广义对数均值的单调性和凹凸性
- 格式:pdf
- 大小:98.71 KB
- 文档页数:3
高考数学冲刺函数的单调性与凹凸性在高考数学的备考中,函数的单调性与凹凸性是极为重要的知识点。
理解并熟练掌握这两个概念,对于解决函数相关的问题有着至关重要的作用。
首先,我们来谈谈函数的单调性。
简单来说,函数的单调性就是指函数值随着自变量的增大或减小而呈现出的上升或下降的趋势。
如果对于定义域内某个区间 D 上的任意两个自变量的值 x₁、x₂,当 x₁< x₂时,都有 f(x₁) < f(x₂),那么就称函数 f(x)在区间 D 上是增函数;反之,如果当 x₁< x₂时,都有 f(x₁) > f(x₂),那么就称函数 f(x)在区间 D 上是减函数。
那怎么判断一个函数的单调性呢?这就需要用到一些方法和技巧。
一种常见的方法是利用定义来判断。
也就是按照单调性的定义,通过比较函数值的大小来确定单调性。
这是最基础也是最根本的方法,但在实际操作中可能会比较繁琐。
另一种常用的方法是利用导数来判断。
如果函数在某个区间内的导数大于零,那么函数在这个区间上单调递增;如果导数小于零,那么函数在这个区间上单调递减。
导数就像是函数单调性的“探测器”,能够快速准确地告诉我们函数的单调性情况。
例如,对于函数 f(x) = x²,其导数 f'(x) = 2x。
当 x > 0 时,f'(x) > 0,所以函数在区间(0, +∞)上单调递增;当 x < 0 时,f'(x) <0,所以函数在区间(∞, 0) 上单调递减。
再来说说函数的凹凸性。
函数的凹凸性反映的是函数图像弯曲的方向。
如果函数 f(x)在区间 I 上连续,对于区间 I 上的任意两点 x₁、x₂,以及任意实数λ∈(0, 1),都有f(λx₁+(1 λ)x₂) ≤ λf(x₁) +(1 λ)f(x₂),那么称函数 f(x)在区间 I 上是凸函数;反之,如果都有f(λx₁+(1 λ)x₂) ≥ λf(x₁) +(1 λ)f(x₂),那么称函数 f(x)在区间 I 上是凹函数。
第四节函数单一性、凹凸性与极值我们已经会用初等数学的方法研究一些函数的单一性和某些简单函数的性质,法使用范围狭窄,而且有些需要借助某些特别的技巧,因此不拥有一般性. 工具,介绍判断函数单一性和凹凸性的简易且拥有一般性的方法. 但这些方本节将以导数为散布图示★ 单一性的鉴别法★例 1★ 单一区间的求法★例 2 ★例 3 ★例4★例5 ★例 6 ★例 7 ★例 8 ★ 曲线凹凸的观点★例 9 ★例10★ 曲线的拐点及其求法★例11 ★例12 ★例13★ 函数极值的定义★函数极值的求法★例14 ★例15 ★例16★第二充足条件下★例17 ★例18 ★例19★ 内容小结★ 讲堂练习★习题 3-4 ★ 返回内容重点一、函数的单一性:设函数y f ( x) 在 [a, b]上连续 , 在 (a, b)内可导 .(1) 若在 (a, b)内 f (x) 0 , 则函数 y f ( x) 在 [a, b] 上单一增添 ;(2) 若在 (a, b)内 f (x) 0 , 则函数 y f ( x) 在 [a, b] 上单一减少 .二、曲线的凹凸性:设 f ( x) 在 [a, b] 上连续 , 在 (a, b)内拥有一阶和二阶导数, 则(1) 若在 (a, b)内, f ( x) 0, 则 f (x) 在 [a, b]上的图形是凹的 ;(2) 若在 (a, b)内, f ( x) 0, 则 f (x) 在 [a, b]上的图形是凸的 .三、连续曲线上凹弧与凸弧的分界点称为曲线的拐点判断曲线的凹凸性与求曲线的拐点的一般步骤为:(1)求函数的二阶导数 f ( x) ;(2)令 f ( x) 0 ,解出所有实根,并求出所有使二阶导数不存在的点;(3) 对步骤 (2)中求出的每一个点,检查其周边左、右双侧 f (x) 的符号,确立曲线的凹凸区间和拐点.四、函数的极值极值的观点;极值的必需条件;第一充足条件与第二充足条件;求函数的极值点和极值的步骤:( 1)确立函数 f ( x) 的定义域,并求其导数 f ( x) ;( 2)解方程 f (x) 0 求出 f (x) 的所有驻点与不行导点;( 3)议论 f ( x) 在驻点和不行导点左、右双侧周边符号变化的状况,确立函数的极值点;( 4)求出各极值点的函数值,就获得函数 f ( x) 的所有极值 .例题选讲函数单一性的判断例 1 (E01) 议论函数 y e x x 1的单一性 .解y e x 1. 又 D:( , ). 在( ,0) 内, y 0, 函数单一减少;在 (0, ) 内, y 0, 函数单一增添 .注:函数的单一性是一个区间上的性质,要用导数在这一区间上的符号来判断,而不可以用一点处的导数符号来鉴别一个区间上的单一性.例 2 (E02) 议论函数 y 3 x2的单一区间 .解 D : ( , ). y2( x 0), 当 x 0 时,导数不存在 .33 x当x 0 时, y 0, 在 ( ,0] 上单一减少;当 0 x 时, y 0, 在 0, 上单一增添;单一区间为 ( ,0] , [0, ) .注意 : 区间内个别点导数为零不影响区间的单一性. 比如,y x3 , y x 0 0, 可是( , ) 上单一增添 .注:从上述两例可见,对函数 y f ( x) 单一性的议论,应先求出使导数等于零的点或使导数不存在的点,并用这些点将函数的定义域区分为若干个子区间,而后逐一判断函数的导数 f ( x) 在各子区间的符号,进而确立出函数y f ( x) 在各子区间上的单一性,每个使得f (x) 的符号保持不变的子区间都是函数y f ( x) 的单一区间 .求单一区间例 3 (E03) 确立函数 f ( x) 2 x3 9x 2 12x 3 的单一区间 .解 D : ( , ). f ( x) 6 x2 18x 12x 6( x 1)( x 2),解方程 f ( x) 0 得 x1 1, x2 2.当x 1 时, f ( x) 0, f ( x) 在,1 上单一增添;当 1 x 2 时, f ( x) 0, f ( x) 1,2 上单一减少;当 2 x 时, f ( x) 0, f ( x) 在 [ 2, ) 上单一增添;单一区间为 ( ,1], [1,2], [ 2, ).例4求函数y 3 ( 2x a )(a x)2 ( a 0) 的单一区间 .解y 2 2a 3x, 3 3 a )2 (a(2 x x)令 y0, 解得 x2a, 在 x 2a , x 3 a 处 y 不存在 .132在, a内, y 0, 函数单一增添 .在 a, 2 a 内, y0, 函数单一增添 .22 3在 2a, a 内, y0, 函数单一减少 .在 a,内, y0, 函数单一增添 .3例 5 当 x 0 时, 试证 x ln(1 x) 建立 .证 设 f ( x) x ln(1 x), 则 f( x) 1 x .xf ( x) 在 [ 0, ] 上连续,且在 (0,) 内可导, f (x) 0,f (x) 在 [ 0, ] 上单一增添,f ( 0) 0,当 x0 时, x ln(1 x) 0, 即 x ln(1 x). 证毕 .应用单一性证明例 6 (E04) 试证明:当 x0 时 , ln(1 x)x 1 2 .x2证 作协助函数f ( x) ln(1 x)x 1 x 2 ,2由于 f ( x) 在 [ 0, ) 上连续,在 (0,) 内可导,且 f ( x)1x 2 ,1 x1 x1 x当 x 0 时, f (x) 0, 又 f (0) 0.故当 x 0 时, f (x)f (0) 0,所以 ln(1 x)x 1 x 2.2例 7 (E05) 证明方程 x5x 10在区间 ( 1,0) 内有且只有一个实根 .证 令 f ( x)x 5x 1, 因 f ( x) 在闭区间 [ 1,0] 持续,且 f ( 1) 1 0, f (0) 1 0.依据零点定理 f ( x) 在 ( 1,0) 内有一个零点 .另一方面, 关于随意实数 x, 有 f ( x) 5 x 41 0,所以 f ( x) 在 (,) 内单一增添,所以曲线 y f ( x) 与 x 轴至多只有一个交点 .综上所述可知,方程 x5x 1 0在区间 ( 1,0) 内有且只有一个实根 .例 8 证明方程 ln xx 1在区间 (0, ) 内有两个实根 .e证 令 f ( x)ln xx 1, 欲证题设结论等价于证f (x) 在 (0, ) 内有两个零点 .e令 f (x)1 1 0x e. 因 f (e)1, lim f ( x), 故 f (x) 在 (0,e) 内有一零点 .x ex又因在 (0,e) 内 f (x) 0, 故 f ( x) 在 (0, e) 内单一增添,这零点独一 .所以 , f ( x) 在 (0,) 内有且仅有两个零点 , 证毕 .例 9 (E06)判断yx ln(1x) 的凹凸性.解 由于y 1 1 , y 11 (1 x)2x所以,题设函数在其定义域( 1, ) 内是凹的 .例 10 (E07) 判断曲线 y x3的凹凸性.解y 3x2 , y 6x, 当 x 0 时, y 0, 曲线在 ( ,0] 为凸的;当 x 0 时, y 0, 曲线在 [ 0, ) 为凹的;注意到点 (0,0) 是曲线由凸变凹的分界点 .例 11 (E08) 求曲线 y 3 x4 4 x3 1 的拐点及凹、凸区间 .解易见函数的定义域为( , ),y 12x3 12x2 , y2 36x x.3令 y 0, 得 x1 0, x2 2 .3x ( ,0) 0 (0, 2 3) 2/3 (2/3, )f ( x) + 0 -0 +f ( x) 凹的拐点(0,1) 凸的拐点 ( 2/ 3,11/ 27) 凹的所以,曲线的凹区间为( ,0] ,[2 3, ) 凸区间为 [0,2 3] 拐点为(0,1)和(2 / 3,11/ 27) .例 12 求曲线 y sin x cos x( x ( 0,2 )) 的拐点 .解y c o xs si nx, y s i nx c o sx, y c o sx s i nx.令 y 0, 得 x1 3, x2 7 .4 432 0, f 72 0,f4 4在 [0,2 ] 内曲线有拐点为3,0 ,7,0 .4 4注:若 f ( x0 ) 不存在,点 ( x0 , f ( x0 )) 也可能是连续曲线y f (x) 的拐点 .曲线凹凸性判断例 13 (E09) 求函数 y a 2 3 x b 的凹凸区间及拐点 .解y 1 1 , y 2 ,3 3( x b)2 93 (x b )5函数 y 在x b 处不行导,但 x b 时, y 0, 曲线是凸的,x b 时, y 0, 曲线是凹的 . 故点 (b,a 2 ) 为曲线 y a 2 3 x b 的拐点例 14(E10) 求出函数f ( )x3 3x2 9x5的极值 . x解f ( ) 3 2 6 x 9 3( x 1)( x 3) ,令f (x) 0, 得驻点 x 1 1, x 2 3.x x列表议论以下:x(, 1)1( 1,3)3(3,)f ( x) + 0 - 0 + f ( x)↑极大值↓极小值↑所以 , 极大值 f ( 1) 10, 极小值 f (3)22.例 15 (E11) 求函数 f ( x) ( x 4) 3 ( x 1) 2的极值 .解 (1) 函数 f ( x) 在 (,) 内连续,除 x1 外到处可导,且 f (x)5(x 1) ;33 x 1( 2) 令 f (x)0, 得驻点 x 1; x1 为 f ( x) 的不行导点 ;(3) 列表议论以下 :x( ,1)1( 1,1)1(1,)f ( x)+ 不存在 - 0 + f ( x)↑极大值↓极小值↑( 4) 极大值为 f ( 1) 0, 极小值为 f (1)33 4.例 16 求函数 f x x3 x22 / 3的单一增减区间和极值.解 求导数 f ( x) 1 x 1/ 3 , 当 x 1 时 f (0) 0, 而 x 0 时 f ( x) 不存在 ,所以,函数只可能在这两点获得极值. 列表以下 :x(,0)(0, 1)1(1,)f ( x)+ 不存在 - 0 +f ( x)↗极大值 0↘ 极小值1↗2由上表可见:函数 f ( x) 在区间 ( ,0), (1, ) 单一增添 , 在区间 (0,1) 单一减少 .在点x 0 处有极大值 , 在点 x1处有极小值 f (1) 1,如图.2例 17 (E12) 求出函数f ( x ) x 33 224 x 20 的极值 .x解f( ) 3 2 6 x 24 3( x 4)( x 2), 令 f ( x) 0, 得驻点 x4, x 2.x x12又 f (x) 6 x 6, f ( 4) 18 0,故极大值 f ( 4) 60, f (2)18 0,故极小值 f (2)48.注意: 1. f ( x0 ) 0 时, f ( x) 在点x0处不必定取极值, 仍用第一充足条件进行判断.2.函数的不行导点 ,也可能是函数的极值点 .例 18 (E13) 求函数 f ( x) ( x2 1)3 1的极值 .解由f ( ) 6 ( 2 1)2 0, 得驻点x 1, x 0, x 1. f ( x) 6(x 2 1)(5x 2 1).x x x31 2因 f (x) 6 0, 故 f ( x) 在 x 0 处获得极小值,极小值为 f (0) 0.因 f ( 1) f (1) 0, 故用定理 3 没法鉴别 .观察一阶导数 f (x) 在驻点 x1 1 及 x3 1左右周边的符号 :当 x 取 1 左边周边的值时, f (x) 0;当 x 取1右边周边的值时, f ( x) 0;因 f (x) 的符号没有改变,故 f ( x) 在 x 1 处没有极值 . 同理, f (x) 在x 1处也没有极值 . 以下图 .例 19 求出函数 f ( x) 1 (x 2) 2/ 3的极值 .2( x 1解 f ( x) 2) 3 (x 2). x 2 是函数的不行导点 .3当 x 2 时 , f ( x) 0; 当 x 2 时 , f (x) 0.f (2) 1 为 f (x) 的极大值 .讲堂练习1. 若f (0) 0, 能否能判断 f (x) 在原点的充足小的领域内单一递加?2.设函数 f ( x) 在 (a, b) 内二阶可导, 且 f ( x0 ) 0, 此中x0 (a, b) , 则 (x0 , f (x0 )) 能否一定为曲线 f (x) 的拐点 ?举例说明 .。
函数的单调性与凹凸性在数学中,函数的单调性和凹凸性是研究函数图像性质的重要方面。
本文将介绍函数的单调性和凹凸性的定义以及它们在解决实际问题中的应用。
一、函数的单调性函数的单调性是指函数在定义域上的取值随自变量的增大或减小而增大或减小的规律。
具体地,一个函数在区间上是单调递增的,即当x1 < x2时,f(x1) ≤ f(x2),则称函数在该区间上是递增的。
类似地,如果一个函数在区间上是单调递减的,即当x1 < x2时,f(x1) ≥ f(x2),则称函数在该区间上是递减的。
函数单调性的研究可以帮助我们确定函数的增减区间以及解决一些优化问题。
例如,在生产成本最小化的问题中,我们可以通过研究成本函数的单调性来确定最佳生产量。
二、函数的凹凸性函数的凹凸性是指函数图像在定义域上的弯曲程度。
具体地,如果一个函数在区间上任意两点间的连线位于函数图像的下方,则称函数在该区间上是凹的;如果函数图像上任意两点间的连线位于函数图像的上方,则称函数在该区间上是凸的。
凹凸性常常与函数的极值点相关。
对于一个凸函数,在定义域上任意两点连线的斜率都大于函数图像上相应的切线斜率,而对于一个凹函数,则相反。
因此,研究函数的凹凸性能够帮助我们找到函数的极值点。
三、在实际问题中,函数的单调性与凹凸性常常同时存在,并能够相互影响。
例如,对于一个单调递增的函数,在单调区间上的任意两点都能够形成一个凸函数的子区间。
同样地,对于一个单调递减的函数,在单调区间上的任意两点都能够形成一个凹函数的子区间。
函数的单调性和凹凸性的研究除了能够帮助我们解决实际问题外,还能够提供对函数图像性质的深入理解。
通过观察函数图像的单调性和凹凸性,我们能够得到更直观的信息,比如函数的整体趋势、局部极值点等。
总结:函数的单调性和凹凸性是研究函数图像性质的重要方面。
函数的单调性描述了函数值随自变量增减变化的规律,而函数的凹凸性则描述了函数图像的弯曲程度。
函数的单调性和凹凸性不仅能够解决实际问题,还能够提供对函数图像性质的深入理解。