PCI总线的发展
- 格式:docx
- 大小:61.13 KB
- 文档页数:4
pcie规范PCIe(Peripheral Component Interconnect Express)是一种高速串行总线规范,用于在计算机系统中连接各种外部设备和扩展卡。
PCIe是一种基于总线结构的互联技术,它提供了更高的带宽和更快的数据传输速度,以满足现代计算需求日益增长的需求。
本文将详细介绍PCIe规范,包括其历史、特点、工作原理以及应用领域。
PCIe的历史可以追溯到1992年,当时英特尔、IBM和康柏就开始开发PCI(Peripheral Component Interconnect)总线规范,用于取代传统的ISA和VLB总线。
PCI总线规范在1993年发布,迅速成为标准计算机接口,并在20世纪90年代普及开来。
然而,随着计算机性能的不断提升和多媒体、网络等应用的广泛应用,PCI总线的带宽和性能已经无法满足需求。
为了提供更高的带宽和更快的数据传输速度,PCI-SIG(PCI Special Interest Group)于2004年发布了PCI Express规范,即PCIe 1.0版本。
PCIe采用了全新的串行总线结构,以替代传统的并行总线。
相较于PCI总线,PCIe具有更高的数据传输速度、更低的延迟、更高的带宽和更好的可伸缩性。
PCIe的特点主要体现在以下几个方面:1. 高速传输:PCIe提供了多个版本,每个版本都有不同的数据传输速率。
当前最常见的PCIe 3.0版本,具有每条通道8 Gbps的传输速度,每条通道相当于一个全双工的高速通道。
2. 可伸缩性:PCIe采用点对点连接的拓扑结构,每个设备都有一个独立的通道,与其他设备无冲突。
这种可伸缩性使得PCIe可以支持大量的设备以及更复杂的系统架构。
3. 低延迟:由于PCIe采用了串行传输,相较于并行总线具有更低的延迟,能够更快地处理数据。
4. 热插拔支持:PCIe支持热插拔特性,即可以在计算机运行时插入或拔出设备,而不需要重启计算机。
系统总线的分类系统总线是计算机内部各个硬件组件之间进行数据传输和通信的重要手段。
根据不同的标准和功能,系统总线可以分为以下几类:一、ISA总线ISA总线(Industry Standard Architecture)是一种较早的系统总线标准,它最早出现在IBM PC/AT机型上。
ISA总线采用了16位的数据路径,传输速率相对较低,仅为4.77 MHz。
ISA总线主要用于连接低速外设,如串口卡、并口卡等,随着计算机技术的发展,ISA总线已经逐渐被更为先进的总线所替代。
二、PCI总线PCI总线(Peripheral Component Interconnect)是一种较为常见的系统总线标准,它是由英特尔公司于1993年推出的。
PCI总线采用32位或64位的数据路径,传输速率较高,最高可达133 MHz。
PCI总线主要用于连接高速外设,如显卡、声卡、网卡等。
由于PCI总线具有良好的兼容性和扩展性,因此在现代计算机中被广泛应用。
三、AGP总线AGP总线(Accelerated Graphics Port)是一种专门用于图形显示的系统总线标准,它是由英特尔公司于1996年推出的。
AGP总线采用32位的数据路径,传输速率较高,最高可达266 MHz。
AGP总线的主要特点是为图形处理器提供了独立的高速通道,使得图形显示的性能得到了显著提升。
四、PCI-X总线PCI-X总线(Peripheral Component Interconnect eXtended)是一种对PCI总线进行扩展的系统总线标准,它是由PCI-SIG组织于1998年推出的。
PCI-X总线采用64位或32位的数据路径,传输速率较高,最高可达1333 MHz。
PCI-X总线主要用于连接高速外设和扩展卡,如RAID卡、高性能网卡等。
由于PCI-X总线具有较大的带宽和较高的传输速率,因此在服务器等高性能计算机中得到广泛应用。
五、PCI Express总线PCI Express总线(Peripheral Component Interconnect Express)是一种较新的系统总线标准,它是由PCI-SIG组织于2004年推出的。
pci术概念-回复什么是PCI?PCI是英文Peripheral Component Interconnect的缩写,中文翻译为外部设备插槽。
它是一种计算机总线标准,用于连接外部设备与计算机的主板。
PCI接口是由全球互联网协会(PCI-SIG)开发和发布的,已经成为现代计算机的重要组成部分。
PCI的发展与进化:PCI标准最初是在1992年发布的,随后的几年内,这一标准快速发展,逐渐替代了ISA(Industry Standard Architecture)总线接口。
在1995年,PCI2.0的标准问世,增加了电源管理和处理PCI总线主动管理和控制能力。
接下来的几年内,PCI标准不断发展,发布了PCI-X和PCI Express的版本,以满足不断增长的计算机性能需求。
PCI的工作原理:PCI接口采用多总线架构,也就是指在计算机主板上会有多个PCI插槽,每个插槽都能插入一个或多个PCI设备。
PCI总线上的每个插槽都有一个唯一的编号,用于识别各个设备。
当计算机主机启动时,会自动进行插槽号分配,以确定每个设备的地址。
PCI的传输速度:PCI总线的速度通常以MHz(百万赫兹)为单位表示,早期的PCI 1.0标准速度为33MHz,每个总线周期传输32位(4字节)数据。
这意味着在每个时钟周期内,总线可以传输32位的数据,因此其最大传输速率为133MB/s。
随着技术的进步,PCI标准的速度相继提高,PCI 2.0的速度可以达到66MHz,PCI-X可以达到133MHz,而PCI Express可以达到2.5GHz的速度。
PCI的设备类型和插槽:PCI设备通常可以分为使用不同插槽的不同类型,包括标准PCI插槽(32位和64位)、PCI-X插槽和PCI Express插槽。
这些插槽有不同的外形和针脚排列,以适应不同设备的连接需求。
PCI的优缺点:PCI接口的优点之一是其通用性,兼容性非常好。
几乎所有的计算机主板都会提供PCI插槽,这使得用户可以轻松地连接各种PCI设备。
PCI-E - 简介PCI-E(PCI-Express的所写)是最新的总线和接口标准,它原来的名称为“3GIO”,是由英特尔提出的,很明显英特尔的意思是它代表着下一代I/O接口标准。
交由PCI-SIG(PCI特殊兴趣组织)认证发布后才改名为“PCI-Express”。
这个新标准将全面取代现行的PCI和AGP,最终实现总线标准的统一。
它的主要优势就是数据传输速率高,目前最高可达到10GB/s以上,而且还有相当大的发展潜力。
PCI Express也有多种规格,从PCI Express 1X到PCI Express 16X,能满足现在和将来一定时间内出现的低速设备和高速设备的需求。
能支持PCI Express的主要是英特尔的i915和i925系列芯片组。
当然要实现全面取代PCI和AGP也需要一个相当长的过程,就象当初PCI取代ISA一样,都会有个过渡的过程。
PCI-E采用了目前业内流行的点对点串行连接,比起PCI以及更早期的计算机总线的共享并行架构,每个设备都有自己的专用连接,不需要向整个总线请求带宽,而且可以把数据传输率提高到一个很高的频率,达到PCI所不能提供的高带宽。
相对于传统PCI总线在单一时间周期内只能实现单向传输,PCI-E的双单工连接能提供更高的传输速率和质量,它们之间的差异跟半双工和全双工类似。
PCI-E - 历史每一个PCI Express插槽拥有专用的连至PC内存的带宽,而不同于PCI的共享带宽习惯了做业界规范制定者的Intel,在2001年宣布了要用一种新的技术取代PCI总线和多种芯片的内部连接。
并称之为第三代I/O总线技术(很明显Intel的意思是它代表着下一代I/O接口标准)。
该总线的规范由Intel支持的AWG(Arapahoe Working Group)负责制定。
2002 年4月17日,AWG正式宣布3GIO 1.0规范草稿制定完毕,并移交PCI-SIG进行审核(主要以Intel、AMD、IBM、DELL、NVIDIA等20多家业界主导公司开始起草3GIO,2002年草案完成,2002年7月23日经过审核后正式公布。
pci Express百科名片PCI Express插槽(黄和绿色PCI Express是新一代的总线接口。
早在2001年的春季,英特尔公司就提出了要用新一代的技术取代PCI总线和多种芯片的内部连接,并称之为第三代I/O总线技术。
随后在2001年底,包括Intel、AMD、DELL、IBM在内的20多家业界主导公司开始起草新技术的规范,并在2002年完成,对其正式命名为PCI Express。
它采用了目前业内流行的点对点串行连接,比起PCI以及更早期的计算机总线一个很高的频率,达到PCI所不能提供的高带宽。
基本概念PCI Express的接口根据总线位宽不同而有所差异,包括X1、X4、X8以及X1 6(X2模式将用于内部接口而非插槽模式)。
较短的PCI Express卡可以插入较长的PCI Express插槽中使用。
PCI Express接口能够支持热拔插,这也是个不小的飞跃。
PCI Express卡支持的三种电压分别为+3.3V、3.3Vaux以及+12V。
用于取代AGP接口的PCI Express接口位宽为X16,将能够提供5GB/s的带宽,即便有编码上的损耗但仍能够提4GB/s左右的实际带宽,远远超过AGP 8X的2.1GB/s的带宽。
PCI Express规格从1条通道连接到32条通道连接,有非常强的伸缩性,以满足不同系统设备对数据传输带宽不同的需求。
例如,PCI Express X1规格支持双向数据传输,每向数据传输带宽250MB/s,PCI Express X1已经可以满足主流声效芯片、网卡芯片和存储设备对数据传输带宽的需求,但是远远无法满足图形芯片对数据传输带宽的需求。
因此,必须采用PCI Express X16,即16条点对点数据传输通道连接来取代传统的AGP总线。
PCI Express X16也支持双向数据传输,每向数据传输带宽高达4GB/s,双向数据传输带宽有8GB/s之多,相比之下,目前广泛采用的AGP 8X数据传输只提供2.1GB/s的数据传输带宽。
Intel接口革命史——从总线看Intel主板芯片组发展历程可以这样说,Intel处理器的成功,功劳有一半应记在自家的主板芯片组身上。
从经典的430HX、430TX、440BX到如今的9XX系列,正是由于历代Intel主板芯片组+Intel处理器的绝佳搭配,才成就了一个帝国的辉煌。
回首Intel主板芯片组的历程,我们除了可以看到其产品性能和功能不断进步外,更可清晰地看到,主板芯片组的发展史正是总线和接口技术的革命史。
正是总线和接口技术一步步不断发展,才有了如今高性能的主流电脑。
一、PCI总线的X86时代关键词:PCI、SDRAM、MMX430HX功能示意图386、486时代的主板芯片组市场群雄混战,进入586时代后,Intel凭借对自身CPU更了解的优势推出了430LX芯片组,并在随后的几次战役中一举取得了市场上的主动。
限于篇幅,我们只对这类早期芯片组做文字介绍。
第一款可称得上经典的Intel主板芯片组就是430HX。
430HX芯片组由一片82439HX和一片82371SB组成,采用了并行PCI体系结构,符合PCI 2.1标准,缩短了总线的等待时间,提高了PCI设备的速度和整个系统的性能;可支持通用串行总线(USB),支持EDO定时功能,系统内存最高可达512MB;支持P54C (Pentium)和P55C(Pentium MMX)CPU;支持双CPU结构,可组成对称处理器结构体系。
随后Intel又在430HX的基础上推出了其简化版本430VX,VX只支持单处器和最大256MB内存,但凭借较低的售价在消费级市场上走红。
而Intel 430TX芯片组(由82439TX和82371AB组成)则可看成是英特尔在586时代的颠峰之作。
它是Intel公司为配合Pentium MMX CPU而推出的芯片组,针对MMX技术进行了改进和优化,可达到更佳的多媒体应用效果。
正式支持SDRAM 内存,并支持SDRAM与EDO内存的混合使用。
PCI总线随着Windows图形用户界面的迅速发展,以及多媒体技术的广泛应用,要求系统具有高速图形处理和I/O吞吐能力。
为了适应计算机的这种发展要求,Intel公司首先提出了PCI( Peripheral ComponentInterconnect )总线概念。
之后Intel联合IBM、Compaq、AST、HP、 Apple、NCR、DEC 等100多家公司共同开发总线,并于1993年推出了PCI总线标准。
目前PCI已称为一种新的总线标准,广泛用于微机、工作站以及便携式计算机中。
1. PCI总线的特点PCI 总线主要有以下一些特点:(1)数据传输率高PCI的数据总线宽度为32位,并可扩充到64位。
它以33.3MHz或66.6MHz的时钟频率工作,若采用32位数据总线,数据传送速率可达133 MB/s;而采用64位宽度,则最高传输速率可达266 MB/s。
(2)支持猝发传输(Burst Transmission)通常的数据传输是先输出地址后进行数据操作,即使所要传输数据的地址是连续的,每次也要有输出和建立地址的阶段。
而PCI支持猝发数据传输周期,该周期在一个地址相位(phase)后可跟若干个数据相位。
这意味着传输从某一个地址开始后,可以连续对数据进行操作,而每次的操作数地址是自动加l形成的。
显然,这减少了无谓的地址操作,加快了传输速度。
这种传输方式对使用高性能图形设备尤为重要。
(3)支持多主设备在同一条PCI总线上可以有多个主设备,各个主设备通过总线仲裁竞争总线控制权。
相比之下,在ISA总线系统中,DMA控制器和CPU对总线的争用是不平等的,DMA控制器采用“周期窃取”法向 CPU申请总线,得到CPU允许后才能使用总线。
而PCI总线专门设有总线占用请求和总线占用允许信号,各个主设备平等竞争总线。
(4)独立于处理器传统的系统总线(如ISA总线 ) 实际上是CPU引脚信号的延伸或再驱动,而PCI总线以一种独特的中间缓冲器方式独立于处理器,并将CPU子系统与外围设备分开。
pci和pcie的区别PCI和PCIe是两种常见的计算机总线接口标准,它们在数据传输速度、电气和机械规范以及用途等方面有所不同。
本文将详细介绍PCI和PCIe之间的区别。
一、基本概述1.1 PCI(Peripheral Component Interconnect)PCI是由英特尔于1993年推出的一种计算机扩展总线接口标准。
它通过将外部设备直接连接到计算机主板上来扩展计算机的功能。
1.2 PCIe(Peripheral Component Interconnect Express)PCIe是一种新一代的计算机扩展总线接口标准,它是对PCI的改进和升级。
PCIe使用更快、更可靠的串行通信,提供了更高的数据传输速度和更低的延迟。
二、主要区别2.1 速度和带宽PCIe比PCI具有更高的速度和带宽。
PCIe的速度可以通过增加通道数量来扩展,目前最高可达到PCIe 4.0 x16,理论带宽可达到16GB/s。
而PCI则较为固定,最高速度只能达到133MB/s。
2.2 电气规范PCIe采用差分信号传输,具有更好的抗干扰性能和更长的通信距离。
相比之下,PCI通过并行传输,对信号的干扰较为敏感。
2.3 机械规范PCIe插槽通常比PCI插槽更短且更窄,这使得主板设计更加紧凑。
此外,PCIe插槽具有扩展性,可以适应不同长度和规格的扩展卡。
2.4 软件兼容性PCIe兼容PCI软件驱动,但PCIe卡无法在PCI插槽中使用。
PCIe 卡需要支持并安装正确的驱动程序,以确保与主板的兼容性。
2.5 应用领域由于其较高的速度和带宽,PCIe在高性能计算、数据中心、图形处理、存储等领域得到广泛应用。
而PCI则主要用于低速、低带宽的外设连接。
三、发展趋势随着计算机应用的快速发展,对数据传输速度和带宽的需求也在不断增加。
因此,PCIe在新一代计算机和服务器中得到了广泛应用,逐渐取代了PCI。
当前,PCIe 4.0已基本成为主流标准,并且PCIe 5.0已经问世。
PCIe接口介绍PCIe接口简介PCIe(Peripheral Component Interconnect Express)总线的诞生与PC(Personal Computer)的蓬勃发展密切相关,是由PCISIG (PCI Special Interest Group,主要是intel)推出的一种局部并行总线标准,主要应用于电脑和服务器的主板上(目前几乎所有的主板都有PCIe的插槽),功能是连接外部设备(如显卡、存储、网卡、声卡、数据采集卡等)。
PCI总线规范最早在上世纪九十年代提出,属于单端并行信号的总线,目前已淘汰,被PCIe总线(在2001年发布,采用点对点串行连接)替代。
目前PCIe的主流应用是3.0,4.0还没正式推出,但标准已经制定的差不多了。
PCI总线使用并行总线结构,在同一条总线上的所有外部设备共享总线带宽,而PCIe总线使用了高速差分总线,并采用端到端的连接方式,因此在每一条PCIe链路中只能连接两个设备.这使得PCIe与PCI总线采用的拓扑结构有所不同。
PCIe总线除了在连接方式上与PCI总线不同之外,还使用了一些在网络通信中使用的技术,如支持多种数据路由方式,基于多通路的数据传递方式,和基于报文的数据传送方式,并充分考虑了在数据传送中出现服务质量QoS (Quality of Service)问题。
每一个Lane上使用的总线频率与PCIe总线使用的版本相关.同。
PCIe总线V1。
x和V2。
0规范在物理层中使用8/10b编码,即在PCIe链路上的10 bit中含有8 bit的有效数据;而V3.0规范使用128/130b编码方式,即在PCIe链路上的130 bit 中含有128 bit的有效数据。
实际使用中,PCIe无法一直维持在峰值传输状态,因为编码方式、链路管理消耗、存储时间延迟等原因,一般只有50%~60%的效率.PCIe接口原理连接方式PCIe链路使用“端到端的数据传送方式”,发送端和接收端中都含有TX(发送逻辑)和RX(接收逻辑),其结构如图一。
PCI即Peripheral Component Interconnect,中文意思是“外围器件互联”,是由PCISIG (PCI Special Interest Group)推出的一种局部并行总线标准。
在现在电子设备中应用非常广泛,下面我详细介绍下PCI总线的工作原理,希望对大家有所帮助。
♦PCI总线的过去现在和未来PCI总线是由ISA(Industy Standard Architecture)总线发展而来的,ISA并行总线有8位和16位两种模式,时钟频率为8MHz,总线带宽为:8bit*8MHz=64Mbps=8MB/s 或16bit*8MHz= 128Mbps =16MB/s。
在计算机出现初期的386/486时代,ISA总线的带宽已经算是很宽的了,满足CPU的需求可以说是绰绰有余了。
1987年,IBM公司推出32位MAC(MicroChannel Architecture)总线,总线带宽达到40MB/s,迫于IBM的压力,Compaq、AST、Epson、HP、Olivetti和NEL等9家公司联合于1988年9月推出EISA(Extended ISA)总线,EISA总线仍然保持ISA总线的8MHz时钟频率,但将总线位宽提高到32位,总线带宽为:32bit*8MHz=256Mbps = 32MB/s,并且与ISA总线完全兼容。
随着计算机技术的继续发展,CPU的处理速度越来越快,EISA总线的32MB/s 带宽已经满足不了CPU的需求,CPU外围总线带宽已经成为制约计算机处理能力继续提高的瓶颈。
1991年下半年,Intel公司首选提出PCI总线的概念,并与IBM、Compaq、AST、HP、DEC等100多家公司成立PCISIG组织,联合推出PCI总线。
PCI总线支持32位和64位两种位宽,时钟频率为33MHz,总线带宽:32bit*33MHz= 1056Mbps =132MB/s 或64bit*33MHz=2112Mbps=264MB/s。
一、PCI:PCI,外设组件互连标准(Peripheral Component Interconnection)一种由英特尔(Intel)公司1991年推出的用于定义局部总线的标准。
此标准允许在计算机内安装多达10个遵从PCI标准的扩展卡。
最早提出的PCI总线工作在33MHz频率之下,传输带宽达到133MB/s(33MHz * 32bit/s),基本上满足了当时处理器的发展需要。
随着对更高性能的要求,1993年又提出了64bit的PCI 总线,后来又提出把PCI 总线的频率提升到66MHz。
目前广泛采用的是32-bit、33MHz的PCI 总线,64bit的PCI插槽更多是应用于服务器产品。
从结构上看,PCI是在CPU和原来的系统总线之间插入的一级总线,具体由一个桥接电路实现对这一层的管理,并实现上下之间的接口以协调数据的传送。
管理器提供信号缓冲,能在高时钟频率下保持高性能,社和为显卡,声卡,网卡,MODEM等设备提供连接接口,工作频率为33MHz/66MHz。
PCI总线系统要求有一个PCI控制卡,它必须安装在一个PCI插槽内。
这种插槽是目前主板带有最多数量的插槽类型,在当前流行的台式机主板上,ATX结构的主板一般带有5~6个PCI插槽,而小一点的MATX主板也都带有2~3个PCI插槽。
根据实现方式不同,PCI控制器可以与CPU一次交换32位或64位数据,它允许智能PCI辅助适配器利用一种总线主控技术与CPU并行地执行任务。
PCI允许多路复用技术,即允许一个以上的电子信号同时存在于总线之上。
由于PCI 总线只有133MB/s的带宽,对声卡、网卡、视频卡等绝大多数输入/输出设备显得绰绰有余,但对性能日益强大的显卡则无法满足其需求。
Intel在2001年春季的IDF上,正式公布了旨在取代PCI总线的第三代I/O技术,该规范由Intel支持的AWG(Arapahoe Working Group)负责制定。
pci e总线标准PCI Express(Peripheral Component Interconnect Express)是一种计算机总线标准,用于连接外部设备到计算机。
它是一种高速串行通信接口,用于连接内部硬件设备,如图形卡、网络适配器和存储设备。
PCIe总线标准已经成为现代计算机系统中最常见的总线标准之一,其高速、可靠和灵活的特性使其成为了许多计算机硬件设备的首选接口。
PCIe总线标准最初由英特尔公司于2004年引入,并在随后的几年内不断发展和演进。
它取代了旧的PCI和AGP总线标准,为计算机系统提供了更高的带宽和更低的延迟。
PCIe总线标准采用了不同的版本,包括PCIe 1.0、PCIe 2.0、PCIe 3.0和PCIe 4.0,每个版本都提供了不同的数据传输速率和带宽。
PCIe总线标准的设计采用了一种点对点连接的架构,这意味着每个设备都直接连接到主板上的PCIe插槽,而不需要共享带宽或资源。
这种架构使得PCIe总线标准能够支持高性能的设备,并且在多设备同时工作时不会出现性能瓶颈。
PCIe总线标准还支持热插拔功能,这意味着用户可以在计算机运行的情况下插入或拔出PCIe设备,而不会影响系统的稳定性或性能。
这为用户提供了更大的灵活性和便利性,使他们能够随时升级或更换硬件设备。
除了传统的PCIe插槽,PCIe总线标准还引入了M.2接口,这是一种更小、更紧凑的接口,用于连接固态硬盘和无线网卡等设备。
M.2接口可以通过PCIe总线标准提供更高的带宽和更快的数据传输速率,使得这些设备能够更好地发挥性能。
总的来说,PCIe总线标准是一种高速、可靠和灵活的计算机总线标准,它已经成为了现代计算机系统中最常见的接口之一。
它的设计和特性使得它能够支持高性能的设备,并且为用户提供了更大的灵活性和便利性。
随着技术的不断发展,PCIe 总线标准将继续演进和改进,为计算机硬件设备的发展提供更好的支持和基础。
PCI、PCI-X、PCI-E区别一、PCI总线PCI总线标准是由PCISIG于1992年开发的,已经有超过8年的历史。
PCI的总带宽=33MHz×32BIT/8=133MB/S。
二、PCI-X总线PCI- X是在增加了电源管理功能和热插拔技术的PCI V2.2版本的基础上,将PCI的总带宽由133MB/S增至1.066GB/s。
同时它还采用了分离实务即多任务的设计,允许一个正在向某个目标设备请求数据的设备,在目标设备未准备好之前处理其他任何事情;而在目前的PCI体系中,设备在完成一次请求之前不能理会任何事情,此时的总线时钟周期都被白白浪费掉了。
同时PCI-X还允许把没有准备好发送数据的设备从总线上移走,这样总线带宽可以被其他事务使用,使总线的利用率大幅上升。
所以,在相同的频率下,PCI-X将能提供比PCI高14%~35%的性能。
PCI-X还采用了与IA-64相同的128Bit标准尺寸数据块设计,使通过总线的数据块大小相同,这样就提供了更多的流水线机制,改善了处理器的管理。
PCI-X目前分为66MHz、100MHz和133MHz三个版本。
工作于66MHz的PCI-X控制器将能访问最多4个PCI-X设备,当然,如果增加PCI-X至PCI-X的桥接芯片,那么可以支持更多的设备。
66MHz PCI-X拥有533MB/s的带宽。
PCI-X总线是共用的,有66,100和133三种.100MHz PCI-X的设备均工作于100MHz下,此时PCI-X总线只能管理最多两个PCI-X 设备,在64bit总线和100MHz频率下,拥有800MB/s的带宽。
最豪华的133MHz PCI-X 工作于133MHz,将能提供惊人的1066MB/s带宽。
三、PCI-E总线PCI Express是新一代能够提供大量带宽和丰富功能的新式图形架构。
PCI Express可以大幅提高中央处理器(CPU)和图形处理器(GPU)之间的带宽。
PCIE继PCI (个人计算机扩展总线接口规范)之后的规范。
PCI 属于并行传输方式,即使用多条信号线同时并行传输多位数据,但PCI Express 采用的是每次 1 位的串行传输方式,其最高数据传输速度为8Gbit / s ,最大电缆长度3m 。
开发阶段的代号是3GIO 。
PCI Express总线的起源和现状2001年春季的IDF上Intel正式公布PCI Express,是取代PCI总线的第三代I/O 技术,也称为3GIO。
该总线的规范由Intel支持的AWG(Arapahoe Working Group)负责制定。
2002 年4月17日,AWG正式宣布3GIO 1.0规范草稿制定完毕,并移交PCI-SIG进行审核。
开始的时候大家都以为它会被命名为Serial PCI(受到串行ATA的影响),但最后却被正式命名为PCI Express。
2006年正式推出Spec2.0(2.0规范)。
PCI Express总线技术的演进过程,实际上是计算系统I/O接口速率演进的过程。
PCI总线是一种33MHz@32bit或者66MHz@64bit的并行总线,总线带宽为133MB/s 到最大533MB/s,连接在PCI总线上的所有设备共享133MB/s~533MB/s带宽。
这种总线用来应付声卡、10/100M网卡以及USB 1.1等接口基本不成问题。
随着计算机和通信技术的进一步发展,新一代的I/O接口大量涌现,比如千兆(GE)、万兆(10GE)的以太网技术、4G/8G的FC技术,使得PCI总线的带宽已经无力应付计算系统内部大量高带宽并行读写的要求,PCI总线也成为系统性能提升的瓶颈,于是就出现了PCI Express总线。
PCI Express总线技术在当今新一代的存储系统已经普遍的应用。
PCI Express总线能够提供极高的带宽,来满足系统的需求。
目前,PCI-E 3.0规范也已经确定,其编码数据速率,比同等情况下的PCI-E 2.0规范提高了一倍,X32端口的双向速率高达320Gbps。
PCI总线发展历史
PCI总线是计算机的I/O总线,在90年代时替代了ISA总线,成为计算机中的局部总线一直使用至今。
PCI总线在发展的过程中,不断自我革新,满足时代的需求。
在短短10多年间,PCI总线历经了PCI、PCI-X以及PCI-E的演变历程。
传统PCI总线具有32位数据宽度,33MHz的时钟频率,能够支持设备的即插即用、自动识别与配置。
与ISA总线相比,不仅在性能上提升了一大截,而且在资源管理上也有质的变化。
更为重要的是,ISA总线本质上是处理器总线的延伸,而PCI总线是与处理器总线无关的总线标准,不受制于处理器的类别,数据的传输需要通过桥设备进行转发。
因此,ISA总线通常称为第一代I/O总线,而PCI 是第二代I/O总线标准,这是一种技术发展的跨越。
随着时代的发展,传统PCI 总线的性能得到了挑战,越来越不能满足外设的需求。
最为典型的是图像传输受到了PCI性能瓶颈的影响,因此,几年前的显卡设备都脱离PCI总线,单立门户形成了一个新的总线标准AGP,这显然是对PCI总线性能的一种否定。
技术在不断发展,对高速传输需求的IO设备越来越多,Gbps网络、光纤通道都对传统P CI的性能提出了质疑,传统PCI总线已经不能满足此类应用的需求了。
所以,在1999年提出了PCI-X协议规范,该总线具有64位总线宽度,最高能够达到1 33MHz的时钟频率,在性能上较PCI总线有了一个大的跨越。
但是,PCI-X总线仍然是一种并行总线,其存在并行传输过程中的数据相位问题,因此,当PCI-X 频率达到一定程度之后,总线带载能力就变的相当差。
在133MHz总线频率时,P CI-X总线只能带一个PCI设备。
PCI总线的发展遇到了并行总线的技术瓶颈,因此,PCI总线需要做总线结构的根本性变革。
历史的车轮进入21世纪之后提出了PCI-Express总线,其将并行总线演变成了点对点的串行总线,在性能可扩展性方面跨入了一个新的台阶。
所以,PCI-Express总线也可以称之为计算机的第三代I/O总线。
PCI-X对PCI总线的改进
PCI-X总线经常应用于服务器设备上,其不仅仅对传统PCI总线的数据宽度和总线频率进行了升级,更为重要的是对传统PCI总线协议进行了改进,提高了总线效率。
下面对PCI-X总线的主要改进点进行探讨。
PCI-X总线最高能够达到133MHz的时钟频率,其得益于PCI-X总线采用了寄存器-寄存器的信号传输方式,而传统PCI总线对信号的接收与译码放在了一个时钟周期内,这种方法也称为即时协议。
即时协议的优点在于一定程度上减少时钟脉冲个数;缺点在于难于提高时钟频率(译码电路会存在时间延迟)。
PCI-X 总线首先对信号进行锁存,在下一个时钟在对信号进行译码,这样的处理可以提高时钟频率。
这种处理的方法本质上就是组合逻辑电路拆分的思想。
这种拆分在
一定程度上需要更多的时钟周期,由于在正常总线数据传输过程中不存在电路拆分,只有在总线事务起始阶段才有这样的需求,因此,PCI-X的这种改进不仅可以大大提高时钟频率,而且大大缩短了总线事务的处理时间,所以,PCI-X总线的时钟频率最高可以达到133MHz。
对于传统PCI总线操作,如果目标设备不能立即完成请求,那么目标设备会向请求设备发送retry信号,推迟总线事务,请求设备会在一定时候再次访问目标设备完成请求。
这样的处理浪费了总线效率。
仔细体会一下,推迟总线事务模型本质上是一种查询式的处理模型,这种模型在请求设备能力高于目标设备时,性能变的很差,其会影响到总线上其他设备的事务。
针对该问题PCI-X总线对其进行了改进,提出了总线事务分割的概念。
也就是当目标设备不能立即完成请求时,发送分割响应给请求设备。
请求设备会释放总线,当目标设备完成请求后,会主动启动一次PCI的总线事务,将请求设备所需数据主动传输给请求设备,从而完成请求事务。
总线事务分割模型本质上是一种中断式的处理模型,减少了总线事务占用总线的带宽,提高了总线效率。
PCI-X另一个非常重大的创举是引入了MSI机制。
传统PCI总线采用的是共享中断模型,当PCI中断发生之后,中断服务程序会扫描总线上的所有设备,查看具体是哪个设备发生了中断,从而调用具体的中断服务程序(在Linux中通过链表维护了共享中断的所有服务程序)。
这种中断模型大大浪费了服务程序的时间,特别当PCI设备达到一定程度之后,将会导致中断服务时间过程,发生中断丢失等问题。
这种中断处理机制是一种“被动查询”的模型,而MSI则是一种“主动通知”的模型。
当PCI设备发生中断事务之后,设备会主动的将中断向量号发送到指定的存储空间,然后触发CPU中断。
处理器会根据指定存储空间的中断向量号调用具体的中断服务程序,不存在任何查询过程。
为了实现MSI机制,PCI -X需要扩展PCI的配置空间,并且在设备枚举过程中需要为每个PCI设备分配M SI的中断向量号存储地址以及向量号。
综上所述,PCI-X总线在PCI的物理层和逻辑层都做了较大程度的改进,增加了总线宽度,提升了时钟频率,优化了总线效率。
由此我们也可以看出,一个发展很完善的标准都会存在某些应用上的缺陷,需要不断的优化和改进,更何况一个普通的系统?系统设计永远是一个由简入繁的过程,一步到位的设计可望而不可及。
PCI-E体系架构概述
PCI-E对原有系统进行了结构层面的革新,下图是采用PCI-E总线架构的计算机体系结构。
从图中可以看出,根复合体是PCI-E总线的root,其通过FSB总线与处理器进行互联,并且集成内存控制器,可以看成是传统系统的北桥(MCH)。
交换开关与根复合体进行连接(在实现过程中交换开关可以集成到南桥,北桥与南桥通过DMI总线进行连接),交换开关可以扩展多个PCI-E端口,其可以抽象成多个传统的PCI桥,逻辑框图如下所示:
PCI-E交换开关进行事务包的路由转发,其内部可以抽象成一条虚拟的PCI Bus,在一条PCI Bus上连接多个PCI Bridge,每个PCI Bridge对应一个PCI-E 端口。
因此,在PCI扫描软件枚举设备时,同样会枚举交换开关内部的PCI Bu s,为其分配总线号。
PCI-E总线是一种分层架构的协议规范,其主要分成如下三层:
1、PCI-E事务层,处理PCI事务方面的工作,例如请求构造、路由等。
P
CI-E事务层定义了规范的协议头,在协议头中标识了请求的类型(IO读
写、存储器读写或者配置读写)、请求地址、事务属性、请求ID等内容。
PCI-E封装的报文称之为TLP,交换开关会根据报文头中的地址或者ID
进行路由。
在配置过程中,需要采用ID(总线号、设备号以及功能号等
信息)进行路由,在正常数据通信过程中采用地址信息进行路由。
在系
统初始化过程中,每个交换开关的配置空间中都会初始化一份它所管理
的地址空间范围,地址路由就是根据type1配置空间的地址信息进行的。
PCI-E事务报文TLP生成之后会递交给链路层进行发送。
2、PCI-E链路层,处理PCI链路方面的管理工作,例如链路传送应答和部
分流控。
链路层采用数据重传和应答机制处理收发报文,在发送TLP时,
首先采用链路头对数据报文进行再次封装,然后将链路数据交给物理层
进行发送。
发送之后启动超时处理机制,在规定的时间内没有收到对方
链路层的ACK应答包,那么认为此次链路传输失效,需要进行数据重传。
如果接收到有效应答,那么发送链路层会清除发送缓存中的数据报文;
反之,发送链路会重传数据报文。
3、PCI-E物理层。
该层处理数据编解码、链路训练、时钟管理以及串行、
解串等方面的工作。
PCI-E物理层采用2.5Gbps(5Gbps,10Gbps)、低
压差分(800~1200mV)的数据传输方式,为了平衡各频点的能量,在物
理层数据发送时采用伪随机码进行数据位乱序;为了达到DC平衡以及
时钟信号恢复,将数据位乱序之后的报文进行8b/10b编码;为了解决符
号内干扰问题,需要采用预加重(减重)技术处理发送的数据位,进行
时域补偿;为了简化设计,接收设备与发送设备之间采用AC耦合的方
式。
一个PCI-E端口可能含有多个PCI-Lane(PCI通道),一般通道数
为X1、X2、X4、X8、X12、X16、X32,对于多通道的PCI-E端口需要
进行发送数据字节的剥离,这种思想类似于存储领域的RAID0技术,即
一个报文可以通过多个通道同时传输,提高了通信带宽。
在多通道(lan
e)聚合传输的过程中需要注意通道间的时序差异,这种差异需要在链路
训练的过程中进行补偿。
在系统复位之后,首先需要进行通信链路训练,
训练之后收发双发的时钟可以同步,并且发送方会经常发送PLP空闲报
文,保证双方始终信号同步。
链路训练以及电源管理都是PCI-E物理层
的重要组成部分。