2018-201X学年九年级数学上册第二十四章圆24.1圆的有关性质24.1.3弧弦圆心角教案1 新
- 格式:doc
- 大小:100.50 KB
- 文档页数:3
人教版九年级数学上册《第二十四章圆24.1圆的有关性质》第1课时说课稿一. 教材分析《人教版九年级数学上册》第二十四章主要讲述圆的性质。
本章内容是整个初中数学的重要部分,也是学生对圆的认知的重要阶段。
通过本章的学习,学生可以深入理解圆的性质,为后续学习圆的方程和其他相关内容打下基础。
二. 学情分析九年级的学生已经具备了一定的几何基础,对平面几何图形有了一定的认识。
但是,对于圆的性质,学生可能还存在着一些模糊的认识,需要通过本节课的学习来纠正和加深理解。
此外,学生可能对圆的性质的理解停留在表面,需要通过实例分析和练习,加深对圆的性质的理解。
三. 说教学目标1.知识与技能:通过本节课的学习,学生能够理解圆的性质,并能够运用圆的性质解决实际问题。
2.过程与方法:通过观察、分析和推理,学生能够发现圆的性质,并能够运用圆的性质解决实际问题。
3.情感态度与价值观:通过本节课的学习,学生能够培养对数学的兴趣,提高对数学的认识。
四. 说教学重难点1.教学重点:圆的性质的理解和运用。
2.教学难点:圆的性质的证明和运用。
五. 说教学方法与手段本节课采用讲授法、提问法、小组讨论法等多种教学方法,并结合多媒体课件、实物模型等教学手段,以提高学生的学习兴趣和参与度。
六. 说教学过程1.导入:通过展示一些与圆相关的实际问题,引起学生对圆的性质的兴趣。
2.讲解:讲解圆的性质,并通过实例进行分析。
3.练习:学生进行练习,巩固对圆的性质的理解。
4.拓展:通过小组讨论,引导学生发现圆的性质的证明方法。
七. 说板书设计板书设计要清晰、简洁,能够突出圆的性质的关键点。
可以采用图示、列表等形式,帮助学生理解和记忆。
八. 说教学评价教学评价可以从学生的课堂表现、作业完成情况、测验成绩等方面进行。
通过评价,可以了解学生对圆的性质的理解程度,为后续教学提供参考。
九. 说教学反思在课后,教师应该对自己的教学进行反思,看学生是否掌握了圆的性质,教学过程中是否存在问题,以便于改进教学方法和手段,提高教学质量。
九年级数学上册第二十四章圆24.1 圆的有关性质24.1.2 垂直于弦的直径同步检测(含解析)(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第二十四章圆24.1 圆的有关性质24.1.2 垂直于弦的直径同步检测(含解析)(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第二十四章圆24.1 圆的有关性质24.1.2 垂直于弦的直径同步检测(含解析)(新版)新人教版的全部内容。
24.1.2 垂直于弦的直径测试时间:30分钟一、选择题1.一圆形玻璃被打碎后,其中四块碎片如图所示,若选择其中一块碎片带到商店,配制与原来大小一样的圆形玻璃,选择的是( )A。
① B.②C。
③D。
④2。
(2017贵州黔西南州中考)如图,在☉O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是( )A.3 B。
2。
5 C.2 D.13.在某岛A的正东方向有台风,且台风中心B距离该岛40 km,台风中心正以30 km/h的速度向西北方向移动,距离台风中心50 km以内(包括边界)都受影响,则该岛受到台风影响的时间为()A.不受影响B。
1 h C.2 h D.3 h二、填空题4.(2017湖南长沙中考)如图,AB为☉O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则☉O的半径为.5。
(2017四川雅安中考)☉O的直径为10,弦AB=6,P是弦AB上一动点,则OP的取值范围是.三、解答题6。
如图,AB为☉O的弦,☉O的半径为5,OC⊥AB于点D,交☉O于点C,且CD=1.(1)求线段OD的长;(2)求弦AB的长.7.(2018福建龙岩新罗期末)“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质就是解决下面的问题:“如果CD为☉O 的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,那么直径CD的长为多少寸?”请你求出CD的长.24。
24.1 圆的有关性质24.1.1 圆教学目标1、知识与技能:本节课使学生理解圆的定义;2、过程与方法:掌握点和圆的三种位置关系.使学生会利用点到圆心的距离和圆的半径之间的数量关系判定点和圆的位置关系;3、情感态度与价值观:初步会运用圆的定义证明四个点在同一个圆上.使学生真正体验到数学知识来源于实践,反过来指导实践这一理论教学重点:点和圆的三种位置关系教学难点:用集合的观点定义圆,学生不容易理解为什么必须满足两个条件.教学过程:一、新课引入:同学们,在小学我们已经学习了圆的有关知识,小学学习圆只是一种感性认识,知道一个图形是圆,没有严格的定义什么叫做圆.今天我们继续学习圆,就是把感性认识上升为理性认识,这就要进一步来学习圆的定义.首先点题,给学生一种概念,这样可以激发学生的求知欲,抓住学生的注意力.让学生通过观察章前图,认识到圆从古至今,在实际生活中,在工农业生产中圆的应用非常广泛,作用非常大.圆的性质在本章中处于特别重要的地位.同时也调动起学生积极主动地参与教学活动中.二、新课讲解:同学们请观察幻灯片上的图片.出示线段OA,演示将线段OA 绕着它的固定端点O 旋转一周,另一个端点A 所形成的图形是一个什么图形,从而得出圆的定义.定义:在同一平面内,线段OA 绕着它的固定端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆.总结归纳: 圆心、半径的定义. 1.圆上各点到定点(圆心O)的距离都等于定长(半径r);2.到定点的距离等于定长的点都在圆上.满足上述两个条件,我们可以把圆看成是一个集合.圆是到定点的距离等于定长的点的集合.接着为了研究点和圆的位置关系,教师不是让学生被动地接受教师讲,而是让学生在练习本上画一个圆.然后提问学生回答这个圆把平面分成几个部分?有的同学说两部分,有的同学说三部分,到底是几个部分呢?教师引导学生相互议论,最后通过学生的充分感知,得到正确的结论.在进一步揭示圆内部分、圆外部分也可以看成是一个集合,让学生通过观察、比较,归纳出:圆的内部可以看作是到圆心的距离小于半径的点的集合.圆的外部可以看作是到圆心的距离大于半径的点的集合.若设圆O 的半径为r,点O 到圆心的距离为d,当点与圆心的距离由小于半径变到等于半径再变到大于半径时,点和圆的位置关系就由圆内变到圆上再变到圆外.这说明点和圆的位置关系可以得到d 与r 之间的关系,由d 与r 的数量关系也可以判定点和圆的位置关系.这时板书下列关系式:AC点在圆内⇔d<r点在圆上⇔d=r点在圆外⇔d>r这时教师讲清“⇔”符号的组哟用和圆的表示方法.以点O为圆心的圆,记作“⊙O”,读作“圆O”.教师这样做的目的是把点和圆看成是运动变化得到的三种情况,这样便于学生理解.接下来为了巩固定义,师生共同分析例1.例1 求证矩形四个顶点在以对角线交点为圆心的同一个圆上.对于这个问题不是教师讲怎么做,而是引导学生分析这个命题的题设和结论,然后启发学生思考分析这一问题的证明思路.已知:如图7-1矩形ABCD的对角线AC和BD相交于点O.求证:A、B、C、D4个点在以O为圆心,OA为半径的圆上.证明:⇒A、B、C、D4个点在以O为圆心,OA为半径的圆上.由于学生第一次运用推出符号“⇒”证明,命题,所以教师:并做好示范作用.巩固练习:教材P80中1、2引导学生答.三、课堂小结:本节课要从三方面做小结,从知识内容方面学习了什么内容?从方法上学到了什么方法?学到了什么新定义符号?1.从知识方面主要学习了圆的定义,点和圆的三种位置关系.2.从方法上主要学习了利用点到圆的距离和圆的半径的数量关系判定点和圆的位置关系,会利用圆的定义证明四个点在同一个圆上.3.用推出“⇒”符号证明命题的方法.这样小结的目的,使学生能够把学过的知识系统化、网络化,形成认知结构,便于学生掌握.四、布置作业:课时作业。
第二十四章圆24.1圆的有关性质24.1.1圆知能演练提升能力提升1.有下列结论:①弦比直径短;②过圆心的线段是直径;③半圆是弧;④长度相等的两条弧是等弧.其中正确的有()A.0个B.1个C.2个D.3个2.如图,在△ABC中,AB为☉O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50°B.60°C.70°D.80°3.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM 方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()⏜→BO的路径运动一周.设OP为s,运动时4.如图,AB是半圆O的直径,点P从点O出发,沿OA→AA间为t,则下列图象能大致地刻画s与t之间关系的是()5.如图,A,B是☉O上两点,若四边形ACBO是平行四边形,☉O的半径为r,则点A与点B之间的距离为.6.如图,O2是☉O1上的一点,以O2为圆心,O1O2为半径作☉O2,与☉O1交于点A,B,则∠AO1B的度数为.(第5题图)(第6题图)7.如图,一根2 m长的绳子,一端拴在墙边,另一端拴着一只羊,画出羊的活动区域.8.如图,AB,AC为☉O的弦,连接CO,BO并延长,分别交弦AB,AC于点E,F,∠B=∠C,求证:CE=BF.★9.如图,点A,D,G,M在半圆O上,四边形ABOC,DEOF,HMNO均为矩形.设BC=a,EF=b,NH=c,则a,b,c 之间有什么关系?10.如图,已知AB是☉O的直径,C为AB延长线上的一点,CE交☉O于点D,且CD=OA,求证:∠C=1∠3 AOE.创新应用★11.如图①,☉O的半径为r(r>0),若点P'在射线OP上,满足OP'·OP=r2,则称点P'是点P关于☉O的“反演点”.如图②,☉O的半径为4,点B在☉O上,∠BOA=60°,OA=8.点A',B'分别是点A,B关于☉O的反演点,求A'B'的长.图①图②参考答案能力提升1.B2.C3.D连接OP,因为OP是Rt△AOB斜边上的中线,所以OP=12AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.4.C当点P从点O向点A运动时,OP逐渐增大,当点P从点A向点B运动时,OP不变,当点P从点B 向点O运动时,OP逐渐减小,故能大致地刻画s与t之间关系的是选项C中的图象.5.√3r 连接AB.∵OA=OB,∴▱ACBO是菱形.∴AB与CO互相垂直且平分.∴AB=2√A2-(12A)2=√3r.6.120°连接AO2,BO2,由题意知☉O1与☉O2是等圆,所以△AO1O2与△BO1O2都为等边三角形.所以∠AO1O2=∠BO1O2=60°,即∠AO1B=120°.7.分析根据题意,羊的活动区域应是以O为圆心,以2 m为半径的半圆及其内部.解如图,羊的活动区域是图中的阴影部分(包括半圆周).8.证明∵OB,OC是☉O的半径,∴OB=OC.又∠B=∠C,∠BOE=∠COF,∴△EOB≌△FOC(ASA).∴OE=OF.∴CE=BF.9.解连接OM,OD,OA,根据矩形的对角线相等,得BC=OA,EF=OD,NH=OM.再根据同圆的半径相等,得a=b=c.10.分析因为∠AOE是△COE的一个外角,且与∠C不相邻,所以∠AOE=∠C+∠E.现在要证明∠C=13∠AOE,即∠AOE=3∠C,所以只要证得∠E=2∠C即可.又由于OE为半径,而连接OD后OD也是半径,故OE=OD,所以∠ODE=∠E,从而可证结论成立.证明如图,连接OD.因为CD=OA=OD,所以∠C=∠COD.又OD=OE,所以∠OED=∠ODE.∠AOE.所以∠AOE=∠C+∠OED=∠C+∠ODE=∠C+∠COD+∠C=3∠C,即∠C=13创新应用11.解因为☉O的半径为4,点A',B'分别是点A,B关于☉O的反演点,点B在☉O上,OA=8,所以OA'·OA=16,解得OA'=2.同理可知,OB'=4,所以点B的反演点B'与B重合.设OA交☉O于点M,连接B'M,因为∠BOA=60°,OM=OB',所以△OB'M为等边三角形,又OA'=A'M=2,所以A'B'⊥OM,所以在Rt△OB'A'中,根据勾股定理,得OB'2=OA'2+A'B'2,即16=4+A'B'2,解得A'B'=2√3.。
2018-2019学年九年级数学上册第二十四章圆24.1 圆的有关性质24.1.2 垂直于弦的直径教案1 (新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年九年级数学上册第二十四章圆24.1 圆的有关性质24.1.2 垂直于弦的直径教案1 (新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年九年级数学上册第二十四章圆24.1 圆的有关性质24.1.2 垂直于弦的直径教案1 (新版)新人教版的全部内容。
24。
1。
2 垂直于弦的直径※教学目标※【知识与技能】1.探索圆的对称性,进而得到垂直于弦的直径所具有的性质.2.能够利用垂直于弦的直径的性质解决相关实际问题。
【过程与方法】1.在探索问题的过程中培养学生的动手操作能力,使学生感受圆的对称性,体会圆的一些性质,经历探索圆的对称性及相关性质的过程.2.进一步体会和理解研究几何图形的各种方法;培养学生独立探索,相互合作交流的精神.【情感态度】使学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神.【教学重点】垂直于弦的直径所具有的性质以及证明.【教学难点】利用垂直于弦的直径的性质解决实际问题.※教学过程※一、情境导入(课件出示图片)你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶,它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37。
4m,拱高(弧的中点到弦的距离)为7.2m,你能求出赵州桥主桥拱的半径吗?二、探索新知1.圆的轴对称性问题1 将一个圆沿着任一条直径对折,两侧半圆会有什么关系?(圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,所以两侧半圆折叠后重叠.)2.垂径定理及其推论如图,AB 是⊙O 的一条弦,作直径CD ,使CD ⊥AB ,垂足为M .(1)如图是轴对称图形吗?如果是,其对称轴是什么? (2)你能发现图中有哪些等量关系?说一说你理由. (老师点评)(1)是轴对称图形,其对称轴是CD .(2)AM =BM ,AC BC =,AD BD =,即直径CD 平分弦AB ,并且平分AB 及ADB . 归纳总结垂径定理*:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
九年级数学上册第二十四章圆24.1 圆的有关性质24.1.4 圆周角(拓展提高)同步检测(含解析)(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第二十四章圆24.1 圆的有关性质24.1.4 圆周角(拓展提高)同步检测(含解析)(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第二十四章圆24.1 圆的有关性质24.1.4 圆周角(拓展提高)同步检测(含解析)(新版)新人教版的全部内容。
24.1。
4 圆周角基础闯关全练拓展训练1.(2017山东日照莒县模拟)如图,☉O是△ABC的外接圆,AD是☉O的直径,连接CD,若☉O的半径r=5,AC=5,则∠B的度数是( )A.30°B.45°C。
50° D.60°2。
(2017江苏盐城中考)如图,将☉O沿弦AB折叠,点C在上,点D在上,若∠ACB=70°,则∠ADB=°。
能力提升全练拓展训练1。
(2016湖北十堰丹江口期中)如图,☉C过原点O,且与两坐标轴分别交于点A、B,点A的坐标为(0,4),点M是第三象限内上一点,∠BMO=120°,则☉C的半径为()A.4 B。
5 C。
6 D。
22.(2018广东佛山南海期中)已知抛物线y=ax2—8ax+12a与x轴交于A、B两点,以AB为直径的☉G经过该抛物线顶点C,直线l∥x轴交该抛物线于M、N两点,交☉G于E、F两点,若EF=2,则MN的长为。
三年模拟全练拓展训练1。
(2017天津滨海新区期中,9,★★☆)如图,☉O的直径AB为4,点C在☉O上,∠ACB的平分线交☉O于点D,连接AD、BD,则AD的长等于( )A.2 B。
人教版九年级数学上册第二十四章圆《24.1圆的有关性质》第3课时说课稿一. 教材分析人教版九年级数学上册第二十四章《圆的有关性质》是整个初中数学的重要内容,也是九年级数学的重点和难点。
这一章节主要介绍了圆的基本性质,包括圆的定义、圆的方程、圆的半径和直径、圆的周长和面积等。
这些内容不仅是进一步学习圆的计算和应用的基础,而且对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的几何基础,对图形的认识和理解有了基本的掌握。
但是,对于圆的性质和概念的理解还需要进一步的引导和培养。
此外,由于圆的概念较为抽象,学生可能存在一定的理解难度,因此需要教师在教学中注重启发和引导,帮助学生建立清晰的概念。
三. 说教学目标1.知识与技能目标:通过本节课的学习,学生能够理解和掌握圆的基本性质,包括圆的定义、圆的方程、圆的半径和直径、圆的周长和面积等。
2.过程与方法目标:通过观察、思考和交流,学生能够培养空间想象能力和逻辑思维能力,能够运用圆的性质解决实际问题。
3.情感态度与价值观目标:学生能够积极参与课堂活动,对数学产生浓厚的兴趣,培养自主学习和合作学习的能力。
四. 说教学重难点1.教学重点:圆的定义、圆的方程、圆的半径和直径、圆的周长和面积等基本性质的理解和掌握。
2.教学难点:圆的性质的推导和证明,以及运用圆的性质解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和引导发现法进行教学。
通过提出问题,引导学生思考和探索,激发学生的学习兴趣和动力。
2.教学手段:利用多媒体课件和教具进行教学,通过展示图形和动画,帮助学生直观地理解和掌握圆的性质。
六. 说教学过程1.导入:通过展示一些与圆相关的实际问题,引起学生的兴趣和思考,从而引入圆的基本性质的学习。
2.知识讲解:引导学生通过观察和思考,发现圆的性质,并进行证明和推导。
通过示例和练习,帮助学生理解和掌握圆的性质。
24.1.3 弧、弦、圆心角
※教学目标※
【知识与技能】
1.理解圆心角和圆的旋转不变性.
2.掌握弧、弦、圆心角之间相等关系定理.
【过程与方法】
1.通过观察、比较、操作、推理、归纳等活动,发展空间观念、推理能力以及概括问题的能力.
2.利用圆的旋转不变性,研究弧、弦、圆心角之间相等关系定理..
【情感态度】
培养学生积极探索数学问题的态度及方法.
【教学重点】
弧、弦、圆心角之间的相等关系.
【教学难点】
弧、弦、圆心角之间关系定理中的“在同圆或等圆”条件的理解及定理的证明. ※教学过程※ 一、复习导入
教师引导学生回顾学过的圆的相关概念以及定理.
二、探索新知
1.圆的中心对称性
提问1 若将圆以圆心为旋转中心,旋转180°,你能发现什么?
圆绕其圆心旋转180°后能与原来图形重合.所以圆是中心对称图形.
提问2 若旋转角度不是180°,而是旋转任意角度,则旋转过后的图形能与原图形重合吗?
圆绕圆心旋转任意角度α,都能够与原来的图形重合.所以圆具有旋转不变性.
2.弧、弦、圆心角之间的关系
相关概念 顶点在圆上的角叫做圆心角.
探究 如图将圆心角∠AOB 绕圆心O 旋转到∠A ′OB ′的位置,
你发现哪些等量关系?
(''AB A B = ''AB A B =)
归纳总结 在同圆或等圆中,相等的圆心角所对的弧相等,所对的
弦也相等.
思考 (1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等吗?所对的弦相等吗?
(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等吗?所对的弧相等吗?
推论 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;
圆的对称
圆的轴对称性 (圆是轴对称图形) 圆的中心对称性? 垂径定理及其推论 ???
在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等.
3.圆心角、弧、弦定理及推论的应用
例1如图,在⊙O中,AB AC
=,∠ACB=60°.求证:∠AOB=
∠BOC=∠AOC.
证明:∵AB AC
=,△ABC是等腰三角形.
=,∴AB AC
又∠ACB=60°,∴△ABC是等边三角形,AB BC CA
==.
∴∠AOB=∠BOC=∠AOC.
例2如图,C,D是以线段AB为直径的⊙O上的两点,且四边形OBCD是菱形.求证:=.
AD DC
证明:连接OC.
∵四边形OBCD是菱形,
∴OB=BC,∠3=∠2,OD∥BC.
∴∠1=∠B.
又OC=OB=BC,
∴OC=BC.
∴∠3=∠B.
∴∠1=∠2.
∴AD DC
=.
三、巩固练习
1.在同圆或等圆中,下列说法错误的是()
A.相等弦所对的弧相等
B.相等弦所对的圆心角相等
C.相等圆心角所对的弧相等
D.相等圆心角所对的弦相等
2.如图,AB是⊙O的直径,BC CD DE
==,∠COD=35°,求
∠AOE的度数.
答案:1.D
2.∵BC CD DE
==,∴∠BOC=∠COD=∠DOE=35°.
∴∠AOE=180°-3×35°=75°.
五、归纳小结
通过本节课的学习,你掌握了哪些基本概念和方法?
※布置作业※
从教材习题24.1中选取.
※教学反思※
本节课学生通过观察、比较、操作、推理、归纳等活动,得出了圆的中心对称性、圆心角定理及推论,可以发展学生勇于探索的良好习惯,培养学生的动手解决问题的能力.教师应让学生掌握解题方法,即要证弦相等或弧相等或圆心角相等,可以先证其中一组量对应相等,掌握这个阶梯方法有助于提升学生的抽象思维能力.
感谢您的支持,我们会努力把内容做得更好!。