第4章__基本的晶体管放大器
- 格式:ppt
- 大小:902.50 KB
- 文档页数:34
一、实验目的1. 理解晶体管单管放大器的基本原理和组成。
2. 掌握晶体管单管放大器静态工作点的调试方法。
3. 熟悉晶体管单管放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。
4. 提高对常用电子仪器及模拟电路实验设备的使用能力。
二、实验原理晶体管单管放大器是一种常见的放大电路,主要由晶体管、偏置电阻、负载电阻和耦合电容等组成。
实验电路采用共射极接法,通过输入信号u_i在晶体管的基极输入,放大后的信号u_o从集电极输出。
实验电路中,偏置电阻Rb1和Rb2组成分压电路,为晶体管提供合适的静态工作点。
负载电阻Rl接收放大后的信号,耦合电容C1和C2分别对输入信号和输出信号进行耦合,抑制交流干扰。
三、实验仪器与材料1. 晶体管(例如:3DG6)2. 偏置电阻(例如:Rb1=10kΩ,Rb2=20kΩ)3. 负载电阻(例如:Rl=10kΩ)4. 耦合电容(例如:C1=0.01μF,C2=0.01μF)5. 函数信号发生器6. 双踪示波器7. 万用电表8. 直流稳压电源9. 实验电路板四、实验步骤1. 按照实验电路图连接电路,将各元件和导线接到实验电路板上。
2. 将函数信号发生器输出端连接到双踪示波器,设置信号频率为1kHz,幅值为1V。
3. 将直流稳压电源连接到电路板,调节输出电压为12V。
4. 调节偏置电阻Rb1和Rb2,使晶体管处于合适的静态工作点。
使用万用电表测量晶体管的集电极电流Ic和集电极电压Uc,使其满足Ic=2mA,Uc=6V。
5. 在晶体管基极输入信号,观察双踪示波器上输入信号和输出信号的波形,记录电压放大倍数。
6. 测量输入电阻Ri和输出电阻Rl,计算放大器的输入电阻和输出电阻。
7. 调节输入信号幅值,观察输出波形,记录最大不失真输出电压。
五、实验数据及分析1. 静态工作点调试结果:Ic=2mA,Uc=6V。
2. 电压放大倍数:A_v=20。
3. 输入电阻:Ri=2kΩ。
第四章集成运算放大电路自测题一、选择合适答案填入空内。
(1)集成运放电路采用直接耦合方式是因为。
A.可获得很大的放大倍数B. 可使温漂小C.集成工艺难于制造大容量电容(2)通用型集成运放适用于放大。
A.高频信号B.低频信号C.任何频率信号(3)集成运放制造工艺使得同类半导体管的。
A.指标参数准确B.参数不受温度影响C.参数一致性好(4)集成运放的输入级采用差分放大电路是因为可以。
A.减小温漂B. 增大放大倍数C. 提高输入电阻(5)为增大电压放大倍数,集成运放的中间级多采用。
A.共射放大电路B.共集放大电路C.共基放大电路解:(1)C (2)B (3)C (4)A (5)A二、判断下列说法是否正确,用“√”或“×”表示判断结果填入括号内。
(1)运放的输入失调电压U I O 是两输入端电位之差。
( ) (2)运放的输入失调电流I I O 是两端电流之差。
( ) (3)运放的共模抑制比cdCMR A A K =( ) (4)有源负载可以增大放大电路的输出电流。
( )(5)在输入信号作用时,偏置电路改变了各放大管的动态电流。
( ) 解:(1)× (2)√ (3)√ (4)√ (5)× 三、电路如图T4.3所示,已知β1=β2=β3=100。
各管的U B E 均为0.7V ,试求I C 2的值。
图T4.3解:分析估算如下: 100BE1BE2CC =--=RU U V I R μ AβCC B1C0B2C0E1E2CC1C0I I I I I I I I I I I I R +=+=+====1001C =≈⋅+=R R I I I ββμA四、电路如图T4.4所示。
图T4.4(1)说明电路是几级放大电路,各级分别是哪种形式的放大电路(共射、共集、差放……);(2)分别说明各级采用了哪些措施来改善其性能指标(如增大放大倍数、输入电阻……)。
解:(1)三级放大电路,第一级为共集-共基双端输入单端输出差分放大电路,第二级是共射放大电路,第三级是互补输出级。
教材 模拟电子技术基础(第四版) 清华大学模拟电子技术课程作业第1章 半导体器件1将PN 结加适当的正向电压,则空间电荷区将( b )。
(a)变宽 (b)变窄 (c)不变2半导体二极管的主要特点是具有( b )。
(a)电流放大作用 (b)单向导电性(c)电压放大作用3二极管导通的条件是加在二极管两端的电压( a )。
(a)正向电压大于PN 结的死区电压 (b)正向电压等于零 (c)必须加反向电压4若将PN 结短接,在外电路将( c )。
(a)产生一定量的恒定电流 (b)产生一冲击电流 (c)不产生电流5电路如图所示,二极管D 1、D 2为理想元件,则在电路中( b )。
(a)D 1起箝位作用,D 2起隔离作用 (b)D 1起隔离作用,D 2起箝位作用 (c)D 1、D 2均起箝位作用 (d)D 1、D 2均起隔离作用D 1V 2V u O6二极管的反向饱和峰值电流随环境温度的升高而( a )。
(a)增大(b)减小 (c)不变7电路如图所示,二极管型号为2CP11,设电压表内阻为无穷大,电阻R =5k Ω,则电压表V 的读数约为( c )。
(a)0.7V (b)0V (c)10VR8电路如图所示,二极管D 为理想元件,输入信号u i 为如图所示的三角波,则输出电压u O的最大值为( c )。
(a)5V (b)10V (c)7VDu O9电路如图所示,二极管为理想元件,u i =6sin ωt V ,U =3V ,当ωt =π2瞬间,输出电压 u O 等于( b )。
(a)0V (b)6V(c)3VDu O10电路如图所示,二极管D 1,D 2,D 3均为理想元件,则输出电压u O =( a )。
(a)0V (b)-6V (c)-18V0V3--11电路如图所示,设二极管D1,D2为理想元件,试计算电路中电流I1,I2的值。
23k+-答:D1导通、D2截止.所以:I1=(12V+3V)/ 3k=5mA I2=012电路如图1所示,设输入信号u I1,u I2的波形如图2所示,若忽略二极管的正向压降,试画出输出电压uO的波形,并说明t1,t2时间内二极管D1,D2的工作状态。
放大器的基本工作原理放大器是电子设备中常见的一种器件,其主要功能是将输入信号放大,并输出一个更大的信号。
放大器的基本工作原理是通过增加输入信号的幅度,从而使信号更强,以便在电路中传输。
在这篇文章中,我们将深入探讨放大器的工作原理和其在电子领域中的应用。
放大器的工作原理可以通过以下几个方面来解释。
首先,放大器包含一个输入端和一个输出端。
输入端接收到输入信号,这个信号可以是声音、视频等各种形式的电信号。
然后,通过放大器内部的电子元件,如晶体管等,将输入信号的幅度增大。
最后,增大后的信号通过输出端输出。
其次,放大器的核心元件是晶体管。
晶体管是一种半导体器件,具有放大电流的能力。
放大器中通常使用的是三极管,也称为双极型晶体管。
它由三个区域组成:发射极、基极和集电极。
晶体管的工作原理基于PN结和电流控制的原理。
这里需要提到PN结的概念。
在PN结中,P区代表了掺入了三价离子的半导体材料,它带有正电荷;N区代表掺入了五价离子的材料,它带有负电荷。
当这两种材料结合在一起时,就会形成PN结。
当一个正向电压施加在PN结上时,电子从N区流向P区,而空穴(正电荷的电子空位)从P区流向N区。
这会导致N区带正电荷,P 区带负电荷,形成电势差。
这个电势差,也称为“电压”,可以控制电流的传导方式。
接下来,我们来看看晶体管是如何工作的。
当输入信号加到晶体管的基极上时,通过基极电流的变化,可以控制从发射极到集电极的电流。
这种控制电流的方式称为电流放大作用,是放大器的基本功能之一。
换句话说,当输入信号的幅度增加时,晶体管的电流也会相应增加。
这就使得输出信号的幅度也增加,实现信号的放大。
而这个放大过程发生在放大器内的若干级级联放大器中,以增强信号的放大效果。
放大器在电子领域中有着广泛的应用。
在音频设备中,放大器用来放大音频信号,使得人们听到更大音量的声音。
在通信传输中,放大器用来放大信号,使得信号能够在长距离传输过程中保持稳定。
在显像设备中,放大器被用来放大视频信号,以显示更清晰的图像。
思考题与习题4.1 按照电流导通角θ来分类,θ=180度的高频功率放大器称为甲类功放,θ>90度的高频功放称为甲乙类功放,θ=90度的高频功率放大器称为乙类功放,θ<90度的高频功放称为丙类功放。
4.2 高频功率放大器一般采用LC谐振回路作为负载,属丙类功率放大器。
其电流导通角θ<90度。
兼顾效率和输出功率,高频功放的最佳导通角θ= 60~70 。
高频功率放大器的两个重要性能指标为电源电压提供的直流功率、交流输出功率。
4.3 高频功率放大器通常工作于丙类状态,因此晶体管为非线性器件,常用图解法进行分析,常用的曲线除晶体管输入特性曲线,还有输出特性曲线和转移特性曲线。
4.4 若高频功率放大器的输入电压为余弦波信号,则功率三极管的集电极、基极、发射极电流均是余弦信号脉冲,放大器输出电压为余弦波信号形式的信号。
4.5 高频功放的动态特性曲线是斜率为1-的一条曲线。
R∑υ对应的静态特性曲线的交点位于放大区就4.6对高频功放而言,如果动态特性曲线和BEmaxυ称为欠压工作状态;交点位于饱和区就称为过压工作状态;动态特性曲线、BEmax 对应的静态特性曲线及临界饱和线交于一点就称为临界工作状态。
V由大到小变化时,4.7在保持其它参数不变的情况下,高频功率放大器的基级电源电压BB功放的工作状态由欠压状态到临界状态到过压状态变化。
高频功放的集电极V(其他参数不变)由小到大变化时,功放的工作状态由过压状态到电源电压CCV(其它参数不变)由小临界状态到欠压状态变化。
高频功放的输入信号幅度bm到大变化,功放的工作状态由欠压状态到临界状态到过压状态变化。
4.8 丙类功放在欠压工作状态相当于一个恒流源;而在过压工作状态相当于一个恒压源。
集电极调幅电路的高频功放应工作在过压工作状态,而基级调幅电路的高频功放应工作在欠压工作状态。
发射机末级通常是高频功放,此功放工作在临界工作状态。
4.9 高频功率放大器在过压工作状态时输出功率最大,在弱过压工作状态时效率最高。
放大器的原理放大器是电子设备中常见的一种电路元件,它的作用是将输入的信号放大到所需的幅度,以便驱动输出设备。
放大器的原理是通过放大输入信号的幅度,而不改变其波形,从而实现信号的放大。
在电子设备中,放大器被广泛应用于音频放大、视频放大、通信设备等领域,是电子技术中不可或缺的重要组成部分。
放大器的原理可以通过几种不同的方式来实现,其中最常见的是使用晶体管或集成电路作为放大器的核心元件。
晶体管放大器通常包括输入端、输出端和电源端,通过控制输入信号的电压或电流,从而控制输出信号的幅度。
而集成电路放大器则是将多个晶体管以及其他电子元件集成在一起,形成一个完整的放大器电路。
在放大器的工作过程中,需要注意一些重要的原理。
首先是放大器的增益,即输入信号经过放大器后的输出信号幅度与输入信号幅度的比值。
增益通常用分贝(dB)来表示,是衡量放大器性能的重要指标。
其次是放大器的带宽,即放大器能够放大的频率范围。
在设计和选择放大器时,需要根据实际需要来确定增益和带宽的要求,以确保放大器能够正常工作。
另外,放大器的线性度也是一个重要的原理。
线性放大器是指在输入信号较小的情况下,输出信号与输入信号之间的关系是线性的。
而非线性放大器则会产生失真,使得输出信号与输入信号之间存在非线性关系。
因此,在设计放大器时需要考虑如何提高放大器的线性度,以确保输出信号的准确性和稳定性。
除了以上几种原理外,放大器的稳定性、功耗、噪声等因素也需要在设计和选择放大器时进行考虑。
放大器的原理涉及到电子学、信号处理、通信等多个领域的知识,需要综合考虑各种因素,以确保放大器能够满足实际应用的需求。
总的来说,放大器的原理是通过放大输入信号的幅度,而不改变其波形,从而实现信号的放大。
在电子设备中,放大器是不可或缺的重要组成部分,其原理涉及到多个方面的知识,需要综合考虑各种因素,以确保放大器能够满足实际应用的需求。
通过对放大器的原理进行深入的研究和了解,可以更好地理解和应用放大器在电子技术中的重要作用。