期中考试8
- 格式:xls
- 大小:20.00 KB
- 文档页数:1
2023/2024学年度第一学期阶段性发展评价八年级数学参考答案及评分标准(阅卷前请认真校对,以防答案有误!)一、选择题(每小题3分,共24分)二、填空题(每小题3分,共24分)9.-210.5011.312.-513.4514.1.615.4816.三、解答题(共10题,共72分)17.(本题满分6分)解:(1)1;……………………………3分(2)-1.…………………………6分18.(本题满分6分)(1)如图所示,△A 1B 1C 1即为所求;………………2分(2)如图所示,点P 即为所求.C P ﹣P 1A 的值最大,最大值为线段A 1C 的长,A 1C =5,故答案为5;…4分(3)如图,在正方形网格中存在4个格点、C 两点构成以BC 为底边的等腰三角形,故答案为4.……6分19.(本题满分6分)解:∵x 的算术平方根是3,∴x=9………………2分∵x +y 的立方根是2,∴x +y=8,∴y=-1,………………4分∴x +5y =4,∴x +5y 的平方根为±2.………………6分20.(本题满分6分)证明:(1)∵EA ∥FB ,∴∠EAC =∠FBD ,∵EC ∥FD ,∴∠ECA =∠FDB ,…………………………2分题号12345678答案DBBAABCC217在△EAC和△FBD中,∠EAC=∠FBD∠ECA=∠FDBEA=FB,∴△EAC≌△FBD(AAS);…………………………4分(2)∵△EAC≌△FBD,∴AC=BD,∴AC﹣BC=BD﹣BC,即AB=CD.…………………………6分21.(本题满分6分)解:∠BQM=60°…………………………1分∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠BCA=∠BAC=60°,在△ABM和△BCN中BM=CN∠ABM=∠BCNAB=BC∴△ABM≌△BCN(SAS),∴∠M=∠N,又∠NAQ=∠MAC,∴∠BQM=∠N+∠NAQ=∠M+∠MAC=∠ACB=60°.……………………6分22.(本题满分6分)(1)证明:连接AE,∵AD⊥BC于点D,且D为线段CE的中点,∴AD垂直平分CE,∴AC=AE,∵EF垂直平分AB,∴AE=BE,∴BE=AC;……………3分(2)∵EF垂直平分AB,∴EF⊥AB,∴∠BFE=90°∵∠BEF=55°,∴∠B=35°∵AE=BE,∠B=35°,∴∠BAE=∠B=35°,∵AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣35°=55°,∴∠EAD=55°﹣35°=20°,∵AC=AE,AD⊥BC,∴∠EAD=∠CAD=20°,∴∠BAC=∠BAE+∠EAD+∠CAD=75°.……………………………6分23.(本题满分6分)(1)解:AE=BD,……………………………1分∵AC⊥BC,DC⊥EC,∴∠ACB=∠DCE=90°,∴∠ACE=∠BCD,∵AC=BC,EC=DC,在△ACE和△BCD中,AC =BC ∠ACE =∠BCD EC =DC∴△ACE ≌△BCD (SAS )∴AE =BD .……………………4分(2)解:50.……………………6分如图,AE 、BD 相交于点O ,AC 、BD 相交于点H ,∵AC ⊥BC ,DC ⊥EC ,∴∠ACB =∠DCE =90°,∵AC =3,CE =4,∴DE 2=2CE 2=2×42=32,AB 2=2AC 2=2×32=18,由(1)得△ACE ≌△BCD (SAS ),∴∠CAE =∠CBD ,∵∠AHO =∠BHC ,∴∠CBD +∠CHB =∠CAE +∠AHO =90°,∴AE ⊥BD ,∴AD 2=OA 2+OD 2,BE 2=OB 2+OE 2,∴AD 2+BE 2=OA 2+OD 2+OB 2+OE 2=DE 2+AB 2=32+18=50.24.(本题满分8分)解:(1)如图2中,∵AB =AC ,∠BAD =∠CAD ,∴BD =DC =3,∴BC =6,∴h (BC )=BC ﹣AD =6﹣5=1.故答案为1.…2分(2)如图3中,作BH ⊥AC 于H .∵∠ABC =90°,AB =5,BC =12,∴AC 2=AB 2+BC 2=169,∴AC=13∵21•AC •BH =21•AB •BC ,∴BH =1360∴h (AC )=AC ﹣BH =13﹣1360=13109.故答案为13109.……………4分(3)如图4所示,∵AD ⊥BC ,∴∠ADB =∠ADC =90°,在Rt △ABD 中,AB =25,AD =15,根据勾股定理得:BD =AB 2﹣AD 2=400,∴BD =20,在Rt △ADC 中,AC =17,AD =15,根据勾股定理得:DC =AC 2﹣AD 2=64,∴BD =8,∴BC =BD +DC =20+8=28,∴h (BC )=BC ﹣AD =28﹣15=13;………………6分如图5所示,BC =BD ﹣DC =20﹣8=12,∴h (BC )=BC ﹣AD =12﹣15=﹣3.综上所述,h (BC )为13或﹣3,……………………8分29292121(1)如图所示,过点M 作MD ⊥AB 于点D ,∵B C=9cm ,AC =12cm ,AB =15cm ∴∠C =90°∵BM 平分∠A BC ,∠C =90°∴MD =MC .在Rt △BMD 与Rt △BMC 中,MD =MC BM =BM∴Rt △BMD ≌Rt △BMC (HL ),∴BD =BC =9cm ,∴AD =15—9=6cm .设MC =x cm ,则MA =(12—x )cm在Rt △AMD 中,MD 2+AD 2=MA 2,即x 2+62=(12—x )2,解得:x =,∴当t =秒时,AM 平分∠CAB ;…………………………………………4分(2)10若M 在边AC 上时,BC =CM =9cm ,此时用的时间为9s ,△BCM 为等腰三角形;20若M 在AB 边上时,有三种情况:①若使BM =CB =9cm ,此时AM =6cm ,M 运动的路程为18cm ,所以用的时间为18s ,故t=18s 时△BCM 为等腰三角形;②若CM =BC =9cm ,过C 作斜边AB 的高,根据面积法求得高为7.2cm ,根据勾股定理求得BM =10.8cm ,所以M 运动的路程为27﹣10.8=16.2cm ,∴t 的时间为16.2s ,△BCM 为等腰三角形;③若BM =CM 时,则∠MCB =∠MBC ,∵∠ACM +∠BCM =90°,∠MBC +∠CAM =90°,∴∠ACM =∠CAM ,∴MA =MC ∴MA =MB =7.5cm ∴M 的路程为19.5cm ,所以时间为19.5s 时,△BCM 为等腰三角形.∴t=9s 或16.2s 或18s 或19.5s 时△BCM 为等腰三角形………………8分(3)6s 或18s …………………………………………………………………………10分1°相遇前当M 点在AC 上,N 在AB 上,则AM =12﹣t ,AN =24﹣2t ,12﹣t +24﹣2t =×36,∴t =6;2°相遇后当M 点在AB 上,N 在AC 上,则AM =t ﹣12,AN =2t ﹣24,t ﹣12+2t ﹣24=×36,∴t =18,∴t =6s 或18s 时,直线MN 把△ABC 的周长分成相等的两部分.21【背景问题】解:(1)在△ADC 和△EDB 中,BD =CD∠BDE =∠CDA AD =DE∴△ADC ≌△EDB (SAS ),故答案选:B ;…………………………………………2分(2)AE ﹣AB <BE <AB +AE ,∴2<AC <18,故答案为:2<AC <18;…………4分【感悟方法】证明:延长AD 到M ,使AD =DM ,连接BM ,如图2,∵AD 是△ABC 中线,∴BD =DC ,在△ADC 和△MDB 中,BD =DC∠ADC =∠BDM AD =DM∴△ADC ≌△MDB (SAS ),∴BM =AC ,∠CAD =∠M ,∵AC =BF ∴BF =BM ,∴∠BFD =∠M ,∴∠BFD =∠CAD =∠M ,∵∠AFE =∠BFD ,∴∠CAD =∠AFE ,∴AE =EF .…………………………8分【深入探究】(3)8…………………………………………………………………………10分理由如下:如图3,延长CQ 到R ,使得QR =CQ ,连AR ∵△ABC 和△CDE 都是等腰直角三角形,∴∠ACB =∠DCE =90°,AC =BC ,CE =CD ,∴∠BCE +∠ACD =180°,在△AQR 和△DQC 中,AQ =DQ ∠AQR =∠CQD QR =QC∴△AQR ≌△DQC (SAS ),∴AR =CD =CE ,∠ARQ =∠DCQ ,∴AR ∥CD ,∴∠CAR +∠ACD =180°,∴∠CAR =∠BCE ,在△ACR 和△CBE 中,CA =CB ∠CAR =∠BCE AR =CE∴△ACR ≌△CBE (SAS ),∴∠ACR =∠CBE ,CR =BE ,∵∠ACR +∠BCK =90°,∴∠CBE +∠BCK =90°,∴∠CKB =90°,∴BE ⊥QC .∵CQ=4,CK=2,∴BE=8∴ BCE S △BE •CK=821(4)2……………………………………………………………………12分解:如图4,过点B 作BM ∥AC 交GE 于点M ,∴∠C =∠MBC ,∵点E 为BC 边的中点∴BE=CE在△BEM 和△CEF 中∠MBC =∠C BE=CE ∠BEM =∠CEF∴△BEM ≌△CEF (ASA ),∴∠M =∠MFC =∠AFG ,BM =FC ,∵AD 平分∠BAC ,BM ∥AC ,则∠BAD =∠DAC =45°=∠G =∠AFG ,∠M =∠AFG =45°,∴∠G =∠M ,∴BM =BG ,∵∠G =45°,∴△AFG 为等腰直角三角形,∵CF =6,设AF =AG =x ,∴AC =AF +FC =x +6,AB =BG -AG =6-x ∵ABC S △=21AB ×AC ∴(x +6)(6-x )=16,∴x=2,∴AG =2。
2022-2023学年第二学期八年级期中考试语文试卷(考试时间:150分钟满分:150分)一、积累运用(29分)古城扬州历史悠久,底蕴深厚。
文昌阁四望亭皆是明清建筑;银杏树石塔寺不失唐宋遗风。
早上皮包水晚上水包皮,扬州人家;春有花养人冬有人养花,宜居城市。
文章太守平山送夕阳,坐花载月风流宛在;东坡学士江南问众侣,可上扬州一醉方休?暖阳里的瘦西湖有一种“懒起画蛾眉,弄妆梳洗迟”的静谧,小船上的恋人只想在这淡淡的湖光烟霭中执手相看。
大明寺悠悠的晚钟能让浮zào的心沉静下来,喝一杯清茶,悟一份真谛,感受生活的美好。
古运河穿越千年风烟而来,在扬州城内蜿蜒而过。
船桨拂过运河涟yī,摇曳出古城曾经的繁华,岁月斑驳着东关古渡口,晚风拂柳总有说不尽的温柔。
烟花三月已至,快来这座慢生活的小城逛逛吧……1.(1)给加粗字注音。
(2分)静谧.(▲)烟霭.(▲)(2)根据拼音写汉字。
(2分)浮zào(▲)涟yī(▲)(3)下列对这段话的分析,哪一项正确?(▲)(2分)A.底蕴静谧蜿蜒摇曳这四个词的词性各不相同。
B. 历史悠久坐花载月宜居城市风流宛在这四个短语类型各不相同。
C.“早上皮包水晚上水包皮,扬州人家;春有花养人冬有人养花,宜居城市”这副对联对仗工整,符合对联平仄要求。
D.“文昌阁四望亭皆是明清建筑;银杏树石塔寺不失唐宋遗风”这段话的标点符号是错误的。
2.下列文学常识及课文内容表述错误的一项是()(3分)A.《诗经》使我国最早的一部诗歌总集,收录了从西周到春秋时期的诗歌305篇。
B.阿西莫夫是美国科幻小说家、科普作家,他的《恐龙无处不有》从南极恐龙化石的发现来论证“板块构造”理论。
C.《大雁归来》的作者是英国著名环境保护主义者利奥波德,其代表作是《沙乡年鉴》。
D. 《时间的脚印》是一篇科普文,让我们了解了地貌的变化、地质的变迁以及古代生物繁衍、灭绝的信息。
3.默写。
(9分,每空1分)(1)▲,君子好逑。
2022/2023学年度第一学期期中考试八年级数学试题时间:100分钟分值:120分考试形式:闭卷命题人:审核人:一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题卡相应位置上)1.下列四个图形中,是轴对称图形的为【▲ 】A .B .C .D .2.下列等式正确的是【▲ 】A .±=2B .=﹣2C .=﹣2D .=0.13.下列各组数中,能作为直角三角形三边长的是【▲ 】A.1,2,3 B.4,5,6 C.6,8,10 D.7,8,94.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩“抢手绢”游戏,要求在他们中间放一个手绢,谁先抢到手绢谁获胜,为使游戏公平,则手绢应放的最适当的位置是在△ABC的【▲ 】A.三边垂直平分线的交点B.三边中线的交点C.三条角平分线的交点D.三边上高的交点5.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=10,则点P到AB的距离是【▲ 】A.15 B.12 C.5 D.10(第5题)(第6题)(第8题)(第11题)6.如图,DE是△ABC中边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为【▲ 】A.16cm B.28cm C.26cm D.18cm7.若等腰三角形一个外角等于100°,则它的顶角度数为【▲ 】A.20°B.80°C.20°或80°D.无法确定8.如图,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9.则AB为【▲ 】A.19 B.12 C.21 D.26二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上).9.16的算术平方根是▲ .10.已知+(n ﹣1)2=0,则mn=▲ .11.如图所示,是一块由花园小道围成的边长为12米的正方形绿地,在离C处5米的绿地旁边B 处有健身器材,为提醒居住在A处的居民爱护绿地,不直接穿过绿地从A到B,而是沿小道从A→C→B,请问你多走了▲ 米.12.如图,点D是BC上的一点,若△ABC≌△ADE,且∠B=65°,则∠EAC=▲ °.(第12题)(第14题)(第15题)(第16题)13.直角三角形的两边长为5、12,则斜边上的中线长为▲ .14.如图,折叠长方形纸片ABCD,使点D落在边BC上的点F处,折痕为AE.已知AB=6cm,BC=10cm.则EC的长为▲ cm.15.如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形、点C也在格点上,且△ABC为等腰三角形,则符合条件的点C共有▲个.16.如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,延长BP至点D,使得AD=AP =5,当AD⊥AB时,过D作DE⊥AC于E,若DE=4,则△BCP面积为▲ .三、解答题(本大题共有10小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.(本题满分6分)求下列各式中x的值:(1)x2﹣25=0;(2)(x﹣2)3﹣8=0.18.(本题满分6分)已知2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4.(1)求a、b的值;(2)求a+2b的算术平方根.19.(本题满分5分)如图,校园有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你用尺规作出灯柱的位置点P.(请保留作图痕迹)20.(本题满分5分)如图,B、C、D、E在同一条直线上,AB∥EF,BC=DE,AB=EF,求证:△ACB≌△FDE.(第19题)(第20题)21.(本题满分6分)如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.22.(本题满分6分)如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)三角形ABC 的面积为▲;(3)在直线l上找一点P,使PB+PC的长最短.23.(本题满分8分)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD,∠BAC=∠D,BC=CE.(1)求证:AC=CD.(2)若AC=AE,∠ACD=80°,求∠DEC的度数.24.(本题满分8分)如图,在△ABC中,AB、AC边的垂直平分线相交于点O,分别交BC边于点M、N,连接AM,AN.(1)若△AMN的周长为6,求BC的长;(2)若∠MON =30°,求∠MAN的度数;(3)若∠MON=45°,BM=3,BC=12,求MN的长度.25.(本题满分10分)阅读理解:亲爱的同学们,在以后的学习中我们会学习一个定理:直角三角形斜边上的中线等于斜边的一半.即:如图1:在Rt△ABC中,∠ACB=90°,若点D是斜边AB的中点,则CD=AB.牛刀小试:(1)在图1中,若AC=6,BC=8,其他条件不变,则CD=▲;活学活用:(2)如图2,已知∠ABC=∠ADC=90°,点E、F分别为AC、BD的中点,AC=26,BD=24.求EF的长;问题解决:(3)如图3,在Rt△ABC中,∠ACB=90°,AB=10,以AB为边在AB上方作等边三角形ABD,连接CD,求CD的最大值.26.(本题满分12分)阅读以下材料,完成以下两个问题.[阅读材料]已知:如图,△ABC(AB≠AC)中,D、E在BC上,且DE=EC,过D作DF∥BA 交AE于点F,DF=AC.求证:AE平分∠BAC.结合此题,DE=EC,点E是DC的中点,考虑倍长,并且要考虑连接哪两点,目的是为了证明全等,从而转移边和角.有两种考虑方法:①考虑倍长FE,如图(1)所示;②考虑倍长AE,如图(2)所示以图(1)为例,证明过程如下:证明:延长FE至G,使EG=EF,连接CG.在△DEP和△CEG中,,∴△DEF≌△CEG(SAS).∴DF=CG,∠DFE=∠G.∵DF=AC,∴CG=AC.∴∠G=∠CAE.∴∠DFE=∠CAE.∵DF∥AB,∴∠DFE=∠BAE.∴∠BAE=∠CAE.∴AE平分∠BAC.问题1:参考上述方法,请完成图(2)的证明.问题2:根据上述材料,完成下列问题:已知,如图3,在△ABC中,AD是BC边上的中线,分别以AB,AC为直角边向外作等腰直角三角形,∠BAE=∠CAF=90°,AE=AB,AC=AF,AD=3,求EF的长.。
河南洛阳市洛宁县-2020学年八年级下学期期中考试语文试题及答案及答案部编人教版八年级下册洛宁县—2020学年第二学期期中考试八年级语文试卷―、积累与运用(28分)1.下面词语出划线的字,读音都不相同的一项是()(2分)A.撺掇/蹿跳晦暗/诲人不倦通宵达旦/九霄云外B.渺小/飘渺姿态/恣意妄为口干舌燥/不骄不躁C.重新/重复长度/草长莺飞人才济济/扶危济困D.陨落/损失咀嚼/咬文嚼字千载难逢/风雪载途2.下面各组词语中没有错别字的一项是()(2分)A.羁绊茂腾腾粗犷豪放人情事故B.悠扬荧光屏大彻大悟雪夜驰马C.严俊马前卒和睦相处不容置疑D.糜子翻筋斗周而复始难以治信3.关于课文理解不正确的一项是()(2分)A. 《社戏》一文作者以饱含深情的笔触,写出了“我”十一二岁时在平桥村夜航到赵庄看社戏的一段生活经历。
作品刻画了一群农家少年朋友的形象,表现了劳动人民淳朴、善良、友爱、无私的美好品德,展示了农村自由天地中充满诗情画意的生活画卷,表达了作者对劳动者的赞美和对新生活的渴望。
B. 《回延安》用陕北民歌“信天游”的形式写成,使用了富有地方色彩的词语,展现出浓郁的陕北风情。
C. 《大自然的语言》把无比丰富的物候现象——花香鸟语、草长莺飞等比作大自然的语言。
D. 《小石潭记》选自唐代柳宗元的《虞初新志》。
4. 下列句子中有语病的一句是()(2分)A. —个人能否把工作做好,关键在于他是否敬业。
B. 省市领导在会议上明确要求,各部门必须尽快提高传染病防控工作的效率。
C. 著名京剧表演艺术家梅兰芳先生的祖籍是江苏泰州人。
D. 在巡检排查过程中,我市供电部门发现并解决了居民用电方面的问题。
5. 古诗文默写。
(8分)((1) 潭西南而望,.明灭可见。
不可知其源。
(柳宗元《小石潭记》)(2) 关关雎鸠,在河之洲。
窈窕淑女,。
(《关雎》)(3) 蒹葭苍苍,。
(《蒹葭》)(4)《望洞庭湖赠张丞相》中表达想达到某个目的,又苦于没有途径的句子是:__________________________________________________________.(5) 子曰:“《关雎》,, 。
2023年11月-黄埔期中考-八年级数学卷一.选择题(共10小题,每题3分,共30分)1.下面各图形不是轴对称图形的是( )A.圆B.长方形C.等腰梯形D.平行四边形2.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A.∠A、∠B两内角的平分线的交点处B.AC、AB两边高线的交点处C.AC、AB两边中线的交点处D.AC、AB两边垂直平分线的交点处3.如图,要测量池塘两岸相对的两点A、B的距离,可以在池塘外取AB的垂线BF上的两点C、D,使得BC=CD,再画出BF的垂线DE,使点E与点A、C在一条直线上,这是测得线段DE 的长就是线段AB的长,其原理运用到三角形全等的判定是( )A.ASA B.SSS C.HL D.SAS4.如图,在△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B的度数为( )A.25°B.30°C.35°D.40°5.设等腰三角形的一边长为5,另一边长为10,则其周长为( )A.15B.20C.25D.20或256.如图,△ABC≌△DEC,点E在线段AB上,∠B=75°,则∠ACD的度数为( )A.20°B.25°C.30°D.40°7.如图,在△ABC中,分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于M、N 两点;作直线MN分别交BC、AC于点D、E.若AE=6cm,△ABD的周长为26cm,则△ABC 的周长为( )A.32cm B.38cm C.44cm D.50cm8.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于( )A.280°B.285°C.290°D.295°9.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN最小时,∠MBN的度数为( )A.15°B.22.5°C.30°D.47.5°10.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过O点作EF∥BC交AB于点E,交AC于点F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF=mn,正确的结论有( )个.A.1B.2C.3D.4二.填空题(共6小题,每题3分,共18分)11.已知点P(﹣a+3b,3)与点Q(﹣5,a﹣2b)关于x轴对称,则a= b = .12.正n边形的每个内角都是120°,这个正n边形的对角线条数为 条.13.如图,在平面直角坐标系中,已知点A(0,3),点B(9,0),且∠ACB=90°,CA=CB,则点C的坐标为 .14.如图,△ABC中,∠A=60°,将△ABC沿DE翻折后,点A落在BC边上的A′处,如果∠A′EC=70°,那么∠ADE= 度.15.如图所示,∠BOC=10°,点A在OB上,且OA=1,按下列要求画图:以点A为圆心、1为半径向右画弧交OC于点A1得到第1条线段AA1;再以点A1为圆心、1为半径向右画弧交OB于点A2,得到第2条线段A1A2;再以点A2为圆心、1为半径向右画弧交OC于点A3,得到第3条线段A2A3…这样画下去,则∠A6A7C的度数为 .16.如图,△ABC中,∠C=90°,AD平分∠BAC,E为AC边上的点,连接DE,DE=DB,下列结论:①∠DEA+∠B=180°;②AB﹣AC=CE;③AC=(AB+CD);④S△ADC=S四边形ABDE,其中一定正确的结论有 (填写序号即可).三.解答题(共8小题,共72分)17.(本题6分)如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,且BE=CF.求证:AB=AC.18.(本题6分)如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,求证:∠A =2∠P.19.(本题8分)如图,在正方形网格上的一个△ABC,且每个小正方形的边长为1(其中点A,B,C 均在网格上).(1)画出△ABC关于直线MN对称的△A1B1C1;(2)直接写出△ABC的面积为 ;(3)在直线MN上画出点P,使得PA+PC最小(保留作图痕迹).20.(本题8分)使用直尺与圆规完成下面作图,(不写作法,保留作图痕迹)(1)在AB上找一点P使得P到AC和BC的距离相等;(2)在射线CP上找一点Q,使得QB=QC;(3)若BC=16,则点Q到边AC的距离为 .21.(本题10分)如图,在四边形ABDE中,C是BD边的中点.若AC平分∠BAE,∠ACE=90°,猜想线段AE、AB、DE的长度满足的数量关系为并证明.22.(本题10分)如图,在△ABC中,AC=BC,∠ACB=120°,CD是BC边上的中线,BD的垂直平分线EF交BC于点E,交AB于点F,∠CDG=15°.(1)求证:AG=BD;(2)判断△CDE的形状,并加以证明;(3)若EF=1,求AC边的长.23.(本题12分)对于平面直角坐标系xOy中的线段MN及点Q,给出如下定义:若点Q满足QM=QN,则称点Q为线段MN的“中垂点”;当QM=QN=MN时,称点Q为线段MN的“完美中垂点”.(1)如图1,A(4,0),下列各点中,线段OA的中垂点是 .Q1(1,4),Q2(4,),Q3(2,﹣2)(2)如图2,点A为x轴上一点,若Q(1,)为线段OA的“完美中垂点”,∠QOA=60°写出线段OQ的两个“完美中垂点”是 和 .(3)如图3,若点A为x轴正半轴上一点,点Q为线段OA的“完美中垂点”,点P(0,m)在y轴负半轴上,在线段PA上方画出线段AP的“完美中垂点”M,直接写出MQ= .(用含m的式子表示).并求出∠MQA.24.(本题12分)0在平面直角坐标系中,已知A(a,0),B(0,b),AB=AC,且AB⊥AC,AC 交y轴于点E.(1)如图1,若点C的横坐标为﹣a,求证:AE=CE;(2)如图2,若BE平分∠ABC,点E的坐标为(0,b﹣6),求点C的横坐标;(3)如图3,若a=1,以BC为边在BC的左侧作等边△BCM,当∠BOM=60°时,求OC的长.2023年11月-黄埔期中考-八年级数学卷参考答案与试题解析一.选择题(共10小题)1.下面各图形不是轴对称图形的是( )A.圆B.长方形C.等腰梯形D.平行四边形【解答】解:圆、长方形和等腰三角形都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,平行四边形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,故选:D.2.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A.∠A、∠B两内角的平分线的交点处B.AC、AB两边高线的交点处C.AC、AB两边中线的交点处D.AC、AB两边垂直平分线的交点处【解答】解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在AC、AB两边垂直平分线的交点处,故选:D.3.如图,要测量池塘两岸相对的两点A、B的距离,可以在池塘外取AB的垂线BF上的两点C、D,使得BC=CD,再画出BF的垂线DE,使点E与点A、C在一条直线上,这是测得线段DE 的长就是线段AB的长,其原理运用到三角形全等的判定是( )A.ASA B.SSS C.HL D.SAS【解答】解:因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选:A.4.如图,在△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B的度数为( )A.25°B.30°C.35°D.40°【解答】解:∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD又∵CD平分∠ACB,∴∠ACB=2∠ACD=100°,∴∠B=180°﹣∠A﹣∠ACB=180°﹣50°﹣100°=30°,故选:B.5.设等腰三角形的一边长为5,另一边长为10,则其周长为( )A.15B.20C.25D.20或25【解答】解:分两种情况:当腰为5时,5+5=10,所以不能构成三角形;当腰为10时,5+10>10,所以能构成三角形,周长是:10+10+5=25.故选:C.6.如图,△ABC≌△DEC,点E在线段AB上,∠B=75°,则∠ACD的度数为( )A.20°B.25°C.30°D.40°【解答】解:∵△ABC≌△DEC,∴∠ACB=∠DCE,BC=EC,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,即∠BCE=∠ACD,∠BEC=∠B=75°,∴∠BCE=180°﹣∠B﹣∠BEC=30°,∴∠ACD=30°.故选:C.7.如图,在△ABC中,分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于M、N 两点;作直线MN分别交BC、AC于点D、E.若AE=6cm,△ABD的周长为26cm,则△ABC 的周长为( )A.32cm B.38cm C.44cm D.50cm【解答】解:∵DE垂直平分线段AC,∴DA=DC,AE+EC=12(cm),∵AB+AD+BD=26(cm),∴AB+BD+DC=26(cm,∴△ABC的周长=AB+BD+BC+AC=26+12=38(cm),故选:B.8.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于( )A.280°B.285°C.290°D.295°【解答】解:∵∠C=∠F=90°,∠A=45°,∠D=30°,∴∠2+∠3=180°﹣∠D=150°,∵∠α=∠1+∠A,∠β=∠4+∠C,∵∠1=∠2,∠3=∠4,∴∠α+∠β=∠A+∠1+∠4+∠C=∠A+∠C+∠2+∠3=45°+90°+150°=285°,故选:B.9.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN最小时,∠MBN的度数为( )A.15°B.22.5°C.30°D.47.5°【解答】解:如图1中,作CH⊥BC,使得CH=BC,连接NH,BH.∵△ABC是等边三角形,AD⊥BC,CH⊥BC,∴∠DAC=∠DAB=30°,AD∥CH,∴∠HCN=∠CAD=∠BAM=30°,∵AM=CN,AB=BC=CH,∴△ABM≌△CHN(SAS),∴BM=HN,∵BN+HN≥BH,∴B,N,H共线时,BM+BN=NH+BN的值最小,如图2中,当B,N,H共线时,∵△ABM≌△CHN,∴∠ABM=∠CHB=∠CBH=45°,∵∠ABD=60°,∴∠DBM=15°,∴∠MBN=45°﹣15°=30°,∴当BM+BN的值最小时,∠MBN=30°,故选:C.10.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过O点作EF∥BC交AB于点E,交AC于点F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF=mn,正确的结论有( )个.A.1B.2C.3D.4【解答】解:∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°﹣∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+∠A;故②正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=AE•OM+AF•OD=OD•(AE+AF)=mn;故④正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故③正确.故选:D.二.填空题(共6小题)11.已知点P(﹣a+3b,3)与点Q(﹣5,a﹣2b)关于x轴对称,则a= ﹣19 b= ﹣8 .【解答】解:∵点P(﹣a+3b,3)与点Q(﹣5,a﹣2b)关于x轴对称,∴,解得.故答案为:﹣19,﹣8.12.正n边形的每个内角都是120°,这个正n边形的对角线条数为 9 条.【解答】解:由多边形内角和公式列方程,180°(n﹣2)=120°n解得,n=6.∴该正多边形为正六边形.所以该六边形对角线条数==9(条).故答案为9.13.如图,在平面直角坐标系中,已知点A(0,3),点B(9,0),且∠ACB=90°,CA=CB,则点C的坐标为 (6,6)或(3,﹣3) .【解答】解:如图,当点C在第一象限时,过点C作CE⊥OA,CF⊥OB,∵∠AOB=90°,∴四边形OECF是矩形,∴∠ECF=90°,∵∠ACB=90°,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(AAS),∴CE=CF,∵四边形OECF是矩形,∴矩形OECF是正方形,∴OE=OF,∵AE=OE﹣OA=OE﹣3,BF=OB﹣OF=9﹣OF,∴OE=OF=6,∴C(6,6),当点C在第四象限时,过点C'作C'H⊥OA,CG⊥OB,同理得,C'(3,﹣3)故答案为:(6,6)或(3,﹣3).14.如图,△ABC中,∠A=60°,将△ABC沿DE翻折后,点A落在BC边上的A′处,如果∠A′EC=70°,那么∠ADE= 65 度.【解答】解:∵∠A′EC=70°,∴∠AEA′=180°﹣∠A′EC=180°﹣70°=110°,由折叠性质可得:∠A′ED=∠AED=∠AEA′=55°,∵∠A=60°,∴∠ADE=180°﹣∠AED﹣∠A=180°﹣55°﹣60°=65°.故答案为:65.15.如图所示,∠BOC=10°,点A在OB上,且OA=1,按下列要求画图:以点A为圆心、1为半径向右画弧交OC于点A1得到第1条线段AA1;再以点A1为圆心、1为半径向右画弧交OB于点A2,得到第2条线段A1A2;再以点A2为圆心、1为半径向右画弧交OC于点A3,得到第3条线段A2A3…这样画下去,则∠A6A7C的度数为 110° .【解答】解:∵AO=A1A,A1A=A2A1,…;则∠AOA1=∠OA1A,∠A1AA2=∠A1A2A,…;∵∠BOC=10°,∴∠A1AB=2∠BOC=20°同理可得∠A2A1C=30°,∠A3A2B=40°,∠A4A3C=50°,∠A5A4B=60°,∠A6A5C=70°,∠A7A6B=80°,∴∠A6A7O=∠A7A6B﹣∠BOC=70°∴∠A6A7C=180°﹣∠A6A7O=110°,故答案为:110°.16.如图,△ABC中,∠C=90°,AD平分∠BAC,E为AC边上的点,连接DE,DE=DB,下列结论:①∠DEA+∠B=180°;②AB﹣AC=CE;③AC=(AB+CD);④S△ADC=S四边形ABDE,其中一定正确的结论有 ①②④ (填写序号即可).【解答】解:如图,过D作DF⊥AB于F,∵∠C=90°,AD是角平分线,∴DC=DF,∠C=∠DFB,又∵DE=DB,∴Rt△CDE≌Rt△FDB(HL),∴∠B=∠CED,∠CDE=∠FDB,CE=BF,又∵∠DEA+∠DEC=180°,∴∠DEA+∠B=180°,故①正确;∵AD=AD,DC=DF,∴Rt△CDA≌Rt△FDA(HL),∴AC=AF,∴AB﹣AC=AB﹣AF=BF=CE,故②正确;∵AC=AF,∴AB+AE=(AF+FB)+(AC﹣CE)=AF+AC=2AC,∴AC=(AB+AE),∵CD≠AE,∴AC≠(AB+CD),故③错误;∵Rt△CDE≌Rt△FDB,∴S△CDE=S△FDB,∴S四边形ABDE=S四边形ACDF,又∵△ACD≌△AFD,∴S△ACD=S△ADF,∴S△ADC=S四边形ACDF=S四边形ABDE,故④正确;∴一定正确的结论有①②④.故答案为:①②④.三.解答题(共8小题)17.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,且BE=CF.求证:AB=AC.【解答】证明:∵D是BC的中点,∴BD=CD,∵DE⊥AB,DF⊥AC,∴△BED和△CFD都是直角三角形,在△BED和△CFD中,,∴△BED≌△CFD(HL),∴∠B=∠C,∴AB=AC(等角对等边).18.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,求证:∠A=2∠P.【解答】证明:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠PBC=∠ABC,∠PCM=∠ACM,∵∠ACM是△ABC的外角,∠PCM是△PBC的外角,∴∠PCM=∠P+∠PBC,∠ACM=∠A+∠ABC,∴∠ACM=∠P+∠ABC,∴(∠A+∠ABC)=∠P+∠ABC,∠A+∠ABC=∠P+∠ABC,∠A=∠P,∴∠A=2∠P.19.如图,在正方形网格上的一个△ABC,且每个小正方形的边长为1(其中点A,B,C均在网格上).(1)画出△ABC关于直线MN对称的△A1B1C1;(2)直接写出△ABC的面积为 5.5 ;(3)在直线MN上画出点P,使得PA+PC最小(保留作图痕迹).【解答】解:(1)如图,△A1B1C1即为所求;故答案为:5.5;(3)如图,点P即为所求.20.使用直尺与圆规完成下面作图,(不写作法,保留作图痕迹)(1)在AB上找一点P使得P到AC和BC的距离相等;(2)在射线CP上找一点Q,使得QB=QC;(3)若BC=16,则点Q到边AC的距离为 8 .【解答】解:(1)如图所示,点P即为所求;(2)如图所示,点Q即为所求;(3)如图所示,设线段BC的垂直平分线交BC于点D,∴∠QDB=90°=∠ACB,,∴AC∥QD,∴点Q到AC的距离为CD的长,即为8(平行线间间距相等),故答案为:8.21.如图,在四边形ABDE中,C是BD边的中点.若AC平分∠BAE,∠ACE=90°,猜想线段AE、AB、DE的长度满足的数量关系为并证明.【解答】解:AE=AB+DE;理由:在AE上取一点F,使AF=AB.∵AC平分∠BAE,∴∠BAC=∠FAC.在△ACB和△ACF中,,∴△ACB≌△ACF(SAS),∴BC=FC,∠ACB=∠ACF.∵C是BD边的中点.∴BC=CD,∴CF=CD.∵∠ACE=90°,∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90°∴∠ECF=∠ECD.在△CEF和△CED中,,∴△CEF≌△CED(SAS),∴EF=ED.∵AE=AF+EF,∴AE=AB+DE.22.如图,在△ABC中,AC=BC,∠ACB=120°,CD是BC边上的中线,BD的垂直平分线EF 交BC于点E,交AB于点F,∠CDG=15°.(1)求证:AG=BD;(2)判断△CDE的形状,并加以证明;(3)若EF=1,求AC边的长.【解答】证明:∵AC=BC,∠ACB=120°,CD是BC边上的中线,∴CD⊥AB,∠A=∠B=(180°﹣∠ACB)=30°,AD=BD,∴∠ADC=∠CDB=90°,∵∠CDG=15°,∴∠ADG=90°﹣∠CDG=75°,∴∠AGD=180°﹣∠A﹣∠ADG=75°,∴∠AGD=∠ADG,∴AG=AD,∴AG=BD;(2)结论:△CDE是等边三角形.∵EF垂直平分线段BD,∴DE=EB,∵∠B=30°,∴∠EDB=∠B=30°,∴∠CDE=90°﹣∠EDB=60°,又∵AC=BC,∠ACB=120°,CD是BC边上的中线,∴∠DCB=∠ACB=60°,∴∠DCE=∠CDE=60°,∴△CDE是等边三角形;(3)∵EF⊥DB,∠B=30°,EF=1,∴BE=2EF=2,∴DE=2,∵△CDE是等边三角形,∴CE=DE=2,∴BC=4,∴AC=BC=4.23.对于平面直角坐标系xOy中的线段MN及点Q,给出如下定义:若点Q满足QM=QN,则称点Q为线段MN的“中垂点”;当QM=QN=MN时,称点Q为线段MN的“完美中垂点”.(1)如图1,A(4,0),下列各点中,线段OA的中垂点是 Q3(2,﹣2) .Q1(1,4),Q2(4,),Q3(2,﹣2)(2)如图2,点A为x轴上一点,若Q(1,)为线段OA的“完美中垂点”,∠QOA=60°写出线段OQ的两个“完美中垂点”是 (2,0) 和 (﹣1,) .(3)如图3,若点A为x轴正半轴上一点,点Q为线段OA的“完美中垂点”,点P(0,m)在y轴负半轴上,在线段PA上方画出线段AP的“完美中垂点”M,直接写出MQ= ﹣m .(用含m的式子表示).并求出∠MQA.【解答】解:(1)∵A(4,0),∴线段OA的垂直平分线为直线x=2,∵Q是线段OA的中垂点,∴点Q在线段OA的垂直平分线上,即点Q在直线x=2上,∴点Q的横坐标为2,∴只有Q2(2,﹣2)是线段OA的中垂点,故答案为:Q3(2,﹣2);(2)∵,∴,∵Q为线段OA的“完美中垂点”,∴OA=QA=OQ=2,即A(2,0)为线段OQ的一个“完美中垂点”,设线段OQ的另外一个“完美中垂点”为L,如图所示,∴OL=QL=OA=QA=OQ=2,∴△LOQ和AOQ都是等边三角形,∴∠LQO=∠AOQ=60°,∴LQ∥OA,∴.故答案为:(2,0),(﹣1,);(3)如图,分别以A、P为圆心,以AP的长为半径画弧,二者的交点在线段PA上方即为M;∵M是AP的“完美中垂点”,点Q为线段OA的“完美中垂点”∴PA=PM=AM,OQ=QA=OA,∴△OQA和△AMP都为等边三角形,∴∠OAQ=∠PAM,AQ=AO,PA=MA,∴∠OAP=∠QAM,∴△OAP≌△QAM(SAS),∵P(O,m).∴MQ=0P=﹣m,∠MQA=∠POA=90°.24.在平面直角坐标系中,已知A(a,0),B(0,b),AB=AC,且AB⊥AC,AC交y轴于点E.(1)如图1,若点C的横坐标为﹣a,求证:AE=CE;(2)如图2,若BE平分∠ABC,点E的坐标为(0,b﹣6),求点C的横坐标;(3)如图3,若a=1,以BC为边在BC的左侧作等边△BCM,当∠BOM=60°时,求OC的长.【解答】(1)证明:如图1中,过点C作CH⊥x轴于点H,连接HE.∵∠AHC=∠BOA=∠BAC=90°,∴∠CAH+∠BAO=90°,∠BAO+∠ABO=90°,∴∠CAH=∠∠ABO,在△AHC和△BOA中,,∴△AHC≌△BOA(AAS),∴CH=OA,∵A(a,0),点C的横坐标为﹣a,∴OA=OH,∵OE⊥AH,∴EH=EA,∴∠EAH=∠EHA,∵∠EAH+∠ACH=90°,∠AHE+∠CHE=90°,∴∠ECH=∠EHC,∴EH=EC,∴AE=EC;(2)解:如图2中,过点C作CH⊥x轴于点H,设BC交AH于点J.∵BE平分∠ABC,∴∠ABO=∠JBO,∵∠ABO+∠BAO=90°,∠JBO+∠BJO=90°,∴∠BAO=∠BJO,∴BJ=BA,∵OB⊥AJ,∴OJ=OA=a,∵CH∥OB,∴∠HCJ=∠JBO,∵∠CAH=∠ABO,∴∠HCJ=∠OAE,∵△AHC≌△BOA,∴CH=AO,在△CHJ和△AOE中,,∴△CHJ≌△AOE(ASA),∴OE=JH,AH=OB=b.∵E(0,b﹣6),∴HJ=OE=6﹣b,∵OA=OJ=a,∴OH=a+6﹣b,∴AH=a+6﹣b+a=b,∴a﹣b=3,OH=3∴点C的横坐标为﹣3;(3)解:如图3中,过点C作CJ⊥x轴于点J,在OM上取一点H,使得OH=OB.∵A(1,0),∴OA=1,∵OH=OB,∠BOH=60°,∴△OBH是等边三角形,∴BO=BH,∠OHB=60°,∴∠BHM=120°,∵△BCM是等边三角形,∴BC=BM,∠CBM=∠OBH=60°,∴∠MBH=∠CBO,在△MBH和△CBO中,,∴△MBH≌△CBO(SAS),∴∠BHM=∠BOC=120°,∴∠COJ=120°﹣90°=30°,∵CJ⊥AJ,同法可证△AJC≌△BOA,∴CJ=OA=1,∴OC=2CJ=2.。
八年级期中考试语文试卷及答案人教版八年级期中考试语文试卷及答案期中语文试题是八年级语文教学质量评价体系中的一个重要组成部分,期中语文试题必须坚持着眼整体,进行全面检测。
以下是店铺给你推荐的八年级期中考试语文试卷及答案,希望对你有帮助!人教版八年级期中考试语文试卷1、在下列句子的括号中,根据拼音写汉字,给加点字注音。
(2分)(1)老头子张huáng( )失措,船却走不动,鬼子紧紧追上了他。
(《芦花荡》)(2)这是某种令人惊骇( )而不知名的杰作,在不可名状的晨曦中依稀可见。
宛如在欧洲文明的地平线上瞥见的亚洲文明的剪影。
(《就英法联军远征中国给巴特勒上尉的信》)2、请在下边的括号里分别为加点的字注拼音,并解释这个字在所给词语中的意思(2分)(1)泪光晶莹( )意思: (2)囊萤映雪( )意思:3、有一些词语富有丰富的文化底蕴,如“令媛”表示“对别人女儿的尊称”。
请书写出下列词语所所表达的实际意义。
(2分)(1)桑梓: (2)家书:(3)桃李: (4)丝竹:4、汉字有强大的表意功能,有很多字是可以根据字形推测字义的,如“明”的本意是“有太阳有月亮就会光线充足”,“旦”的本意是“太阳从地平线上升起的早晨”;请根据“信”的字形推测其字义。
“信”的字义5、随着时代的发展,许多汉字焕发出新的活力,富有了新的意义。
请说说下列句子中加点字的意思。
(2分)(1)我的妈妈喜欢追韩剧,刷微博,穿名牌,潮得很呢! 潮:(2)大学毕业以后,她成天呆在家里,成了名副其实的宅女。
宅:阅读(60分)一、积累经典,展才情文思(6分)6、根据提示,将下面各句的诗文补充完整。
(1)无丝竹之乱耳,__________。
(2)大道之行也,天下为公,选贤与能,__________ 。
(3)少壮不努力,__________ 。
(4)《陋室铭》中与“时人莫小池中水,浅处无妨有卧龙”意思相近的句子是: __________,__________ 。
第1页 共3页2024年春学期宜兴市八年级数学期中考试参考答案与评分标准一、选择题(本大题共10小题,,每小题3分,共30分.)1.B 2.C 3.A 4.C 5.D 6.B 7.D 8.D 9.D 10.C二、填空题(本大题共8小题,每小题3分,共24分.)11.65. 12.2. 13.0.24. 14. 9322m m <≠且.15.73. 16.50︒. 17.83. 18.3.245三、解答题(本大题共8小题,共66分.)19. (本题满分8分) 解:(1)原式 ()()()()a b a b a b a b a b a-++-=⋅+⋅- ·························································································· 2分 2()()a a b a b a b a-=⋅+⋅-2a b =+. ···································································································· 4分 (2)两边同乘(24)x -得:561424x x x -=--+, ····························································· 1分整理得:35x =,得:53x =, ·································································································· 2分 经检验:53x =是原方程的根,所以,原方程的根是53x =. ················································ 4分 20. (本题满分8分)解:原式2213(1)1(2)x x x x x --+=++(2)2x x x -=+ ··················································································· 6分 当1x =时,原式13=-. ············································································································· 8分 21.(本题满分8分)解:(1)40; ······························································································································· 2分喜欢足球4030%12⨯=人,喜欢跑步401015123---=人(图略) ······················· 4分(2)1536013540︒⨯=︒ ··········································································································· 6分 (3)估计全校最喜爱篮球的人数比最喜爱足球的人数多1512160012040-⨯=人. ······ 8分 22.(本题满分8分)解:(1)249、0.4 ······················································································································ 4分(2)0.4 (3)18 ················································································································ 8分23.(本题满分8分)(1)证明:∵四边形ABCD 是平行四边形,O 是BD 的中点,∴AB ∥DC ,OB =OD , ················································································································ 2分 ∴∠OBE =∠ODF . ····················································································································· 3分 在△BOE 和△DOF 中,OBE ODF OB OD BOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BOE ≌△DOF (ASA ); ········································ 4分(2)证明:∵△BOE ≌△DOF ,∴EO=FO , ········································································ 5分∵OB =OD ,∴四边形BEDF 是平行四边形. ···················································· 7分 ∴DE =BF . ············································································································· 8分第2页 共3页24.(本题满分8分)(1)证明:四边形ABCD 是菱形,CD CB ∴=,ACD ACB ∠=∠, ······························· 2分在DCE ∆和BCE ∆中DC CBDCE BCE EC EC =⎧⎪∠=∠⎨⎪=⎩, ()DCE BCE SAS ∴∆∆≌,CDE CBE ∴∠=∠,3分//CD AB ,CDE AFD ∴∠=∠,EBC AFD ∴∠=∠; ·························································· 4分 (2)分两种情况:①如图1,当F 在AB 延长线上时,EBF ∠为钝角,∴只能是BE BF =,设BEF BFE x ∠=∠=︒,可通过三角形内角和为180︒得:90180x x x +++=,解得:30x =,30EFB ∴∠=︒; ································································································ 6分 ②如图2,当F 在线段AB 上时,EFB ∠为钝角,∴只能是FE FB =,设BEF EBF x ∠=∠=︒,则有2AFD x ∠=︒,可证得:AFD FDC CBE ∠=∠=∠,得290x x +=,解得:30x =,120EFB ∴∠=︒. ·································································· 8分 综上:30EFB ∠=︒或120︒.25.(本题满分8分)(1)设购买一副A 品牌球拍需要x 元,则购买一副B 品牌球拍需要(5)x +元, 由题意得:180037005x x ⨯=+,解得:30x =, ··········································································· 2分 经检验:30x =是原方程的解,535x +=, ··········································································· 4分 答:购买一副A 品牌球拍需要30元,购买一副B 品牌球拍需要35元;(2)调整价格后,购买一副A 型球拍需:30(15%)31.5+=(元), 购买一副B 型球拍需:350.621⨯=(元),设此次购买m 副A 型球拍和n 副B 型球拍,则:31.521903m n +=,则86233m n =-, 由862163316n n ⎧-⎪⎨⎪⎩,解得:1619n , ····························································································· 6分16n ∴=或17,18,19,当16n =时,31.52116903m +⨯=,此时18m =;当17n =时,31.52117903m +⨯=,此时m 不是整数,不合题意;当18n =时,31.52118903m +⨯=,此时m 不是整数,不合题意;当19n =时,31.52119903m +⨯=,此时16m =;∴方案一:购买18副A 型球拍和16副B 型球拍;方案二:购买16副A 型球拍和19副B 型球拍. ······························································· 8分第3页 共3页 26.(本题满分10分)解:(1)过点A '作A Q AB '⊥于点Q ,∵矩形OABC 中,A (83,0),C (0,2), ∴OA =83,AB =2得:103OB , ········································································ 1分 由对称得83OA OA ==',AP A P '=,则23A B OB OA ''=-=, ··················································· 2分 设AP A P x '==,则2BP AB x x =-=-,由勾股定理得:222A B A P BP ''+=, 即()2222()23x x +=-,解得:89x =,∴810299BP AB AP =-=-=, ······································ 3分 ∵90PA B '∠=︒,∴1122A BP S AB AP BP A Q '''=⋅=⋅, 即2810399A Q '⨯=,解得:815A Q '=, ·························································································· 4分 ∴点A '的横坐标为883231515-=, ···································································································· 5分 设OB 的函数表达式为y kx =,将8,23B ⎛⎫ ⎪⎝⎭代入得:34k =, ∴OB 的函数表达式为34y x =, 将3215x =代入得:33284155y =⨯=,∴328,155A ⎛⎫' ⎪⎝⎭;······································································· 6分 (2)解:①连接OM ,∵45POM ∠=︒,=90AOC ∠︒,∴1445∠+∠=︒,2345∠+∠=︒, ∵△P AO 和PA O '△对称,∴3=4∠∠,∴12∠=∠ 可得OMC OMA '≌, ∴OC OA OA '==,则四边形OABC 为正方形,∴83C (0,) ·························································· 8分 ②(Ⅰ)当823t ≤<时,∵OMC OMA '≌,OAP OA P '≌, ∴11145222POM AOA COA AOC ''∠=∠+∠=∠=︒, ··············································································· 9分 (Ⅱ)当83t >时,()Rt Rt HL OMA OMC '≌,∴12∠=∠,∵OC AP ∥,∴3OPA ∠=∠, 由折叠的性质可得:4OPA ∠=∠,90A OAP '∠=∠=︒,∴3=4∠∠,∵123490∠+∠+∠+∠=︒,12∠=∠,3=4∠∠,∴2345∠+∠=︒,即45POM ∠=︒.综上:不会改变. ····························································· 10分。
安徽八下政治期中考试真题及答案一、选择题1.我国宪法规定,中华人民共和国是工人阶级领导的、以工农联盟为基础的人民民主专政的社会主义国家。
这句话体现了我国的国家性质是()。
A. 工人阶级专政B. 工农联盟专政C. 人民民主专政D. 社会主义国家答案:C2.下列选项中,不属于我国公民基本权利的是()。
A. 受教育权B. 言论自由C. 选举权D. 追究他人刑事责任的权利答案:D3.以中国式现代化全面推进中华民族伟大复兴,要坚定不移走中国特色社会主义法治道路。
这要求党要做到()。
①领导立法②严格执法③公正司法④带头守法A. ①②B. ②③C. ①④D. ③④答案:C4.下列情境中,对应的权利解读正确的有()。
①飞飞的爸爸利用虚假事实举报某国家机关工作人员——积极行使监督权。
②洋洋的爷爷到银行领取政府发放的养老金——公民享有物质帮助权。
③班级丢失东西,班长要求搜身,雪雪拒绝——人身自由不受侵犯。
④妈妈带着上初中的雨雨参加人大代表选举——任何公民都有选举权。
A. ①②B. ②③C. ①④D. ③④答案:B5.随着《中华人民共和国无障碍环境建设法》的施行,残疾人社会保障制度和关爱服务体系进一步完善,这体现了()。
①国家加强法治宣传教育②关爱弱势群体是最大的人权③法律维护社会公平正义④国家尊重和保障人权A. ①②B. ①③C. ②④D. ③④答案:D6.表彰科学研究,组织艺术表演,修建阅览室……这样做是在保障公民的()。
A. 创作权B. 平等权C. 文化权利D. 宗教信仰自由答案:C7.交警在执勤时发现有一辆电动车在左转弯机动车道内行驶,与正常行驶的机动车抢道,交警对驾驶人的违法行为处以50元罚款的处罚。
驾驶人承担的是()。
A. 民事责任B. 行政责任C. 刑事责任D. 道德责任答案:B8.下列选项中,不属于我国公民基本义务的是()。
A. 遵守宪法和法律B. 维护国家统一和民族团结C. 劳动和受教育D. 享有选举权和被选举权答案:D9.依据宪法规定,有的法定义务要求公民必须作出一定行为,公民必须按照法律要求去做。