考研数学之物理应用分析
- 格式:doc
- 大小:996.00 KB
- 文档页数:1
考研数学定积分的物理应用分析
在考研数学中,对于数学(一)和数学(二)的考生来说,考试大纲要求掌握一些定积分的物理应用,主要包括:做功、压力、引力、质心、形心等,这是因为数学(一)和数学(二)的大部分考生是理工科专业的学生,因此要求掌握一些物理应用是十分合理和自然的定积分在作用力做功计算中的应用
定积分在压力计算中的应用
从上面的分析和典型例题来看,求解定积分的物理应用问题时,首先要掌握相应的物理基本原理,这是最基本、同时也是最重要的前提条件,如果不理解其物理原理,则应用就无从谈起。
考研数学数学分析重要定理总结一、导数与微分导数和微分是数学分析中非常重要的概念,在求解函数的极限、切线方程、最值等方面具有广泛的应用。
以下是一些常见的导数和微分的重要定理:1. 函数可导与函数连续的关系:若函数f(x)在点x=a处可导,则f(x)在点x=a处连续。
2. 可导函数的四则运算法则:若f(x)和g(x)在点x=a处可导,则(1) (f+g)(a) = f(a) + g(a)(2) (f-g)(a) = f(a) - g(a)(3) (f·g)(a) = f(a)·g(a)(4) (f/g)(a) = [f(a)/g(a)] (g(a)≠0)3. 反函数的导数:若函数y=f(x)在区间I上连续、可导,并且在某点x=a处导数不为零,则它的反函数x=g(y)在区间f(I)上也是连续、可导的,并且在对应点y=f(a)处的导数为1/f'(a)。
4. 高阶导数公式:若函数y=f(x)的导数f'(x)存在,则可以继续求导,得到f''(x)、f'''(x)等高阶导数。
5. 麦克劳林级数与泰勒级数:若函数f(x)在点x=a处的各阶导数存在,则f(x)可以展开成麦克劳林级数或泰勒级数:f(x)=f(a)+(x-a)f'(a)+(x-a)^2/2! f''(a)+...二、积分与定积分积分和定积分是数学分析中研究函数面积、曲线长度、物理量等的重要工具。
以下是一些常见的积分和定积分的重要定理:1. 积分的线性性质:设函数f(x)和g(x)在区间[a,b]上可积,则对于任意常数α、β,有(1) ∫[a,b] (αf(x)+βg(x))dx = α∫[a,b] f(x)dx + β∫[a,b] g(x)dx2. 牛顿-莱布尼兹公式:若函数F(x)是f(x)的一个原函数,则对于区间[a,b]上的积分,有∫[a,b] f(x)dx = F(b) - F(a)3. 积分换元法:若函数f(x)在区间[a,b]上连续,函数g(t)在区间[α,β]上可导且g'(t)连续,并且f(g(t))·g'(t)连续,则有∫[a,b] f(g(t))g'(t)dt = ∫[α,β] f(x)dx4. 定积分的性质:设函数f(x)在区间[a,b]上连续,则定积分∫[a,b] f(x)dx存在,并且具有以下性质:(1) ∫[a,b] f(x)dx = -∫[b,a] f(x)dx(2) 若函数f(x)在区间[a,b]上非负,则∫[a,b] f(x)dx ≥ 0(3) 若函数f(x)在区间[a,b]上非负且不恒为零,则∫[a,b] f(x)dx > 0三、级数与收敛性级数是数学分析中研究无穷和的重要概念,对于理解数列、函数等的性质和应用具有重要意义。
考研数学知识点总结归纳考研数学知识点第一章行列式1、行列式的定义2、行列式的性质3、特殊行列式的值4、行列式展开定理5、抽象行列式的计算第二章矩阵1、矩阵的定义及线性运算2、乘法3、矩阵方幂4、转置5、逆矩阵的概念和性质6、伴随矩阵7、分块矩阵及其运算8、矩阵的初等变换与初等矩阵9、矩阵的等价10、矩阵的秩第三章向量1、向量的概念及其运算2、向量的线性组合与线性表出3、等价向量组4、向量组的线性相关与线性无关5、极大线性无关组与向量组的秩6、内积与施密特正交化7、n维向量空间(数学一)第四章线性方程组1、线性方程组的克莱姆法则2、齐次线性方程组有非零解的判定条件3、非齐次线性方程组有解的判定条件4、线性方程组解的结构第五章矩阵的特征值和特征向量1、矩阵的特征值和特征向量的概念和性质2、相似矩阵的概念及性质3、矩阵的相似对角化4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章二次型1、二次型及其矩阵表示2、合同变换与合同矩阵3、二次型的秩4、二次型的标准型和规范型5、惯性定理6、用正交变换和配方法化二次型为标准型7、正定二次型及其判定考研数学必备知识点总结高等数学部分第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的`计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)线性代数部分第一章行列式1、行列式的定义2、行列式的性质3、特殊行列式的值4、行列式展开定理5、抽象行列式的计算第二章矩阵1、矩阵的定义及线性运算2、乘法3、矩阵方幂4、转置5、逆矩阵的概念和性质6、伴随矩阵7、分块矩阵及其运算8、矩阵的初等变换与初等矩阵9、矩阵的等价10、矩阵的秩第三章向量1、向量的概念及其运算2、向量的线性组合与线性表出3、等价向量组4、向量组的线性相关与线性无关5、极大线性无关组与向量组的秩6、内积与施密特正交化7、n维向量空间(数学一)第四章线性方程组1、线性方程组的克莱姆法则2、齐次线性方程组有非零解的判定条件3、非齐次线性方程组有解的判定条件4、线性方程组解的结构第五章矩阵的特征值和特征向量1、矩阵的特征值和特征向量的概念和性质2、相似矩阵的概念及性质3、矩阵的相似对角化4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章二次型1、二次型及其矩阵表示2、合同变换与合同矩阵3、二次型的秩4、二次型的标准型和规范型5、惯性定理6、用正交变换和配方法化二次型为标准型7、正定二次型及其判定概率论与数理统计部分第一章随机事件和概率1、随机事件的关系与运算2、随机事件的运算律3、特殊随机事件(必然事件、不可能事件、互不相容事件和对立事件)4、概率的基本性质5、随机事件的条件概率与独立性6、五大概率计算公式(加法、减法、乘法、全概率公式和贝叶斯公式)7、全概率公式的思想8、概型的计算(古典概型和几何概型)第二章随机变量及其分布1、分布函数的定义2、分布函数的充要条件3、分布函数的性质4、离散型随机变量的分布律及分布函数5、概率密度的充要条件6、连续型随机变量的性质7、常见分布(0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、指数分布、正态分布)8、随机变量函数的分布(离散型、连续型)第三章多维随机变量及其分布1、二维离散型随机变量的三大分布(联合、边缘、条件)2、二维连续型随机变量的三大分布(联合、边缘和条件)3、随机变量的独立性(判断和性质)4、二维常见分布的性质(二维均匀分布、二维正态分布)5、随机变量函数的分布(离散型、连续型)第四章随机变量的数字特征1、期望公式(一个随机变量的期望及随机变量函数的期望)2、方差、协方差、相关系数的计算公式3、运算性质(期望、方差、协方差、相关系数)4、常见分布的期望和方差公式第五章大数定律和中心极限定理1、切比雪夫不等式2、大数定律(切比雪夫大数定律、辛钦大数定律、伯努利大数定律)3、中心极限定理(列维—林德伯格定理、棣莫弗—拉普拉斯定理)第六章数理统计的基本概念1、常见统计量(定义、数字特征公式)2、统计分布3、一维正态总体下的统计量具有的性质4、估计量的评选标准(数学一)5、上侧分位数(数学一)第七章参数估计1、矩估计法2、最大似然估计法3、区间估计(数学一)第八章假设检验(数学一)1、显著性检验2、假设检验的两类错误3、单个及两个正态总体的均值和方差的假设检验考研数学复习之拿高分方法一、理性分析三个组成部分,各个击破我们知道数学整个试卷的组成部分是:高数82分+线代34分+概率论34分;很明显微积分占了绝大部分;另外概率论里面很多题目要用到微积分的工具,实际上微积分的分数比82分要高,应该是能到100分左右。
考研数学定积分物理应用公式?
答:考研数学定积分物理应用公式包括:
1. 变力做功:∫(从a到b) F(x) dx,其中F(x)是变力,a和b分别是初位置和末位置。
2. 质心公式:∫(从a到b) xρ(x) dx / ∫(从a到
b) ρ(x) dx,其中ρ(x)是线密度,用于求细棒的质量中心。
3. 引力公式:∫(从a到b) km1m2/r^2 dr,用于求两质点间的引力,其中k是引力常数,m1和m2是两质点的质量,r是两质点间的距离。
4. 压力公式:P = pA,其中p是压强,A是面积。
5. 液体静压力:∫(从h1到h2) ρgh dA,其中ρ是液体密度,g是重力加速度,h是液体深度,dA是水平面积微元。
6. 旋转体体积:∫(从a到b) π[f(x)]^2 dx,其中f(x)是旋转曲线的函数表达式。
7. 液体对侧壁的压力:∫(从a到b) 2πxlρg dx,其中l是液体高度,ρ是液体密度,g是重力加速度。
8. 物体在液体中所受的浮力:∫(从a到b) ρVg dx,其中ρ是液体密度,V是物体体积,g是重力加速度。
9. 物体绕定轴旋转的转动惯量:∫(从a到b) r^2 dm,其中r是物体上各点到转轴的距离,dm是物体上的质量微元。
10. 细棒对过端点且与棒垂直的轴的转动惯量:∫(从0到l) (1/3)ml^2 dx = (1/3)ml^2。
以上是考研数学定积分物理应用的一些常见公式。
希望这些信息对您有帮助,如果您还有其他问题,欢迎告诉我。
考研数学考点解析及必考题型总结考研数学考点分析及和考题型总结考研数学的卷种分三种,分别为数学一、数学二、数学三。
这三个卷中针对的专业不同,须使用数学一的招生专业为工学门类中的力学、机械工程、光学工程、仪器科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、交通运输工程、传播与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业,授工学学位的管理科学与工程的一级学科。
工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科,专业的选用数学一,对数学要求较高的选用数学二。
专业不同对数学的要求自然不同,从难度看数学一最难,其次是数学二,最后是数学三,从考试范围看,数学一考试范围最多,数学三次之,最后,数学二,三种卷中大部分考试内容是一样的,数一数二数三又各有自己特点和单独考查的内容。
下面跨考教育数学教研室边一老师就数学一单独考查内容进行一一盘点。
一元函数微分学:隐函数求导、曲率圆和曲率半径;一元积分学:旋转体的侧面积、平面曲线的弧长、功、引力、压力、质心、形心等;向量代数与空间解析几何:向量、直线与平面、旋转曲面、球面、柱面、常用的二次曲面方程及其图形、投影曲线方程;多元函数微分学:方向导数和梯度、空间曲线的切线与法平面、曲面的切平面和法线;隐函数存在定理;多元函数积分学:三重积分、第一型曲线积分、第二型曲线积分、第一型曲面积分、第二型曲面积分、格林公式、高斯公式、斯托克斯公式、散度、旋度;无穷级数:傅里叶级数;微分方程:伯努利方程、全微分方程、可降阶的高阶微分方程、欧拉方程。
以上内容为数学一单独考查的内容,是数学一特有的内容,所以这些内容每年必考。
其中:多元函数积分学中曲线曲面积分三重积分几乎每年必考,常与空间解析几何一起考查,尤见于大题,今年(2017年)考查了第一型曲面积分及投影曲线,散度旋度常见于小题。
第1篇一、数学分析1. 请解释实数的完备性及其意义。
2. 证明:若数列{an}单调有界,则{an}收敛。
3. 设函数f(x)在[a, b]上连续,在(a, b)内可导,且f'(x)≠0,证明:存在一点ξ∈(a, b),使得f'(ξ)=f(b)-f(a)/(b-a)。
4. 证明:若函数f(x)在[a, b]上连续,在(a, b)内可导,且f'(x)≤0,则f(x)在[a, b]上单调递减。
5. 设函数f(x)在[a, b]上连续,在(a, b)内可导,且f'(x)≠0,证明:存在一点ξ∈(a, b),使得f'(ξ)=f(b)-f(a)/(b-a)。
6. 证明:若函数f(x)在[a, b]上连续,在(a, b)内可导,且f'(x)≤0,则f(x)在[a, b]上单调递减。
7. 设函数f(x)在[a, b]上连续,在(a, b)内可导,且f'(x)≠0,证明:存在一点ξ∈(a, b),使得f'(ξ)=f(b)-f(a)/(b-a)。
8. 证明:若函数f(x)在[a, b]上连续,在(a, b)内可导,且f'(x)≤0,则f(x)在[a, b]上单调递减。
9. 设函数f(x)在[a, b]上连续,在(a, b)内可导,且f'(x)≠0,证明:存在一点ξ∈(a, b),使得f'(ξ)=f(b)-f(a)/(b-a)。
10. 证明:若函数f(x)在[a, b]上连续,在(a, b)内可导,且f'(x)≤0,则f(x)在[a, b]上单调递减。
二、高等代数1. 请解释行列式的定义及其性质。
2. 证明:若矩阵A可逆,则|A|≠0。
3. 设矩阵A为n阶方阵,求证:A的行列式|A|等于其特征值的乘积。
4. 证明:若矩阵A为n阶方阵,且|A|=0,则A不可逆。
5. 设矩阵A为n阶方阵,求证:A的行列式|A|等于其特征值的乘积。
Born To Win
人生也许就是要学会愚忠。
选我所爱,爱我所选。
考研数学之物理应用分析
数学一和数学二的学生对物理应用这一块掌握的比较薄弱。
物理应用不是数学一和数学二的常考点,但是一旦考了,学生往往都不会。
2015年数学二的考研真题出了一道与物理应用有关的大题。
这是个拉分题,很多同学都不会。
所以希望大家能够对物理应用有足够的重视,特别是那些立志上名校,希望数学给力的学生。
下面,跨考教育数学教研室的向喆老师就来和大家分享物理应用分析的学习方法。
一.明确知识框架
有句古语:知己知彼,百战不殆。
物理应用可以说是比较难的知识点,所以大家就应该明了考研都考了那些物理应用。
首先,只有数学一和数学二才考物理应用。
然后,物理应用分布在导数应用,定积分应用,微分方程应用中,其中物理应用在定积分中考查的最多。
最后,有关的物理知识的储备。
比如说速率,做功,压强,压力等。
二.掌握学习方法
大家在明白了物理应用的体系后,就应该掌握相应的学习方法。
首先是导数中的物理应用。
通过对历年真题的研究,我发现导数的物理应用主要体现在对导数物理意义的理解,即速率。
然后是定积分中的物理应用。
这是考查的重点。
主要包括:变力做功(变力对质点沿直线做功和克服重力做功);液体静压力;质心及形心。
这三个部分求解的核心思想是微元法:分割,近似,求和,取极限。
大家应该把定积分的定义即曲边梯形面积是怎么求得掌握。
接着,大家就应该把这三部分的微元法思想推一遍,从而熟练掌握本质的含义。
其中克服重力做功问题已经在真题中出现过。
最后是微分方程中的物理应用。
通过历年考题分析,我发现微分方程中的物理应用主要考察的是牛顿第二定律。
据此联系了位移与速率;重力,浮力及阻力与加速度关系。
总之,在学习这部分知识时候,应该有一些基本的思想。
比如说:微元法思想,牛顿第二定律,压强及压力,位移与速率等。
三.熟练掌握题型
大家在明白了知识体系以及学习方法后就应该通过做题来巩固。
不过现在出现了一个问题:数学一和数学二的同学有很多都不是学物理的。
所以有必要对基本的物理知识进行回顾。
大家可以参考下高中的物理课本就够了。
针对做题,题目不求多,关键是把真题搞懂。
大家可以看下从1989年到2014年的真题,找到其中的物理应用部分,然后仔细的思考下,做一下,总结题型,体会下思想方法。
总之:物理应用部分是高等数学中一个难点,虽不是热点问题,但是往往冷不丁的在真题中出现,它是制约着大家能否拿高分的瓶颈。
所以,大家应该掌握物理应用的知识体系,学习方法及该做哪些题目。
文章来源:跨考教育。