 2)⋅(x 2)'=2x sec 2(x 2).(8)xxxx e e e e y 221)()(11+='⋅+='. (9) y '21arcsin 2)(arcsin arcsin 2x x x x -='⋅=.(10)x x x x x y tan )sin (cos 1)(cos cos 1-=-='⋅='.7. 求下列函数的导数: (1) y =arcsin(1-2x ); (2)211x y -=; (3)x e y x3cos 2-=;(4)xy 1arccos =;(5)xx y ln 1ln 1+-=;(6)x x y 2sin =;(7)x y arcsin =; (8))ln(22x a x y ++=; (9) y =ln(sec x +tan x ); (10) y =ln(csc x -cot x ). 解 (1)2221)21(12)21()21(11xx x x x y --=---='-⋅--='.(2))1()1(21])1[(21212212'-⋅--='-='---x x x y 222321)1()2()1(21xx x x x --=-⋅--=-. (3))3)(3sin (3cos )2()3(cos 3cos )(2222'-+'-='+'='----x x e x x e x e x e y x xx x )3s i n 63(c o s 213s i n 33c o s 21222x x e x e x e x xx +-=--=---. (4)1||)1()1(11)1()1(1122222-=---='--='x x x x xx x y . (5)22)ln 1(2)ln 1(1)ln 1()ln 1(1x x x x x x x y +-=+--+-='. (6)222sin 2cos 212sin 22cos x x xx x x xx y -=⋅-⋅⋅='. (7)2222121)(11)()(11x x x x x x y -=⋅-='⋅-='. (8)])(211[1)(12222222222'+++⋅++='++⋅++='x a x a x a x x a x x a x y 2222221)]2(211[1x a x x a x a x +=++⋅++=. (9) x xx x x x x x x x y sec tan sec sec tan sec )tan (sec tan sec 12=++='+⋅+='. (10) x xx x x x x x x x y csc cot csc csc cot csc )cot (csc cot csc 12=-+-='-⋅-='.8. 求下列函数的导数:(1)2)2(arcsin x y =; (2)2tan ln x y =; (3)x y 2ln 1+=;(4)x e y arctan =;(5)y =sin n x cos nx ;(6)11arctan -+=x x y ; (7)xx y arccos arcsin =; (8) y =ln[ln(ln x )] ;(9)xx x x y -++--+1111; (10)xx y +-=11arcsin . 解 (1)'⋅=')2(arcsin )2(arcsin 2x x y )2()2(11)2(a r c s i n 22'⋅-⋅=x x x 21)2(11)2(a r c s i n 22⋅-⋅=x x . 242a r c s i n 2xx -= (2))2(2sec 2tan 1)2(tan 2tan 12'⋅⋅='⋅='x x x x xy x x x c s c 212s e c 2t a n 12=⋅⋅=.(3))ln 1(ln 121ln 1222'+⋅+=+='x xx y )(l n ln 2ln 1212'⋅⋅+=x x xx x x 1ln 2ln 1212⋅⋅+= x x x 2ln 1ln +=. (4))(arctan arctan '⋅='x e y x )()(112arctan'⋅+⋅=x x e x )1(221)(11a r c t a n 2a r c t a n x x e x x e x x +=⋅+⋅=. (5) y '=n sin n -1x ⋅(sin x )'⋅cos nx +sin n x ⋅(-sin nx )⋅(nx )'=n sin n -1x ⋅cos x ⋅cos nx +sin n x ⋅(-sin nx )⋅n=n sin n -1x ⋅(cos x ⋅cos nx -sin x ⋅sin nx )= n sin n -1x cos(n +1)x .(6)222211)1()1()1()11(11)11()11(11x x x x x x x x x x y +-=-+--⋅-++='-+⋅-++='. (7)222)(arccos arcsin 11arccos 11x x x x x y -+-=' 22)(a r c c o s a r c s i n a r c c o s 11x x x x +⋅-=22)(a r c c o s 12x x -=π. (8))(ln ln 1)ln(ln 1])[ln(ln )ln(ln 1'⋅⋅='⋅='x xx x x y )l n (l n ln 11ln 1)ln(ln 1x x x x x x ⋅=⋅⋅=. (9)2)11()121121)(11()11)(121121(x x x x x x x x xx y -++--+--+--++-++=' 22111xx -+-=.(10)2)1()1()1(1111)11(1111x x x xxx x x x y +--+-⋅+--='+-⋅+--=' )1(2)1(1x x x -+-=. 9. 设函数f (x )和g (x )可导, 且f 2(x )+g 2(x )≠0, 试求函数)()(22x g x f y +=的导数.解 ])()([)()(212222'+⋅+='x g x f x g x f y)]()(2)()(2[)()(2122x g x g x f x f x g x f '+'⋅+=)()()()()()(22x g x f x g x g x f x f +'+'=.10. 设f (x )可导, 求下列函数y 的导数dx dy:(1) y =f (x 2);(2) y =f (sin 2x )+f (cos 2x ).解 (1) y '=f '(x 2)⋅(x 2)'= f '(x 2)⋅2x =2x ⋅f '(x 2).(2) y '=f '(sin 2x )⋅(sin 2x )'+f '(cos 2x )⋅(cos 2x )'= f '(sin 2x )⋅2sin x ⋅cos x +f '(cos 2x )⋅2cos x ⋅(-sin x ) =sin 2x [f '(sin 2x )- f '(cos 2x )].11. 求下列函数的导数:(1) y =ch(sh x );(2) y =sh x ⋅e ch x ;(3) y =th(ln x );(4) y =sh 3x +ch 2x ;(5) y =th(1-x 2);(6) y =arch(x 2+1);(7) y =arch(e 2x );(8) y =arctan(th x );(9)xx y 2ch 21ch ln +=; (10))11(ch 2+-=x x y 解 (1) y '=sh(sh x )⋅(sh x )'=sh(sh x )⋅ch x . (2) y '=ch x ⋅e ch x +sh x ⋅e ch x ⋅sh x =e ch x (ch x +sh 2x ) .(3))(ln ch 1)(ln )(ln ch 122x x x x y ⋅='⋅='. (4) y '=3sh 2x ⋅ch x +2ch x ⋅sh x =sh x ⋅ch x ⋅(3sh x +2) .(5))1(ch 2)1()1(ch 122222x x x x y --=-⋅-='. (6)222)1()1(112422++='+⋅++='x x x x x y . (7)12)(1)(142222-='⋅-='x x x x e e e e y . (8)xxx x x x x y 222222ch 1ch sh 11ch 1th 11)th ()th (11⋅+=⋅+='⋅+=' xx x 222sh 211sh ch 1+=+=. (9))ch (ch 21)ch (ch 124'⋅-'⋅='x xx x y x x xx x sh ch 2ch 21ch sh 4⋅⋅-= xx x x x x x x 323ch sh ch sh ch sh ch sh -⋅=-= x xx x x x 33332th ch sh ch )1ch (sh ==-⋅=. (10)'+-⋅+-⋅+-='+-⋅+-=')11()11(sh )11(ch 2])11(ch [)11(ch 2x x x x x x x x x x y )112(sh )1(2)1()1()1()112(sh 22+-⋅+=+--+⋅+-⋅=x x x x x x x x . 12. 求下列函数的导数:(1) y =e -x (x 2-2x +3);(2) y =sin 2x ⋅sin(x 2);(3)2)2(arctan x y =; (4)n xx y ln=; (5)t t t t ee e e y --+-=; (6)xy 1cos ln =; (7)x e y 1sin 2-=;(8)x x y +=;(9) 242arcsin x x x y -+=; (10)212arcsin tty +=. 解 (1) y '=-e -x (x 2-2x +3)+e -x (2x -2) =e -x (-x 2+4x -5).(2) y '=2sin x ⋅cos x ⋅sin(x 2)+sin 2x ⋅cos(x 2)⋅2x =sin2x ⋅sin(x 2)+2x ⋅sin 2x ⋅cos(x 2).(3)2arctan 44214112arctan 222x x xx y +=⋅+⋅='. (4)121ln 1ln 1+--=⋅-⋅='n n n n x x n x nx x x xy . (5)2222)1(4)())(())((+=+---++='-----t t t t t t t t t t t t e e e e e e e e e e e e y . (6)x x x x x x x y 1tan 1)1()1sin (1sec )1(cos 1sec 22=-⋅-⋅='⋅='. (7))1(1cos )1sin 2()1sin (21sin 21sin 22x x x e x e y x x -⋅⋅-⋅='-⋅='-- x e x x1s i n 222s i n 1-⋅⋅=.(8))211(21)(21x x x x x x x y +⋅+='+⋅+=' xx x x +⋅+=412. (9)2arcsin )2(421214112arcsin 22x x x xx x y =-⋅-+⋅-⋅+='. (10)22222222)1()2(2)1(2)12(11)12()12(11t t t t tt t t t t y +⋅-+⋅⋅+-='+⋅+-=' )1(|1|)1(2)1()1(2)1(1222222222t t t t t t t +--=+-⋅-+=.。
《环境化学》总复习题第一章绪论一、填空1、造成环境污染的因素有物理、化学和生物的三方面,其中化学物质引起的约占80%-90%。
2、污染物的性质和环境化学行为取决于它们的化学性质和在环境中的迁移。
3、环境中污染物的迁移主要有机械、物理化学和生物三种方式。
4、人为污染源可分为工业、农业、交通运输和生活。
二、选择题1、属于环境化学效应的是CA热岛效应 B温室效应 C土壤的盐碱化 D噪声2、五十年代日本出现的痛痛病是由A污染水体后引起的。
A CdB HgC PbD As3、五十年代日本出现的水俣病是由B污染水体后引起的。
A CdB HgC PbD As三、问答题1、环境中主要的化学污染物有哪些?2、举例简述污染物在环境各圈的迁移转化过程。
第二章大气环境化学一、填空1、写出下列物质的光离解反应方程式(1)NO2 + hνNO + O·(2)HNO2 + hνHO·+ NO 或HNO2 + hνH·+ NO2(3)HNO3 + hνHO·+ NO2(4)H2CO + hνH· + HCO·或H2CO + hνH2+ CO2、大气中的NO2可以转化为HNO3、N2O5和N2O3。
3、碳氢化合物是大气中的重要污染物,是形成光化学烟雾的主要参与者。
4、乙烯在大气中与O3的的反应机理如下:O3 + CH2 == CH2H2CO+H2COOCH2(O3)CH25、大气颗粒物的去除与颗粒物的粒度和_化学性质_有关,去除方式有干沉降和湿沉降。
6、制冷剂氯氟烃破坏臭氧层的反应机制是:CFmCln + hv CFmCln-1 + Cl·Cl·+ O3O2 + ClO·ClO·+O O2 + Cl7、当今世界上最引人瞩目的几个环境问题_温室效应_、_臭氧层破坏_、_光化学烟雾_等是由大气污染所引起的。
8、许多大气污染事件都与逆温现象有关,逆温可分为_辐射逆温_、_平流逆温_、_融雪逆温和地形逆温_。
四年级数学上册总复习练习题(含答案解析)学校:___________姓名:___________班级:___________一、填空题1.10个千万是( ),10个( )是一千亿。
2.260790000是一个( )位数,9在( )位,用四舍五入法省略亿位后面的尾数约是( )亿,改写成“万”作单位的数是( )万。
3.八百一十三亿九千四百零八万零七写作:( ),四舍五入到亿位:( ),改写成用“亿”作单位的数:( )。
4.在括号里填上“>”“<”或“=”。
99999999( )1亿 909999( )91万10个十万( )一百万 100530( )9853205.比较下面每组中两个数的大小。
74560( )74650 四千万( )九百九十万99999999( )1亿 617000( )62万240万( )2396000 5800000( )5899996.写出下面各数。
(1)二千九百万零三十,写作:_______________。
(2)五百零六亿零二十三万零五,写作:________。
7.在里填上合适的数字,使等式成立。
×=12000 ×=480008.÷=……4,除数可能是( ),其中最小的是( )。
9.在里填上适当的运算符号,在里填上适当的数。
(1)8016÷=(80)()164÷÷ (2)()2004020020÷=÷÷(40) 10.在括号里填上“>”“<”或“=”。
230×40( )23×400320×25( )25×30234×605( )304×65160×21( )160×20+20 11.你能写出几种不同的填法?请写出来。
(每个里只能填一个数字)÷=47612.图中有( )条线段;有( )条射线。
13.已知∠1=70°,那么∠2=( )。
小学数学总复习题填 空⒈一个三角形的两个角的度数分别是50度和60度,这个三角形是( )三角形。
⒉把41米长的细线平均分成4段,每段是全长的( ),每段长( )米。
⒊(a+b )×25=( )+( ) ⒋周长为40分米的正方形,面积是( )平方分米。
⒌41=( )%=()60⒍ 390420800读作( ),用四舍五入法改写成用“亿”作单位的数是( )。
⒎把一个圆柱体木块削成一个最大的圆锥体,削去部分的体积是该圆锥体体积的( )。
⒏ 35÷7=5,35是( )的倍数,7是( )的约数。
⒐ 260厘米=( )米( )分米 6.4小时=( )分。
⒑被减数是72,减数与差的比是7:5,减数是( ),差是( )。
11、一个数由4个十,7个十分之一和2 个百分之一组成,这个数写作( )。
12、1小时15分=( )小时(填分数)。
13、( )统计图不但表示数量多少,而且能清楚地表示数量增减的变化情况。
14、3、6、9三个数的最大公约数是( ),最小公倍数是( )。
15、231的倒数是A3,那么A=( )。
16、在比例尺是1:200的学校平面图上,量得教室的长是4.5厘米,实际是( )米。
17、在1.33、131、1.3、13.5四个数中,最小的是( ),最大的是( )。
18、从边长4厘米的正方形中剪去一个最大的圆,那么余下的面积是( )。
19、平行四边形的面积一定,平行四边形的底和高成( ) 比例。
20、女生的人数是男生的人数的32,男生的人数比女生的人数多( )。
21、10÷8=)(15=( ):4=( )%。
22、3.5吨=( )吨( )千克23、(a ×b )×c =a ×(b ×c) 48×25=( )×(8×25)24、能同时被2、3、5整除的最小三位数是( )最大三位数是( )25、把圆柱体的侧面沿着高展开,得到一个和长等于圆柱体的( ),宽等于圆柱体的( )的长方形。
第一章货币与经济一、名词解释1、货币2、价值尺度3、货币流量4、狭义货币5、广义货币二、填空题1、货币最重要最基本的职能是。
2、在商品经济发展中,商品价值的表现形式经历了简单的、偶然的价值形式、、四个阶段。
3、现代经济中,货币以和的形式存在。
4、货币的本质是。
5、是新型的信用货币形式,是高科技的信用货币。
三、判断题1、货币和财富是同一个概念。
()2、只有现金才能够称为货币。
()3、狭义的货币仅指流通中的现金。
()4、货币在行使贮藏职能时必须是现实的货币。
()5、货币流量指的是某一时点上货币总量。
()四、简答题1、货币作为支付手段的作用。
2、货币分为哪四个层次?五、论述题1、货币的基本职能是什么?货币在发挥各种职能时各有什么特点?2、货币在经济活动中有何作用?第二章货币制度一、名词解释1、双本位制2、金汇兑本位制3、金块本位制4、本位币5、辅币6、无限法偿7、有限法偿 8、货币制度 9、格雷欣法则 10、平行本位制二、填空题1、是按照国家的法律规定,用一定重量的金属,以一定的形式铸造以后并标明其重量和成色的金属块。
2、秦始皇统一中国后,发行的铸币是。
3、货币单位的选择除了要明确货币名称之外,还要规定。
4、具有无限法偿力。
5、最早出现的货币制度是。
6、按照名义价值而不是实际价值流通的货币金属货币是。
7、金单本位制下各国汇率是由决定的。
8、从货币制度诞生以来,经历了、、和五种主要货币制度形态。
9、金银复本位制主要有两种类型:和。
10、在格雷欣法则中,实际价值高于法定比价的货币是。
11、在格雷欣法则中,实际价值低于法定比价的货币是。
12、金本位制有三种形式:、、。
13、货币制度的四大构成要素:、、、。
14、货币制度最基本的内容是。
15、一个国家的基本通货和法定的计价结算货币称为亦称。
16、在纸币制度下,如果在同一市场上出现两种以上纸币流通时,会出现货币的。
三、单项选择题1、国家规定可以自由铸造的货币是()。
电工中级(四级)理论总练习题库-判断题部分判断题1. 0正弦交流电路的视在功率等于有功功率和无功功率之和。
A、正确B、错误答案:B2.()使用螺丝刀时要一边压紧,一边旋转。
A、正确B、错误答案:A3.()低压断路器类型的选择依据是使用场合和保护要求。
A、正确B、错误答案:A4. 0( )自激振荡器是一需外加输入信号的选频放大器。
A、正确B、错误答案:B5. 0( )逆变电路输出频率较高时,电路中的开关元件应采用电力磁场A、正确效应管和绝缘栅双极晶体管。
B、错误答案:A6.()同步电动机本身没有启动转矩,不能自行启动。
A、正确B、错误答案:A7.()兆欧表俗称摇表,是用于测量各种电气设备绝缘电阻的仪表。
A、正确B、错误答案:A8.()一台电动机启动后另一台电动机才能启动的控制方式称为顺序控制。
A、正确B、错误答案:A9. 0描述磁场中各点磁场强弱和方向的物理量是磁场强度。
A、正确B、错误答案:B10.()维修电工以电气原理图、安装接线图和平面布置图最为重要。
B、错误答案:A11∙()压力继电器是液压系统中当流体压力达到预定值时,使电气触点动作的元件。
A、正确B、错误答案:A12.()瓷介电容上标注数值103,表示该电容的数值为103 pF oA、正确B、错误答案:B13.()直流电动机的转子由电枢铁芯、绕组、换向器和电刷装置等组成。
A、正确B、错误答案:B14.()低压断路器类型的选择依据是使用场合和保护要求。
A、正确B、错误答案:A15.()压力继电器是液压系统中当流体压力达到预定值时,使电气触点动作的元件。
B、错误答案:A16. 0( )与门是反向逻辑门。
A、正确B、错误答案:B17.()电压是产生电流的根本原因,因此电路中有电压必有电流。
A、正确B、错误答案:B18.()射极输出器是典型的电压串联负反馈放大电路。
A、正确B、错误答案:A19. 0( )在单相半波可控整流电路中,调节触发信号加到控制极上的时刻,改变控制角的大小,就实现了控制输出直流电压的大小。