压力容器常用计算
- 格式:xls
- 大小:580.00 KB
- 文档页数:9
压力容器检验常用强度计算公式C —厚度附加量mm ;对多层包扎圆筒只考虑内筒;对热套圆筒只考虑内侧第一层套合圆筒的C 值;C =C 1+C 2 +C 3C 1—钢材厚度负偏差,mm ;C 2—腐蚀裕量,mm ;C 3—机械加工减薄量,mm ;D i —圆筒或球壳的内直径,mm ;D o —圆筒或球壳的外直径(D o = D i +2δn ),mm ;P T —试验应力,MPa ;P c —计算压力,MPa ;[p w ]—圆筒或球壳的最大允许工作压力,MPa ;δ—圆筒或球壳的计算厚度,mm ;δe —圆筒或球壳的有效厚度,mm ;δn —圆筒或球壳的名义厚度,mm ;бt —设计温度下圆筒或球壳的计算应力,MPa ;〔б〕t —设计温度下圆筒或球壳材料的许用应力,MPa ; бs —材料的屈服强度,MPa ;ø—焊接接头系数;1、承受内压圆筒计算厚度δ=PPcD t i -∮][2σ 2、承受内压球壳计算厚度δ=PPcD t i -∮][4σ 3、承受内压椭圆形封头计算厚度a )标准椭圆形封头δ=PPcD t i 5.0∮][2-σ b )非标准椭圆形封头δ=PkPcD t i 5.0∮][2-σ ])2(2[612ii h D k += 2、应力校核a 、液压试验时,圆筒的薄膜应力校核бT =ee D P i T δδ2)(+《0.9бs ø b 、气压试验时,圆筒的薄膜应力校核бT =ee D P i T δδ2)(+《0.8бs ø c 、液压试验时,球形容器的薄膜应力校核бT =ee D P i T δδ4)(+《0.9бs ø d 、气压试验时,球形容器的薄膜应力校核бT =ee D P i T δδ4)(+《0.8бs ø 3、最大允许工作压力计算a 、圆筒最大允许工作压力计算〔P w 〕=ei t e D δσδ+Φ][2b 、球壳最大工作压力〔P w 〕=ei t e D δσδ+Φ][4 4、内压容器试验压力液压试验 P T =1.25Pt ][][σσ 气压试验 P T =1.25P t][][σσ 对在用压力容器P 指最高工作压力,MPa5、容器开孔及开孔补强(本题2004年压力容器检验师考试考过) a 、开孔削弱面积A内压圆筒体与球壳A =d δ+2δδet (1-f r )d —考虑腐蚀后的开孔直径,d =d i +2Cδet —接管名义厚度C —壁厚附加量f r —强度削弱系数。
压力容器质量怎么计算公式压力容器质量计算公式。
压力容器是一种用于承受内部压力的容器,通常用于储存气体或液体。
在工业生产中,压力容器的质量是非常重要的,因为它直接影响到容器的安全性和使用寿命。
为了保证压力容器的质量,需要对其进行严格的计算和检验。
压力容器的质量可以通过以下公式进行计算:M = (P V) / (R T)。
其中,M表示压力容器的质量,P表示容器内的压力,V表示容器的体积,R 表示气体常数,T表示气体的温度。
上述公式是根据理想气体状态方程推导出来的,假设气体是理想气体,即气体分子之间没有相互作用力,体积可以忽略不计。
在实际应用中,由于气体的真实状态与理想状态之间存在一定的差异,因此需要进行修正。
修正后的压力容器质量计算公式如下:M = (P V) / (R T) Z。
其中,Z表示修正系数,用于修正理想气体状态方程的偏差。
修正系数的计算需要考虑气体的压缩因子、温度、压力等因素,通常需要借助实验数据或计算软件进行精确计算。
除了上述公式外,压力容器的质量还需要考虑到材料的强度和耐久性。
通常情况下,压力容器的设计和制造需要符合国家相关标准和规范,以确保容器具有足够的强度和安全性。
在实际生产中,压力容器的质量计算和检验是非常重要的环节。
首先,设计人员需要根据使用要求和工作环境确定压力容器的参数,包括压力、温度、体积等。
然后,制造人员需要根据设计要求选择合适的材料,并按照相关标准进行制造和焊接。
最后,对制造好的压力容器进行严格的检验和试压,以确保其质量达到要求。
除了制造和检验外,压力容器的使用和维护也是影响其质量的重要因素。
在使用过程中,需要定期对压力容器进行检查和保养,确保其处于良好的工作状态。
同时,需要遵守相关的安全操作规程,避免因操作不当而导致的事故发生。
总之,压力容器的质量计算是一个复杂而重要的工作。
只有严格按照相关标准和规范进行设计、制造、检验和使用,才能保证压力容器的质量达到要求,确保工业生产的安全和稳定。
作者:一气贯长空
压力容器计算、安全阀计算、压力容器泄放量计算等常用参数秒算
软件预览图
打开文件以后点击左上方数据计算。
数据计算有以下2个计算,一:安全阀计算,二:爆破片计算,两个计算之前均需先进性压力容器安全泄放量计算后方可使用。
一:安全阀计算
输入相关参数后点击确定即可
红框内容可更改,参数调整好后,点击下一步即可自动计算。
点击确定,即可安全阀排放能力,再次确定则是安全阀能力校验是否合格
二:爆破片计算。
第三章 压力容器常见结构的设计计算方法常见结构的设计计算方法4.1 圆筒4.2 球壳 4.3 封头4.4 开孔与开孔补强 4.5 法兰4.6 检验中的强度校核4.1.1 内压圆筒 1)GB150中关于内压壳体的强度计算考虑的失效模式是结 构在一次加载下的塑性破坏,即弹性失效设计准则。
2)壁厚设计釆用材料力学解(中径公式)计算应力,利用第一强度理论作为控制。
轴向应力:环向应力:(取单位轴向长度的半个圆环)校核:σ1=σθ,σ2=σz ,σ1=0 σθ≤[σ]t ·φ对应的极限压力:2)弹性力学解(拉美公式)讨论:1)主应力方向?应力分布规律?径向、环向应力非线形分布(内壁应力绝对值最大),轴向应力均布; 2)K 对应力分布的影响?越大分布越不均匀,说明材料的利用不充分; 例如,k =1.1时,R =1.1内外壁应力相差10%; K =1.3时,R =1.35内外壁应力相差35%; 4 常见结构的设计计算方法 962)弹性力学解(拉美公式)主应力:σ1=σθ,σ2=σz ,σ3=σr 屈服条件:σⅠ=σ1=σθ=σⅡ=σ1-μ(σ2+σ3)=σⅢ=σ1-σ3=σⅣ=3)GB150规定圆筒计算公式(中径公式)的使用范围为:p/[σ]·φ≤0.4(即≤1.5)4.1.2 外压圆筒1)GB150中关于外压壳体的计算所考虑的失效模式:弹性失效准则和失稳失效准则(结构在横向外压作用下的横向端面失去原来的圆形,或轴向载荷下的轴向截面规则变化)2)失稳临界压力的计算长圆筒的失稳临界压力(按Bresse公式):长圆筒的失稳临界压力(按简化的Misse公式):失稳临界压力可按以下通用公式表示:圆筒失稳时的环向应力和应变:定义——外压应变系数于是取稳定系数m=3,有·应变系数A的物理意义-系数A是受外压筒体刚失稳时的环向应变,该系数仅与筒体的几何参数L、D。
、δe 有关,与材料性能无关·应力系数B的物理意义:与系数A之间反映了材料的应力和应变关系(应力),可将材料的δ-ε曲线沿σ轴乘以2/3而得到B-A曲线。
压力容器壁厚计算公式压力容器是一种重要的工业设备,常用于储存和输送浓缩气体、液体和固体粉末等物质。
为了保证压力容器的安全使用,压力容器壁厚的计算是非常重要的。
圆筒形压力容器的壁厚计算公式:圆筒形压力容器是最常见的压力容器类型,其壁厚计算公式如下:t=(P×r)/(S×E-0.6P)或t=(PD)/(2×S×E-0.2P)其中,t为壁厚,P为设计压力,r为容器内径,S为允许应力,E为焊缝系数。
球形压力容器的壁厚计算公式:球形压力容器常用于储存高压气体,其壁厚计算公式如下:t=(P×r)/(2S×E-0.2P)椭圆形压力容器的壁厚计算公式:椭圆形压力容器常用于输送流体,其壁厚计算公式如下:t=(P×D)/(2S×E-0.4P)环形压力容器的壁厚计算公式:环形压力容器也称环形管道,常用于输送液体和气体,其壁厚计算公式如下:t=(P×(D-d))/(4S×E)其中,D为外径,d为内径。
常见材料的允许应力和焊缝系数如下:-碳钢:允许应力为120MPa,焊缝系数为1.0;-不锈钢:允许应力为150MPa,焊缝系数为1.0;-铝合金:允许应力为50MPa,焊缝系数为1.0。
需要注意的是,在进行压力容器壁厚计算时,还需要考虑到使用条件、工作温度和材料的强度等因素。
此外,还应遵守相关的国家和行业标准,确保压力容器的安全使用。
以上是常见压力容器壁厚计算的公式和一些注意事项。
不同的设计要求和使用条件可能会有所不同,因此在具体计算壁厚时,应遵循相应的规范和标准,以确保压力容器的安全可靠。
压力容器壁厚计算及说明一、压力容器的概念同时满足以下三个条件的为压力容器,否则为常压容器。
1、最高工作压力P :9.8×104Pa ≤P ≤9.8×106Pa ,不包括液体静压力;2、容积V ≥25L ,且P ×V ≥1960×104L Pa;3、介质:气体,液化气体或最高工作温度高于标准沸点的液体。
二、强度计算公式1、受内压的薄壁圆筒当K=1.1~1.2,压力容器筒体可按薄壁圆筒进行强度计算,认为筒体为二向应力状态,且各受力面应力均匀分布,径向应力σr =0,环向应力σt =PD/4s ,σz = PD/2s ,最大主应力σ1=PD/2s ,根据第一强度理论,筒体壁厚理论计算公式,δ理=PPD -σ][2 考虑实际因素,δ=P PD φ-σ][2+C 式中,δ—圆筒的壁厚(包括壁厚附加量),㎜;D — 圆筒内径,㎜;P — 设计压力,㎜;[σ] — 材料的许用拉应力,值为σs /n ,MPa ;φ— 焊缝系数,0.6~1.0;C — 壁厚附加量,㎜。
2、受内压P 的厚壁圆筒①K >1.2,压力容器筒体按厚壁容器进行强度计算,筒体处于三向应力状态,且各受力面应力非均匀分布(轴向应力除外)。
径向应力σr =--1(222a b Pa 22r b ) 环向应力σθ=+-1(222ab Pa 22r b ) 轴向应力σz =222a b Pa - 式中,a —筒体内半径,㎜;b —筒体外半径,㎜;②承受内压的厚壁圆筒应力最大的危险点在内壁,内壁处三个主应力分别为:σ1=σθ=P K K 1122-+ σ2=σz =P K 112-σ3=σr =-P第一强度理论推导处如下设计公式σ1=P K K 1122-+≤[σ] 由第三强度理论推导出如下设计公式σ1-σ3=P K K 1122-+≤[σ] 由第四强度理论推导出如下设计公式:P K K 132-≤[σ] 式中,K =a/b3、受外压P 的厚壁圆筒径向应力σr =---1(222a b Pb 22r a ) 环向应力σθ=-+-1(222ab Pb 22r a ) 4、一般形状回转壳体的应力计算经向应力 σz =sP 22ρ 环向应力 sP t z =+21ρσρσ 式中,P —内压力,MPa ;ρ1—所求应力点回转体曲面的第一主曲率半径,㎜;(纬)ρ2—所求应力点回转体曲面的第一主曲率半径,㎜;(经)s —壳体壁厚,㎜。