校园景观河流水质监测方案
- 格式:doc
- 大小:806.50 KB
- 文档页数:12
环境监测方案制定校园水环境监测方案为了保障校园水环境的安全和健康,制定校园水环境监测方案具有重要的意义。
本文将介绍一套适用于校园水环境的监测方案,希望能够对学校和有关部门提供参考。
一、监测目标1.水源环境监测:包括天然饮用水源、经处理后的自来水管网的出水、生活污水处理厂等。
2.水体环境监测:包括学校周边的河流、湖泊、池塘、园林水体等。
二、监测项目1.水质监测(1)pH值:水质pH值是评价水的酸碱度的指标之一,PH值过高或过低都会对水体环境造成一定的影响,需要及时监测。
(2)总磷、总氮:它们是反映水体富营养化程度的指标,需要监测,确保水体健康。
(3)重金属:水体中重金属含量超标会对环境和人体健康造成危害,需要进行监测。
(4)溶解氧:溶解氧是反映水体中生物呼吸和氧气增氧能力的指标,需要监测。
2.生物指标监测(1)藻类:藻类的繁殖虽然可以提供养分,但若藻类繁殖过于频繁,就会使水体变得浑浊,影响校园环境和人体健康,需要监测。
(2)浮游动物:浮游动物是反映水体生物活动程度的指标,需要监测。
3.其他因素监测(1)水温:水温反映季节性变化和天气变化等,需要监测。
(2)浊度:浊度反映水体的透明度,需要监测。
三、监测频次和方法1.水源环境监测根据学校水质特点和需求,选择对应的监测频次和方法。
常用监测方法是使用水质监测仪器,如多参数水质分析仪、光谱仪等进行监测。
2.水体环境监测根据校园周边水体的情况,选择相应的监测频次和方法。
常用监测手段是采集水样送实验室进行分析,可以使用现场监测仪器,如水质检测仪、悬浮颗粒物采样器等进行现场监测。
四、监测结果处理当监测结果出现超标情况时,学校和相关部门应及时采取措施处理,防止污染加重,如增加监测频次和采用适当的水体修复措施等。
总之,对于校园水环境的监测工作,应充分重视,完善常规监测制度,提高监测频次和监测项目的覆盖范围。
只有这样,才能够保障学生和教职工们日常生活的安全和健康。
(8 氨氮(NH3-N)的测定:首先进行蒸馏预处理,取50mL硼酸吸收液于250mL容量瓶中,分取250mL接近中性水样至凯氏烧瓶中,加入 0.25g轻质氧化镁和数粒玻璃珠,立即连接,并加热蒸馏至馏出液达 200mL左右时,停止蒸馏,定容至250mL ,同时做空白液的蒸馏。
其次绘制工作曲线,分取 0 , 1.00mL ,3.00mL , 5.00mL , 7.00mL 铵标液于50mL容量瓶中,再各加1.0mL酒石酸钾钠,并用无氨水加至约40mL左右,摇匀,然后再各加1.5mL纳氏试剂,并用无氨水稀释至标线,摇匀,放置10min后,在420nm处,用光程为10mm的比色血,以空白为参比,测量吸光度。
再后分取 40.00mL 馏出液于 50 mL容量瓶中,并按上述操作步骤测量光度。
或者用多参数测定仪进行测定。
(9 总磷的测定:仪器法(过硫酸盐消解-PhosVer3法):a.打开消解器,预热至150℃。
b.使用移液管移取5.0mL样品到一支总磷TNT试剂管中。
c.用漏斗将一包过硫酸盐粉末加入到试管中。
拧紧盖子后摇晃至溶解。
d.将试管放入消解器总,消解30分钟。
e.消解结束后,从消解器上取下试管放在试管架上,冷却至室温。
f. 用移液管移取 2mL1.54N的氢氧化钠溶液到试管中。
拧紧盖子后混合均匀。
g.打开分光光度计,选择测试程序。
h. 擦干净试管外壁,将试管插到光度计的试管固定架上,测空白调零。
i. 用漏斗将一包 PhosVer3 粉末加入到试管中。
拧紧盖子,摇晃10-15秒。
j. 显色反应2分钟,样品必须在反应开始后2 - 8 分钟进行测量。
k. 擦干净试管外壁,将试管插到光度计的试管固定架上,测样品,得到样品总磷值。
三、实验结果汇总测定项目校园河道水体的水样温度 °C 浊度 NTU pH值溶解氧 mg/L CODcr mg/L 细菌菌落总数个/mL BOD5mg/L (水质法 NH3-N mg/L 总磷 mg/L 四、校园河道水体的水质评述及净化方案探索果汇总 1. 2. 根据样品监测结果,结合环境评价中的相关知识,对校园河道水体水质进行综合评述。
校园景观河流水质监测计划书一、项目:⑴测定样品溶解氧⑵测定样品水温⑶测定样品的PH值⑷测定样品中氨氮的含量⑸测定样品中SS(悬浮固体)的含量⑹测定样品的色度⑺测定样品中COD(化学需氧量)的含量⑻测定样品中总磷的含量⑼测定样品中BOD(生化需氧量)的含量二、测定水温、PH值、溶解氧的实验计划1、水温的测定实验仪器:水温计(水温计为安装于金属半圆槽壳内的水银温度表,下端连接一金属贮水杯,使温度表球部悬于杯中,温度表顶端的槽壳带一圆环,拴以一定长度的绳子。
通常测量范围-6℃ ~+40℃,分度为 0.2℃。
)实验步骤:将水温计插入一定深度的水中,放置 5min 后,迅速提出水向并读取温度值。
当气温与水温相差较大时,尤应注意立即读数,避免受气温的影响。
必要时重复抽入水中,再一次读数。
注意事项:①当现场气温度高于35℃或低于-3℃时,水温计在水中的停留时间要适当匀延长,以达到温度平衡; ②在冬季的东北地区读数应在 3s 内完成,否则水温计表面形成一层薄冰,影响读数的准确性。
数据记录:将读数填入下表。
2、PH值的测定实验原理:pH 值由测量电池的电动势而得。
该电池通常由饱和甘汞电极为参比电极,玻璃电极为指示电极所组成。
在 25℃,溶液中每变化 1 个 pH 单位,电位差改变为59.16 毫伏,据此在仪器上直接以 pH 的读数表示。
温度差异在仪器上有补偿装置。
实验仪器:①酸度计或离子浓度计:常规检验使用的仪器,至少应当精确到0.1pH 单位,pH范围从0至14如有特殊需要,应使用精度更好的仪器。
②玻璃电极与甘汞电极。
相关试剂:标准缓冲溶液(简称标准溶液):①pH标准溶液甲(pH4.008 25 ):称取先在110-130干燥2-3h的邻苯二甲酸氢钾(KHC8H4O4)10.12g,溶于水并在容量瓶中稀释至1L。
②pH 标形溶液乙(pH6.865 25 ):分别称取先110-130干燥2-3h的磷酸二氢钾(KH2PO4)3.388g和磷酸氢二钠(Na2HPO4)3.533g溶于水并在容量瓶中稀释至1L。
环境监测方案制定校园水环境监测方案环境监测方案制定校园水环境监测方案校园水环境监测指的是对校园水环境中各种物质、质量指标、微生物等因素进行监测、检测以及分析评估的过程。
环境监测方案是根据校园水环境的实际情况,科学制定的监测计划和方法方案。
通过环境监测方案的制定,可以更加全面、科学的了解校园水环境的质量状况,及时发现和解决环境问题,保障健康安全。
本文介绍的是校园水环境监测方案的制定。
一、确定监测的目的和范围为了科学制定监测方案,首先需要明确监测的目的和范围。
根据校园特点和环境问题,目的可以包括以下几个方面:全面了解校园水环境的质量状况、掌握水环境的变化趋势、及时发现和解决环境问题,保障师生健康安全。
范围可以分为宏观和微观两个方面:宏观方面包括汇水区、河流、池塘等校园水来源的环境状态,微观方面则包括水体中的物质、质量指标、微生物等因素。
二、确定监测指标根据监测目的和范围,结合国家和地方的环境法规标准,对监测指标进行选定,以便后续的监测工作能够更加具体。
监测指标可以分为物理指标、化学指标和微生物指标三个类别。
物理指标主要包括水体温度、PH值、浊度、色度等,化学指标包括化学需氧量、氨氮、总磷、总氮等,微生物指标包括大肠菌群、肠球菌等指标。
三、确定监测频次和监测时间监测频次和监测时间是环境监测中非常关键的两个因素。
监测频次既要保证监测时间的连续性、稳定性,又要保证监测的有效性。
监测时间需要充分考虑校园水环境受到影响的因素,如气温、降水量、水体水位等。
四、确定监测方法环境监测方法是环境监测的核心部分。
不同的监测指标需要使用不同的监测方法。
环境监测方法需要科学、规范和准确。
因此,在制定监测方案时,需要考虑监测方法的适用性、实用性、标准性等因素,并对质量控制、数据处理进行规定。
五、制定环境监测报告环境监测报告是环境监测的最终成果。
监测报告的制作需要注重报告的结构和信息交流的清晰,以及发现问题和解决问题的能力。
在监测报告中需要体现多种信息:监测结果、环境因素分析、问题评估和对策提出等,总结水环境质量情况和变化趋势,向相关部门和社会公众公开监测信息,达到预期的监测目的。
校园水质监测方案1. 引言随着人口的增加和工业的快速发展,水质污染问题日益突出。
特别是在校园环境中,水质安全对师生的健康至关重要。
为了保障校园水质的安全,本文提出了校园水质监测方案,旨在及时检测和预警水质问题,确保师生饮用水的健康与安全。
2. 监测设备为了监测校园水质,我们需要使用一些专业的监测设备。
以下是我们推荐的一些设备:2.1 pH值监测仪pH值是衡量水的酸碱度的重要指标之一,也是判断水质好坏的关键因素。
通过使用pH值监测仪,我们可以准确地测量水的pH值,并及时发现和解决酸碱度异常的问题。
2.2 溶解氧检测仪溶解氧是水中重要的营养物质之一,也是衡量水体生态环境质量的重要指标。
溶解氧检测仪可以测量水中存在的溶解氧量,帮助我们评估水质是否富含氧气,并指导我们进行相应的调整和处理。
2.3 浑浊度检测仪浑浊度是指水中微粒子的含量,也是衡量水体质量的重要指标之一。
浑浊度检测仪可以帮助我们测量水的浑浊度,并及时发现和解决悬浮物超标的问题,确保水质的清澈度。
2.4 电导率检测仪电导率是指液体中导电性的程度,也是水质监测中的一个重要参数。
通过使用电导率检测仪,我们可以测量水中的电导率,并判断水质是否受到了污染,从而采取相应的措施进行治理和预防。
3. 监测方案为了确保校园水质的安全和可靠,我们建议采取以下监测方案:3.1 定期监测定期监测是确保水质安全的关键步骤。
我们建议每月进行一次全面的校园水质监测,包括pH值、溶解氧、浑浊度和电导率等参数。
定期监测可以及时发现水质问题,并采取相应的纠正措施。
3.2 实时监测除了定期监测之外,我们还建议安装实时监测设备,对校园的重要水源进行实时监测。
这些设备可以将数据实时传输到中央监测系统,将水质数据直接反馈给相关人员,实现对水质的全程监控和预警。
3.3 数据分析与报告监测数据的分析和报告是保障水质安全的重要环节。
我们建议建立一个专门的数据分析与报告系统,对所收集到的监测数据进行实时分析和报告生成。
校园景观湖水质监测方案报告指导老师:***监测组:09环工06组报告人员:方李水学号:**********时间:2011.06.13-06.17一、监测目的及意义为了了解我校景观湖的水质现状,为景观湖的治理与保护提供必要数据以及为了让我们熟悉水质监测方案的指定内容和评价内容,我组将进行校园景观湖的水质监测。
二、监测区域概况我校景观湖长90米,宽46米,位于我校南部。
由于最近一直为阴雨天,因此湖水水位略有上升,水质较浑浊,湖面有落叶、塑料袋等漂浮物质。
三、监测采样布点1、监测项目水温、pH 、DO、SS 、COD、氨氮。
2、监测网点布设监测网点的布设如下图所示,共设置6个采样点。
3、采样时间和方法6月13日上午9:00进行取样。
取样时用矿泉水瓶直接采样,使用前先用自来水冲净备用,采样时用采样处的水润洗。
4、水样的保存及预处理1、水样运输和保存:采集完水样后,在运输过程中应避免震动和碰撞,尽快送回实验室,并测定pH 、DO。
2、水样的预处理:当测定含有有机物水样中的无机物时,需进行消解处理,当测定组分含量低于测定。
方法的测定下限时,就必须进行富集,当有共存干扰组分时,就必须采取分离或掩蔽措施。
5、水质的检测6、水样的质量控制水样的测定项目的质量分别以分析方法的全程空白,平行样、质控样、加标回收等进行控制,允许相对标准偏差质控样和平行样10%以内,加标回收率85%-115%。
7、.质量标准:地表水环境质量标准(GB3838-2002)我校景观湖属于Ⅴ类水质即一般景观要求水域。
地表水环境质量标准基本项目标准限值单位:mg/L四、监测结果数据分析校园景观湖水质监测数据报表单位mg/采样时间:2011年06月13日开始15:11 结束15:31采样方法:矿泉水瓶直接采样水颜色: 淡绿色臭味:无水生植物: 少量水草漂浮物:树叶与部分生活垃圾备注:由于近日雨水较多,漂浮物多于平常填表:第六小组成员填表日期:2011 年06月13 日现场测定记录表实验室测定记录表监测结果登记表五、监测评价根据实验测定的数据与地表水环境质量标准基本项目标准限值比较可得:环境水温、pH值、溶解氧(DO)在数值上基本一致,并符合国家标准,悬浮固体(ss)、COD和氨氮这三项项目虽然在各采样点间数值上略有差别,但仍符合国家的标准。
校园的水环境分析与监测方案
生工1112诸敏1120120205
一、实习目的:了解学校附近水的污染程度
二、校园水环境影响因素识别
校园水污染源主要包括餐厅污水、实验室废水、生活污水等。
餐厅污水包括洗碗水、洗菜水以及其它污水,洗碗水主要含有N、P等营养物质和油脂,洗菜水含有的沙粒等较少的污染物,其它污水含有较多有机污染物。
主要排入下水道。
实验室废水主要排入下水道,排水量不大。
生活污水的排水量占主要部分。
三、水环境分析与监测因子的筛选
根据检测水体是河流和污水,取以下监测项目:水温、pH值、溶解氧、化学需氧量、、总氮、总磷、氨氮、硝酸盐氮、色度、浊度、悬浮物
四、监测方案
1、监测点布设和监测时间
根据测定项目和实际情况,水样需采样连续多天,对于校园内下水道及泳河直接进行采样,取三个采样点(1餐厅下水道出口,2实验楼下水道出口3教学区下水道出口),每天每个采样点采集3次样。
2、采样方法
采集表层水样可用适当的容器如塑料筒等直接采集。
根据监测项目确定是混合采样还是单独采样。
采样器需事先用洗涤剂、自来水、10%硝酸或盐酸和蒸馏水洗涤干净、沥干,采样前用被采集的水样洗涤2~3次。
采样时应避免激烈搅动水体和漂浮物进入采样桶;采样桶桶口要迎着水流方向浸入水中,水充满后迅速提出水面,需加保存剂时应在现场加入。
五、数据处理
六、评价
通过这次实验我们对学校附近的水环境有了一定的了解,虽说有些钓鱼爱好者回来这边钓鱼但是总的来说学校附近的水环境有待提高,我们可以组织打捞废弃物,不要向湖里投放污水,放养改善湖水的生物等方法改善水质。
校园水质监测实验方案一、实验目的本实验旨在通过对校园内水源的采样和检测,了解校园水质状况,分析水质是否符合相关标准,提高师生对校园环境的关注度和环境保护意识。
二、实验材料和设备1. 水质采样工具:玻璃瓶、采样勺、采样袋等。
2. 实验室设备:PH计、色谱仪、溶解氧测定仪等。
3. 水质检测试剂:PH试纸、溶解氧试剂、硝酸银溶液等。
三、实验步骤1. 选择样本点:校园内各自然水源(如水龙头、湖泊等)作为采样点。
2. 采样准备:清洗采样工具,避免污染样本。
同时,将相关实验设备进行校准和准备好所需试剂。
3. 采样操作:用玻璃瓶准确采集校园内各水源的水样,确保采样量充分且不受外界污染影响。
并记录采样时间、地点等相关信息。
4. 实验操作:a. PH值检测:将水样倒入PH计,记录测得的PH值。
重复操作3次,取平均值。
b. 溶解氧测定:根据溶解氧测定仪的使用说明进行操作,记录测得的溶解氧含量。
c. 其他指标检测:根据实验需要,可以选择检测水样中的其他指标,如总氮、总磷等。
四、实验数据处理和分析1. 数据处理:整理实验数据,并进行统计和分析。
2. 数据比较和评估:与相关标准进行比较,评估校园水质状况是否符合规定标准。
3. 结果分析:根据实验数据和标准进行分析,得出结论并提出相应的建议,以改善校园水质状况。
五、实验安全与环保注意事项1. 实验时应佩戴实验手套、实验眼镜等个人防护装备,确保实验操作安全。
2. 采样时避免向水源中投放任何污染物,确保采样的水源真实可靠。
3. 实验结束后妥善处理实验废液和废弃物,遵守环境保护法规。
六、实验应用和意义本次校园水质监测实验的数据结果可以为学校提供有关校园水质管理的参考,为改善校园环境提供科学依据。
同时,通过学生参与实验,能够增强学生的环境保护意识,培养学生的科学探究能力和实践动手能力。
七、总结通过这次校园水质监测实验,我们得以全面了解了校园水质状况,并进一步加深了师生对环境保护的认识。
校园湖水水质监测实验一水样pH值的测定(玻璃电极法)一、实验目的1.掌握水样pH值的测定方法;2.掌握常见pH计的使用方法;3.学会选择校正仪器用的pH标准缓冲溶液。
二、方法原理以玻璃电极为指示电极,以饱和甘汞电极为参比电极,插入水样中与被测水样组成电池。
在25℃时,溶液每变化一个pH单位,电位差变化59.16mv。
将电位差刻度变为pH刻度,由pH计直接读取溶液pH值。
温度影响pH值,仪器设有温度补偿装置。
三、仪器、试剂1.pHS-25型、pHS-2C型、pHS-3C型酸度计或其它型号酸度计;2.50mL聚乙烯杯;3.标准pH缓冲溶液:(具体pH值及配制方法见试剂包装上的详细说明)(1)邻苯二甲酸氢钾溶液(酸性,25 o C时,pH=4.008)(2)磷酸二氢钾+磷酸氢二钠溶液(中性,25 o C时,pH6.865);(3)硼酸钠溶液(碱性,25 o C,pH9.180)。
四、测定步骤及注意事项:详见仪器使用说明。
附:pHS-25型酸度计使用方法1.仪器安装:把仪器机箱支架撑好,使仪器与水平面成30o角。
仪器未使用时,应使短路插插在电极插口内以保护仪器。
2.开机:开启电源,预热至仪器稳定(一般为30分钟)。
3.仪器校准(二点校准法)(1)保持短路插头在电极插口内,置“选择档”于“mv”位置,仪器应显示“000±1”。
(2)取下短路插,安装电极,然后将“斜率”旋钮调至100%位置,“温度”旋钮调至待测液温度。
(3)电极头用滤纸沾干水份后,插入盛有中性标准缓冲溶液的塑料试杯中,摇动试杯,待读数稳定时,调节“定位”旋钮,使显示的pH值为当时温度下对应的中性标液的标准pH值。
(4)移出电极,用蒸馏水清洗并沾干水分,插入用pH试纸粗测的与水样同酸碱性的标准缓冲溶液中。
同样摇动塑料试杯,待读数稳定时,调节“斜率”旋钮,使显示pH值为当时温度下对应的标准溶液的pH值。
注意:仪器校准完毕,“定位”和“斜率”旋钮不能再动。
校园湖水水质监测方案
校园湖水水质监测方案应包括以下内容:
1. 监测目标:明确监测的湖水水质参数,例如溶解氧、浊度、pH值、总磷、总氮等。
2. 监测频率:确定监测的时间频率,例如每月、每季度或每年进行一次监测。
3. 监测点位:确定监测的位置,包括湖水入口处、出口处以及水体中心等多个点位。
4. 监测方法:选择适合的水质监测方法,例如采样后实验室测试、在线监测设备等。
5. 数据收集与记录:建立数据收集和记录的系统,确保监测数据的准确性和完整性。
6. 数据分析与评估:对监测数据进行分析和评估,比较不同时间点和点位的水质差异,判断水质是否存在变化和污染问题。
7. 报告和沟通:将监测结果制作成报告,并及时向相关部门或人员进行沟通和交流,以便及时采取必要的管理和保护措施。
8. 应急预案:制定相应的应急预案,针对可能出现的水质问题,制定相应的解决方案和处理措施。
在具体实施方面,可以借助现代科技手段,如传感器网络和远程监测系统来实时监测水质参数,并通过数据分析软件对监测数据进行分析。
此外,还可以组织相关人员接受水质监测的培训,提高监测的专业性和准确性。
最后,确保监测方案的可持续性,不断改进和完善监测方法和流程,以保障校园湖水的水质安全。
校园景观河流水质监测组员:唐树凯、黄山、韩凯、陈浩洋一﹑校园景观河概况景观河为封闭式,河宽最大处小于20米,河深低于5米,为了进一步熟悉水环境常规项目的检测过程,我们进行了此项工作。
由于其污染物主要来源是生活污水,根据我们已知的知识及其地表水功能,按功能高低依次划分为五类,我们所检测的水区水质在国家标准中规定为Ⅴ类水质。
二﹑监测内容我们河取水样,测量水温(水温计法),PH(玻璃电极法),溶解氧(电化学探头法),()总磷(钼酸铵分光光度法)及氨氮(纳氏试剂比色法)。
COD(重铬酸钾法),BOD5三监测的项目方法及标准依据(GB 3838-2002)水域功能和分类标准依据地表水水域环境功能和保护目标,按功能高低依次划分为五类:Ⅴ类主要适用于农业用水区及一般景观要求水域。
对应地表水上述五类水域功能,将地表水环境质量标准基本项目标准值分为五类,不同功能类别分别执行相应类别的标准值。
水域功能类别高的标准值严于水域功能类别低的标准值。
同一水域兼有多类使用功能的,执行最高功能类别对应的标准值。
实现水域功能与达功能类别标准为同一含义。
三﹑地表水环境质量标准基本项目分析方法项目一:水温 PH值溶解氧的测定一实验目的:1.熟悉各个仪器的使用的方法2.进一步了解水质的测定方法二实验过程:采样前的准备:1)容器:先将采水器用冲去灰尘等杂物,用洗涤剂去除油污,自来水冲洗后,再用10%的盐酸或硝酸,再用自来水冲洗干净备用。
2)取样:用已清洗过的采水器在河的中央取样50Ml。
3)温度的测定:将水温计插入水中一定深度,五分钟后迅速拿出并读数溶解氧的测定:(1)方法原理溶解氧电化学探头是一个用选择性薄膜封闭的小室,室内有两个金属电极并充有电解质。
氧和一定数量的其他气体及亲液物质可透过这层薄膜,但水和可溶性物质的离子几乎不能透过这层膜。
将探头浸入水中进行溶解氧的测定时,由于电池作用或外加电压在两个电极间产生电位差,使金属离子在阳极进入溶液,同时氧气通过薄膜扩散在阴极获得电子被还原,产生的电流与穿过薄膜和电解质层的氧的传递速度成正比,即在一定的温度下该电流与水中氧的分压(或浓度)成正比。
校园景观水质监测方案的制定校园里的水景观,你知道吗?那可是我们每天都能看到的风景,不管是清晨的那一池清水,还是午后的小溪涓涓流淌。
水在校园里,不仅是视觉上的一抹亮色,也是生命的一部分。
可是你有没有想过,这些水看起来清澈透亮,但它们的水质到底怎么样呢?嘿,今天咱们就聊聊校园景观水质监测方案的制定。
要是你的学校也有这些美丽的水景观,你一定会觉得这话题不陌生。
水质监测这事儿,可不像我们想象中的那么简单。
它关系到环境的健康,关系到我们的生活质量,甚至关系到我们能不能在清清爽爽的校园里呼吸到一口新鲜空气。
咱们首先得搞清楚,什么是水质监测。
通俗点说,就是通过一定的方法和设备,检测水中各类物质的含量,确保水的质量没有问题。
你要知道,水可不像空气那样看不见摸不着。
它里面可能藏着各种微生物,或者是一些对人体有害的物质。
比如一些有毒的重金属,或者水中的pH值不平衡,都会影响水质的好坏。
所以,校园里这些看起来安静的水体,它们可得定期“体检”,保证没有潜在的健康隐患。
而在制定水质监测方案时,咱们首先要做的就是了解水体的基本情况。
你要知道,不同的水体,它们的特点可完全不同。
你学校池塘里的水跟人工湖里的水,它们的水质问题肯定不一样。
池塘里的水可能因为周围的环境影响,容易积聚杂物,水质容易变差;而人工湖呢,经过人工设计和处理,相对来说水质可能更稳定。
对了,有些学校的景观水甚至可能是循环水,这样一来,水质就得更加注意了。
循环水一旦出现问题,整个系统都会受到影响。
咱们该如何制定水质监测方案呢?得了解监测的指标。
常见的监测指标可不少,最基本的就是水温、pH值、溶解氧、浑浊度、总氮总磷含量等等。
这些数据能帮助我们判断水质是否达标。
像溶解氧低了,就意味着水中的生物可能没法正常生存;pH值一旦偏酸或者偏碱,水中的有害物质就可能增加。
浑浊度则直接影响水的美观度,直接关乎我们眼睛的“幸福感”。
你想啊,谁不喜欢看那种清澈见底的池塘,水中鱼儿游来游去,荷花在水面上静静开放?这些都离不开合适的水质。
一、任务由来按照自然地理学实验课程安排,通过前期调研查阅资料,拟定于2014年10月对宁夏大学B区金波湖进行水质监测。
二、监测对象概况金波湖位于宁夏大学B区,水深大概有1.5米,水中有水生植物、鱼及微生物。
此湖作为一个人工湖,水体流通不畅,更新速度较慢,易造成水质腐败,水中微生物增多,进而导致溶解氧降低。
经现场勘查发现,校园内学生在湖附近活动较多,对其水质影响较大。
三、监测依据及评价标准(一)监测依据1、《地表水和污水监测技术规范》2、《地表水环境质量标准GB3838—2002》(二)水质评价标准人工湖湖水水域功能区为一般景观用水,因此适用于《地表水环境质量标准GB3838-2002》中第V类水体标准V类水体标准项目标准值项目标准值水温(℃)人为造成的环境水温变化应限制在:周平均最大温升≤1周平均最大温降≤2氟化物(以 F-计) ≤ 1.5硒≤0.02砷≤0.1pH值(无量纲) 6~9 汞≤0.001 溶解氧 ≥ 2 镉≤0.01 高锰酸盐指数≤15 铬(六价) ≤0.1化学需氧量(COD) ≤40 铅≤0.1五日生化需氧(BOD5) ≤10 氰化物 ≤0.2 氨氮(NH3-N) ≤ 2 挥发酚≤0.1 总磷(以 P 计) ≤0.2 石油类≤ 1总氮(湖、库.以N计) ≤ 2 阴离子表面活性剂≤0.3 铜≤ 1 硫化物 ≤ 1锌≤ 2 粪大肠菌群(个/L)≤40000 四、监测内容(一)监测项目及监测方法序号项目分析方法最低检出限(mg/L) 方法来源1 水温温度计测量法0.1℃GB/T 13195-19912 pH值玻璃电极法0.1(pH值) GB/T 6920-19863 电导率ES4 溶解氧DO 碘量法 0.2 GB/T 7489-1987 6 化学需氧量COD 重铬酸钾法5 GB/T 11914-19896 透明度7 氨氮 蒸馏和滴定法 —— GB 7478-878 总磷 钼酸铵分光光度法 0.01 GB/T 11893-1989 (二)采样及保存方法项目容器材质 保存方法 保存期采样量(ml)容器洗涤pH值 P/G 4℃ 12h 250 Ⅰ DO溶解氧瓶(G)加MnSO4和 碱性KI,4℃避光 24h 250 Ⅰ COD G 加硫酸,使pH<2,4℃ 48h 500 Ⅰ五日生化需氧量 溶解氧瓶(G)4℃,避光 6h 250 Ⅰ氨氮 P/G 加硫酸,使pH<2,4℃ 24h 250 Ⅰ 总磷 P/G 加硫酸,使pH≦2 24h 250 Ⅳ 注: (1) G为硬质玻璃瓶;P为聚乙烯瓶(桶)。
校园水环境监测方案
一、概况简介
资料显示水域面积:32亩平均水深:1.1m 最深:1.5湖水来源:雨水、自来水
二、监测目的及意义
了解校园内水质状况,并判断水环境质量是否符合国家标准,巩固我们所学知识
培养我们团结协作精神和实践操作技能、综合分析问题的能力。
三、具体的取样方案
1.布点与采样
静态水域无分区网格法设监测垂线,每处设一采样点,共设4个采样点,
在水面下0.3m-0.5m处采样,不便现场测定项目也应尽快监测,如需保存否则,应在采样后把样品保持在0~4℃,并在采样后6小时之内进行测定。
四、监测项目及使用的检测方法
(每项指标应至少做两次平行样,部分须做空白样)
(一)、物理指标的监测 .
1、水质色度、
稀释倍数法,水样稀释倍数表示
2、水质水温的测定
温度计测定(现场测定,至少三分钟)
3、电导率的测定
电导仪测定
(二):化学指标的监测
1、水质PH值的测定
Ph试纸测定(现场测定,天然水质PH约6-9)2、水中溶解氧(DO)的测定
碘量法(现场加药固定,单独取样)
3、水中COD的测定
重铬酸钾法
4、水中铬的测定
比色法
五、原始数据与数据处理
六、结果分析评价。
第一部分校园水环境质量监测方案一、污染源的调查1、校园水污染源主要包括食堂水、实验室废水、生活污水等。
2、食堂水包括洗碗水、洗菜水以及其它污水,洗碗水主要含有N、P等营养物质和油脂,洗菜水含有的沙粒等较少的污染物,其它污水含有较多有机污染物。
主要排入下水道和校园内小水沟。
3、实验室废水主要排入下水道,排水量不大。
生活污水的排水量占主要部分。
二、校园区域划分校园功能分区按宿舍区、教学楼区、行政区、生活区进行划分,校园空气质量执行GB3838-88三类区标准。
水样采样连续两天,对于校园内小沟直接在沟中心采样,取两个采样点(食堂小水沟,俊秀小水沟),每天每个采样点采集1次样。
三、监测项目及方法(一)氨氮的测定(纳氏试剂比色法)一、原理碘化汞和碘化钾的碱性溶液与氨反应生成淡黄棕色胶态化合物,其色度与氨氮含量成正比,通常可在波长410—425nm范围内测其吸光度,计算其含量。
本法最低检出浓度为0.025mg /L(光度法),测定上限为2mg/L。
二、仪器1、具20mm比色皿。
2.50mL具塞比色管。
(7个)3.分光光度计。
4.氨氮蒸馏装置:由500mL凯式烧瓶、氮球、直形冷凝管和导管组成,冷凝管末端可连接一段适当长度的滴管,使出口尖端浸入吸收液液面下。
三、试剂配制试剂用水均应为无氨水。
1.无氨水:可用一般纯水通过强酸性阳离子交换树脂或加硫酸和高锰酸钾后,重蒸馏得到。
2.25%氢氧化钠溶液和10%硫酸锌溶液。
3.纳氏试剂:称取16g氢氧化钠,溶于50mL水中,充分冷却至室温。
另称取7g碘化钾和碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中。
用水稀释至100mL,贮于聚乙烯瓶中,密塞保存。
4.酒石酸钾钠溶液:称取50g酒石酸钾钠(KNaC4H4O6·4H2O)溶于100mL水中,加热煮沸以除去氨,放冷,定容至100mL。
5.铵标准贮备溶液:称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000mL 容量瓶中,稀释至标线。
校园景观河流水质监测组员:唐树凯、黄山、韩凯、陈浩洋一﹑校园景观河概况景观河为封闭式,河宽最大处小于20米,河深低于5米,为了进一步熟悉水环境常规项目的检测过程,我们进行了此项工作。
由于其污染物主要来源是生活污水,根据我们已知的知识及其地表水功能,按功能高低依次划分为五类,我们所检测的水区水质在国家标准中规定为Ⅴ类水质。
二﹑监测内容我们河取水样,测量水温(水温计法),PH(玻璃电极法),溶解氧(电化学探头法),()总磷(钼酸铵分光光度法)及氨氮(纳氏试剂比色法)。
COD(重铬酸钾法),BOD5三监测的项目方法及标准依据(GB 3838-2002)水域功能和分类标准依据地表水水域环境功能和保护目标,按功能高低依次划分为五类:Ⅴ类主要适用于农业用水区及一般景观要求水域。
对应地表水上述五类水域功能,将地表水环境质量标准基本项目标准值分为五类,不同功能类别分别执行相应类别的标准值。
水域功能类别高的标准值严于水域功能类别低的标准值。
同一水域兼有多类使用功能的,执行最高功能类别对应的标准值。
实现水域功能与达功能类别标准为同一含义。
三﹑地表水环境质量标准基本项目分析方法项目一:水温 PH值溶解氧的测定一实验目的:1.熟悉各个仪器的使用的方法2.进一步了解水质的测定方法二实验过程:采样前的准备:1)容器:先将采水器用冲去灰尘等杂物,用洗涤剂去除油污,自来水冲洗后,再用10%的盐酸或硝酸,再用自来水冲洗干净备用。
2)取样:用已清洗过的采水器在河的中央取样50Ml。
3)温度的测定:将水温计插入水中一定深度,五分钟后迅速拿出并读数溶解氧的测定:(1)方法原理溶解氧电化学探头是一个用选择性薄膜封闭的小室,室内有两个金属电极并充有电解质。
氧和一定数量的其他气体及亲液物质可透过这层薄膜,但水和可溶性物质的离子几乎不能透过这层膜。
将探头浸入水中进行溶解氧的测定时,由于电池作用或外加电压在两个电极间产生电位差,使金属离子在阳极进入溶液,同时氧气通过薄膜扩散在阴极获得电子被还原,产生的电流与穿过薄膜和电解质层的氧的传递速度成正比,即在一定的温度下该电流与水中氧的分压(或浓度)成正比。
薄膜对气体的渗透性受温度变化的影响较大,要采用数学方法对温度进行校正,也可在电路中安装热敏元件对温度变化进行自动补偿。
若仪器在电路中未安装压力传感器不能对压力进行补偿时,仪器仅显示与气压有关的表观读数,当测定样品的气压与校准仪器时的气压不同时,应按本标准的规定进行校正。
(2)仪器和设备a) 溶解氧测量仪。
b) 测量探头:极谱型(例如银/金),探头上宜附有温度补偿装置。
c) 仪表:直接显示溶解氧的质量浓度或饱和百分率。
d) 电导率仪:测量范围2~100 mS/cm。
温度计:最小分度为0.5℃。
气压表:最小分度为10 Pa。
溶解氧瓶。
实验室常用玻璃仪器。
(3)测量步骤a) 全充满待测的样品,让探头在搅拌的溶液中稳定2~3分钟以后,调节仪器读数至样品已知的溶解氧质量浓度。
容器能密封以隔绝空气并带有搅拌器。
将样品充满容器至溢出,密闭后进行测量。
b) 调整搅拌速度,使读数达到平衡后保持稳定,并不得夹带空气。
将探头浸入样品,不能有空气泡截留在膜上,停留足够的时间,待探头温度与水温达到平衡,且数字显示稳定时读数。
探头的膜接触样品时,样品要保持一定的流速(≥5m/s),防止与膜接触的瞬间将该部位样品中的溶解氧耗尽,使读数发生波动。
测定PH值:1消除“钠差”的方法,选用与被测溶液的pH值相近似的标准缓冲溶液对仪器进行校正。
温度影响电极的电位和水的电离平衡。
须注意调节仪器的补偿装置与溶液的温度一致,并使被测样品与校正仪器用的标准缓冲溶液温度误差在±1℃之内。
2 试剂1 标准缓冲溶液(简称标准溶液)的配制方法试剂和蒸馏水的质量a)配制标准溶液所用的蒸馏水应符合下列要求:煮沸并冷却、电导率小于2³10-6S/cm的蒸馏水,其pH以6.7~7.3之间为宜。
b)测量pH时,按水样呈酸性,中性和碱性三种可能,常配制以下三种标准溶液:2 当被测样品pH值过高或过低时,应参考表1配制与其pH值相近似的标淮溶液校正仪器。
3 标准溶浓的保存a)标准溶液要在聚乙稀瓶中密闭保存。
b)在室温条件下标准溶浓一般以保存1~2个月为宜,当发现有浑浊、发霉或沉淀现象时,不能继续使用。
c)在4℃冰箱内存放,且用过的标准溶浓不允许再倒回去,这样可延长使用期限。
4 标准溶浓的pH值随温度孪化而稍有差异。
一些常用标准溶液的pH(S)值见表2。
②在110—130℃烘2~3小时;③必须用新煮沸并冷却的蒸馏水(不含CO2)配制。
6 仪器1)酸度计或离子浓度计。
常规检验使用的仪器,至少应当精确到0.1pH单位,pH范围从0至14。
如有特殊需要,应使用精度更高的仪器。
2)玻璃电极与廿汞电极。
7 样品保存应在采样后把样品保持在0~4℃,并在采样后6小时之内进行测定。
8 步骤●仪器校准:操作程序按仪器使用说明书进行。
先将水样与标准溶液调到同一温度,记录测定温度,并将仪器温渡补偿旋纽调至该温度上。
●样品测定测定样品时,先用蒸馏水认真冲洗电极,再用水样冲洗,然后将电极浸入样品中,小心摇动或进行搅拌使其均匀,静置,待读数稳定时记下pH值。
三实验结果取样日期:2012年9月13日项目二氨氮的测定1.实验目的1)掌握纳氏试剂比色法的原理和操作2)熟悉水样中干扰成分的去除方法2.实验原理在水样中加入碘化钾和碘化汞的强碱性溶液(纳氏试剂),与氨反应生成黄棕色胶态化合物,此颜色在较宽的波长范围内具有强烈吸收。
通常于410~425nm波长处测吸光度,求出水中氨氮含量2K2[HgI4]+3KOH+NH3→NH2Hg2OI+7KI+2H203.仪器和试剂1)分光光度计2)吸收液 20g∕硼酸水溶液3)纳氏试剂称取20g碘化钾溶于约25mL水中,边搅拌边分次少量加入二氯化汞(HgCl2)结晶粉末约10g,至出现朱红色沉淀不再溶解时,停止滴加二氯化汞溶液。
另称取60g氢氧化钾于水,并稀释至250mL,冷却至室温后,将上述溶液徐徐注入氢氧化钾溶液中,用水稀释至400mL,混匀。
静置过夜,将上清液移入聚乙烯瓶中,密封保存。
4)酒石酸钾钠溶液称取50g酒石酸钾钠(KNaC4H4O6²4H2O)溶于100mL水中,加热煮沸以去除氨,放冷。
定容至100mL5)铵标准储备液 1.0mg/mL,称取3.819g在100▫C干燥后的氯化铵()溶于水中,移入1000mL容量瓶中,稀释至标线。
6)铵标准使用溶液 0.010mg/mL,移取5.00mL铵标准储备液于500mL容量瓶中,用水稀释至标线。
7)硫酸锌溶液 10%8)氢氧化钠溶液 25%9)硫代硫酸钠溶液 0.35%10)淀粉-碘化钾试纸11)其它仪器4.操作步骤1)采样按采样要求,我们在河中间部深约0.5m处取水2)水样预处理由于景观河的水并未受到严重污染,所以我们采用絮凝沉淀法取水样100mL,加入1mL10%硫酸锌溶液和0.1-0.2mL氢氧化钠溶液,调节pH至10.5左右,混匀。
放置使之沉淀。
用经无氨水充分洗涤过的中速率纸过滤,弃去初滤液20mL。
若水样中含有余氯可可在絮凝沉淀前加入适量硫代硫酸钠溶液(每0.5mL可除去0.25mg余氯),用淀粉-碘化钾试纸检验。
3)标准曲线绘制吸取0,0.50mL,1.00ml,2.00ml,3.00ml,5.00mL,7.00mL,10.00mL铵标准使用溶液于50mL比色管中,加水至标线,加1.0mL酒石酸钾钠,混匀。
加1.5mL纳氏试剂,混匀放置10分钟后,在波长420nm处,用20mm比色皿,以水为参比,测定吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度的标准曲线。
4)水样测定取适量絮凝沉淀预处理后的水样加入50mL比色管中,稀释至标线向比色管中加入1.0mL酒石酸钾钠溶液,混匀。
再加入1.5mL纳氏试剂,混匀,放置10分钟后,按标准曲线绘制测定条件测水样的吸光度。
用50mL无氨水代替水样,同时做空白试验作为对照。
5)数据处理由水样测得的吸光度减去空白试验的吸光度后,从标准曲线上查氨氮含量(mg)。
氨氮(mg/L)=1000*m/V水注意事项:a)纳氏试剂中碘化汞与碘化钾的比例对显色反应的灵敏度有较大影响。
静置后生成的沉淀应该去除。
b)滤纸中常含有痕量的铵盐,使用时注意用无氨水洗涤。
所用玻璃器皿应避免实验室空气中氨的玷污。
项目三:水质化学需氧量的测定重铬酸盐法一、实验目的1)掌握化学需氧量的测定原理和操作2)了解回流操作的基本要点3)熟练运用分析法进行测定二、实验原理在强酸性溶液中,用重铬酸钾氧化水中的还原性物质,过量的重铬酸钾以亚铁灵作指示剂,用硫酸液体铵标准溶液回滴,同样条件做空白,根据标准溶液用计量算水样的化学耗氧量。
有机物-6e→简单有机物Cr2O72-+14H++6e=2Cr3++7H2O氧化:O+2e→O-2三、仪器和试剂1)酸式滴定管50mL2)回流装置带有24号标准磨口的250mL锥形瓶的全玻璃回流装置。
回流冷凝管的长度为300 ~500mm。
3)化学纯试剂硫酸银﹑硫酸汞﹑硫酸(ρ=1.84g/L)。
4)硫酸银-硫酸溶液向1L硫酸中加入10g硫酸银,放置1 ~2天使之溶解,并混匀,使用前小心摇动。
5)重铬酸钾标准溶液c()=0.250mL。
将12.258g在105℃干燥2h后的重铬酸钾溶于水中,稀释至1000mL。
6)硫酸亚铁铵标准滴定溶液c[(NH)2Fe(SO4)2²6H2O] ≈0.10mol/L。
溶解39g硫酸亚铁铵于水中,加入20mL浓硫酸,待溶液冷却后稀释至1000mL。
硫酸亚铁铵标准滴定溶液的标定:取10.00mL重铬酸钾标准溶液置于锥形瓶中,用水稀释至100mL,加入30mL硫酸混匀冷却后,加3滴(约0.15mL)试亚铁灵指示剂,用硫酸亚铁铵滴定,溶液的颜色由黄色经蓝绿色变成红褐色,即为终点。
记录下硫酸亚铁铵的消耗量V(mL),并按下式计算硫酸亚铁铵标准滴定溶液浓度。
C[(NH4)2Fe(SO4)2²6H2O] =10.00³0.250/V7)邻苯二甲酸请标准溶液c(KC8H5O4)=2.084mmol/L。
称取105℃时,干燥2h的邻苯二甲酸氢钾0.4251g溶于水中,并稀释至1000mL,混匀。
以重铬酸钾为氧化剂,将邻苯二甲酸氢钾完全氧化的COD值为1.176(指1g邻苯二甲酸氢钾耗氧1.176g),故该标准溶液的理论值为500mg/L。
8)1,10-邻菲啰啉指示液溶解0.7g七水合硫酸亚铁()于50mL的水中,加入1.5g1,10-邻菲啰啉,搅拌至溶解,加水稀释至100mL。