x x0 y y0 z z0 . x(t0 ) y(t0 ) z(t0 ) 切向量:切线的方向向量称为曲线的切向量.
T x(t0), y(t0), z(t0)
法平面:过M点且与切线垂直的平面.
x(t0 )(x x0 ) y(t0 )( y y0 ) z(t0 )(z z0 ) 0
限,记为
lim f( x, y) A,
( x, y x0 , y0 )
或 f(x,y) A,( x, y)( x0, y0 )
例 考察函数
g( x,
y)
xy
x2 y2
,
x2 y2 0 ,
0 , x2 y2 0
当 ( x, y ) ( 0 , 0 ) 时的极限
解 当 ( x, y ) 沿 y 轴趋向于原点,即当 y 0 而
若函数 u u(x, y), v v(x, y) 在点(x, y) 处有偏导 数,则 z f (u) 在对应点(u, v) 处有连续偏导数, 则复合函数 z f [u(x, y), v(x, y)] 在点(x, y) 处也存 在偏导数,并且
两种特殊情况:
(二) 隐函数的求导法则
设方程 F (x , y) = 0 确定了函数 y = y(x),两端 对 x 求导,得
f(x0,y0)=C
第二节 偏导数
一、偏导数的概念及几何意义 二、高阶偏导数 三、复合函数与隐函数的求导法则
一、偏导数的概念及几何意义
(一) 偏导数的概念
定义 设函数
在点
的某邻域内极限
存在,则称此极限为函数 的偏导数,记为
注意:
同样可定义对 y 的偏导数为
若函数 z f ( x, y)在域 D 内每一点 ( x, y)处对 x