八上第40课时 整式的加减(1)教案
- 格式:doc
- 大小:265.00 KB
- 文档页数:3
整式的加减教案设计整式的加减教案设计「篇一」一、知识目标:理解整式的加减实质就是去括号,合并同类项,其结果仍然是整式;掌握学生在掌握合并同类项、去括号与添括号的基础上,掌握整式加减的一般步骤;能够正确地进行整式的加减运算。
二、能力目标:经历用字母表示数量关系的过程,发展符号感;培养用代数的方法解决实际生活中的问题的能力和口头表达能力。
三、情感目标:渗透教学知识来源于生活,又要为生活而服务的辩证观点;整式的加减实质上就是去括号,合并同类项,结果总是比原来简洁,体现了数学的简洁美。
教学重难点:利用去括号、合并同类项进行整式的加减运算;根据实际问题中的数量关系列出算式,并求出结果;教材处理与数学方法1.调动学生自觉性与积极性,由浅入深地传授知识,提高学生学习兴趣。
2.运用启发式教学,让学生自行归纳出整式的加减的步骤。
3.利用不同记号标出各同类项,有助学生合并同类项。
4.让学生在实际解题过程中,体会到整式的加减实际上就是已经学过的去括号法则与合并同类项这两个知识的综合,这样更有利于学生学会将新知转化为旧知,不断更新知识结构。
5.充分利用教学时间,在课堂上进行针对性辅导,把共性问题与典型题目展示,引导学生发现问题与纠错能力。
四、(一)复习旧知识1、合并同类项定义、法则;2、去括号法则。
3、基础训练计算(1)(2x-3y)-(5x+4y)(2) -3ab-4a2+3 a2 -(-2ab)(3) (3 a2 -ab+7)-(-4 a2+2ab+7)(4) (-x+2x2+5)+(4x2-3-6x)4、列式计算(1) 2x2-3x+1与-3x2+5x-7 的和;(2)-x2+3xy-2y2 与-2x2+4xy-y2 的差;(3)一个多项式加上5x2+4x-1 得-8x2+6x+2 ,求这个多项式;5、求值:2a2-b2+(2b2-a2)-(a2+2b2),其中a=1/3,b=3。
五、归纳小结1.整式的加减实际上就是______________________。
初中整式加减教案教学目标:1. 理解整式的概念,掌握整式的加减运算法则。
2. 能够正确进行整式的加减运算,解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学重点:1. 整式的概念及分类。
2. 整式的加减运算法则。
3. 整式加减的实际应用。
教学难点:1. 整式加减的运算过程。
2. 如何在实际问题中运用整式加减。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾小学学过的加减法,复习加减法的运算规则。
2. 提问:你们认为加减法在数学中有什么作用?二、新课讲解(15分钟)1. 引入整式的概念,讲解整式的分类(线性整式、二次整式等)。
2. 讲解整式的加减运算法则,通过示例进行讲解。
例1:计算(x+2)+(3x-1)例2:计算(2x^2-3x)-(x^2+2x)3. 引导学生总结整式加减的运算规则。
三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。
练习题:1)计算(x+3)+(2x-4)2)计算(4x^2-5x)-(2x^2+x)3)计算(3a^2+2a)+(a^2-3a)四、实际应用(10分钟)1. 讲解如何将实际问题转化为整式加减问题。
2. 示例:一家商店同时销售电脑和笔记本电脑,电脑售价为每台5000元,笔记本电脑售价为每台3000元。
如果商店本周售出5台电脑和8台笔记本电脑,求商店本周的总销售额。
五、课堂小结(5分钟)1. 回顾本节课所学内容,让学生总结整式加减的运算规则。
2. 提问:你们认为整式加减在实际生活中有哪些应用?教学反思:本节课通过讲解整式的概念、分类和加减运算法则,使学生掌握了整式加减的基本运算方法。
在课堂练习环节,学生能够独立完成练习题,巩固所学知识。
在实际应用环节,学生能够将实际问题转化为整式加减问题,并运用所学知识解决问题。
但部分学生在整式加减的运算过程中,仍存在一定的困难,需要在课后加强练习,提高运算速度和准确性。
整式的加减教案(最新8篇)整式的加减教案篇一一、教学目标:【知识与技能目标】会用代数式表示简单问题中的数量关系,并能利用去括号、合并同类项等法则验证所探索的规律。
【过程与方法目标】通过观察、分析、总结等一系列过程,经历探索数量关系、运用符号表示规律、运算验证规律的过程,进一步培养学生的数学逻辑思维。
【情感态度与价值观目标】通过学生动手操作、观察、思考、猜想等过程,体验数学活动是充满着探索性和创造性的过程,通过合作交流,体会在解决问题的过程中与他人合作的重要性。
二、教学重点与难点:重点:学会探索数量关系,运用符号表示规律。
难点:学会从不同角度探索数量关系表示规律。
三、教学方法:教师引导式与学生探究、合作交流式相结合的方法。
四、教学用具:日历、粉笔、黑板、多媒体等。
五、教学过程:1、新课引入小时侯我们都玩过搭积木的游戏,今天我们不妨重拾童年趣事,利用手中的火柴棒搭建一些常见的图形,探索规律。
2、合作交流,探索规律:活动一:探索常见图形的规律,用火柴棒按下图的方式搭三角形⑴填写下表:⑴照这样的规律搭建下去,搭n个这样的三角形需要多少根火柴棒?⑴注意引导学生概括探索规律的一般步骤:寻找数量关系;用代数式表示规律验证规律。
⑴练习:四棱柱有几个顶点、几条棱、几个面?五棱柱呢?十棱柱呢?n棱柱呢?活动二:探索具体情景下事物的规律问题1.若有两张长方形的桌子,把它们拼成一张大的长方形桌子,有几种拼法?问题2.若按图2方式摆放桌子和椅子⑴一张桌子可坐6人,2张桌子可坐人。
⑴按照上图方式继续排列桌子,完成下表:问题3.如果按图3的方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人?3张呢?n张呢?⑴教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐人。
⑴在⑴中,改成每8张桌子拼成1张大桌子,则共可坐人。
活动三:探索图表的规律下面是20xx年五月份的日历:1.日历图彩色方框中九个数之和与方框正中间的数有什么关系?通过计算找出这个关系。
《整式的加减》教案《整式的加减》教案「篇一」一、知识与技能(1)了解同类项、合并同类项的概念,掌握合并同类项法则,•能正确合并同类项。
(2)能先合并同类项化简后求值。
二、过程与方法经历类比有理数的运算律,探究合并同类项法则,培养学生观察、探索、分类、归纳等能力。
三、情感态度与价值观掌握规范的解题步骤,养成良好的学习习惯,通过比较两种求代数式值的方法,体会合并同类项的作用。
教学重、难点与关键1.重点:掌握合并同类项法则,熟练地合并同类项。
2.难点:多字母同类项的合并。
3.关键:正确理解同类项概念和合并同类项法则。
教具准备投影仪。
四、教学过程,新课引入有理数可以进行加减计算,那么整式能否可以加减运算呢?怎样化简呢?我们来看本章引言中的问题(2)。
在西宁到拉萨路段,如果列车通过冻土地段的时间是t小时,那么它通过非冻土地段所需的时间就是2.1t小时,则这段铁路的全长是100t+1202.1t,即100t+252t1.类比数的运算,我们应如何化简式子100t+252t呢?五、新授(1)运用有理数的运算律计算:1002+2522=______;100(-2)+252(-2)=________。
1002+2522=(100+252)2=3522100(-2)+252(-2)=(100+252)(-2)=352(-2)我们知道字母可以表示数,如果用t表示上述算术中的数2(或-•2)•就有,•100t+252t=(100+252)t=352t。
《整式的加减》教案「篇二」一、素质教育目标(一)知识教学点1.理解:整式的加减实质就是去括号,合并同类项。
2.掌握:学生在掌握合并同类项、去括号与添括号的基础上,掌握整式加减的一般步骤。
3.运用:能够正确地进行整式的加减运算。
(二)能力训练点1.培养用代数的方法解决实际生活中的问题的能力和口头表达能力。
2.培养学生用代数方法解几何问题的思路。
(三)德育渗透点渗透教学知识来源于生活,又要为生活而服务的辩证观点。
整式的加减(1)——初中数学第一册教案Addition and subtraction of integral form (1) -- teaching plan of mathematics volume 1 in j unior high school整式的加减(1)——初中数学第一册教案前言:小泰温馨提醒,数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。
本教案根据数学课程标准的要求和针对教学对象是初中生群体的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。
便于学习和使用,本文下载后内容可随意修改调整及打印。
整式的加减(1)教学目的1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。
2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。
教学分析重点:整式的加减运算。
难点:括号前是-号,去括号时,括号内的各项都要改变符号。
突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。
教学过程一、复习1、叙述合并同类项法则。
2、叙述去括号与添括号法则。
3、化简:y2+(x2+2xy-3y2)-(2x2-xy-2y2)二、新授1、引入整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。
2、例题例1 (P166例1)求单项式5x2y,-2 x2y,2xy2,-4xy2的和。
分析:式子5x2y+(-2 x2y)+2xy2+(-4xy2)就是这四个单项式的和。
几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。
解:(略,见教材P166)例2(P166例2)求3x2-6x+5与4x2-7x-6的和。
解:(3x2-6x+5)+(4x2-7x-6)(每个多项式要加括号)=3x2-6x+5+4x2-7x-6 (去括号)=7x2+x-1 (合并同类项)例3。
整式的加减数学教案优秀5篇《整式的加减》教学设计篇一教学目标:1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
过程与方法:通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
分层次教学,讲授、练习相结合。
情感、态度、价值观:培养学生观察、归纳、概括及运算能力教学重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
教学难点:单项式概念的建立。
教学过程:一、复习引入:1、列代数式(1)若正方形的边长为a,则正方形的面积是;(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为;(3)若x表示正方形棱长,则正方形的体积是(4)若m表示一个有理数,则它的相反数是;(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款元。
(让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。
)2、请学生说出所列代数式的意义。
3、请学生观察所列代数式包含哪些运算,有何共同运算特征。
由小组讨论后,经小组推荐人员回答,教师适当点拨。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。
)二、讲授新课:1.单项式:通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。
然后教师补充,单独一个数或一个字母也是单项式,如a,5。
2.练习:判断下列各代数式哪些是单项式?(1)x?12;(2)abc;(3)b2;(4)-5ab2;(5)y;(6)-xy2;(7)-5。
(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)3.单项式系数和次数:直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。
3.4 整式的加减(第一课时)[教学目标]▲知识目标:使学生理解同类项的概念和合并同类项的意义,学会合并同类项。
▲能力目标:培养学生观察、分析、归纳和动手解决问题的能力,初步使学生了解数学的分类思想。
▲情感目标:借助情感因素,营造亲切和谐活泼的课堂气氛,激励全体学生积极参与教学活动。
培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神。
[教学重点]同类项的概念和合并同类项的法则[教学难点]学会合并同类项[教学过程](一)创设情境,引入课题1.我首先设计了一个学生非常熟悉的一个生活场景:教室里非常混乱,有书本、扫把、粉笔等东西,问学生如何整理。
学生很容易回答出:将扫把放到一起,将书本摆放整齐…。
我问学生为什么这样做,引导学生意识到“归类”存在于生活中。
由学生举例在生活中那些运用到归类方法。
2.教师:我想和同学们进行一场比赛,看谁最快得到答案,你们愿意吗?学生:(很好奇、兴奋)愿意。
出示题目:求代数式—4x2+7 x + 3 x2 —4 x + x2的值,请一学生任意说出一个一至两位整数,教师和另一学生比赛,结果教师很快说出答案。
在学生的惊讶声中教师说:“你们想知道为什么吗?学了这节课后你们也可以像老师一样算得那么快了。
”(用师生竞赛的方式,充分调动了学生积极参与,激发了学生求知欲望)3.根据某学校的总体规划图(单位:m),计算这个学校的占地面积。
提出让学生尝试用不同的方法。
提问:两种方法的结果是否一样?如果一样,那么是不是又可以得到这样的一个等式:100a+200a+240b+60b = (100+200)a+(240+60)b---①让学生观察这个等式,使其从中发现规律、联系。
出示:由等式我们可以知道,计算100a+200a,可以先把它们的系数相加,再乘a;计算240b+60b,可以先把它们的系数相加,再乘以b。
(创设问题情境,选择新旧知识的切入点,通过启发提问,构造问题悬念,激发学生兴趣,并自然引出课题。
8.2 整式的加减 第一课时(刘绍中)——合并同类项一、教学目标(一)学习目标1.理解同类项的概念,会判断同类项.2.掌握合并同类项的法则,并能正确合并同类项.3.能在合并同类项的基础上进行化简求值.(二)学习重点会判断同类项并能正确合并同类项.(三)学习难点同类项的定义,合并同类项法则的形成过程和应用.二、教学设计(一)课前设计1.预习任务(1)所含字母相同,并且相同字母的指数也相同的项叫做 同类项 ,几个常数项也是同类项.(2)把多项式中的同类项 合并成一项 叫做合并同类项.合并同类项后,所得项的系数是合并前各同类项的系数的 和 ,字母连同它的指数 不变 .(3)观察:b a 22,2a b ,2ba 的共同点是所含 字母 相同,并且 相同字母的指数也相同 ,它们 是 (填“是”或“不是”)同类项.2.预习自测(1)下列各组中的两项,是同类项的组数为( ) ①213x y 与231xy ; ②xy 31与yx 33; ③25与2a ; ④72与27. A . 1组 B .2组 C .3组 D .4组【知识点】同类项的概念.【解题过程】解:①虽含相同字母,但相同字母的指数不同,故错.②所含字母相同且相同字母的指数也相同,故正确.③一个是常数项,一个含有字母,所以不是同类项.④都是常数项,所以是同类项.故选B.【思路点拨】按照同类项两相同两无关的特征判定即可.【答案】B.(2)已知n ab 4与42b a m -是同类项,则有( )A .1m =,2n =B .1m =,4n =C .4m =,2n =-D .2m n ==【知识点】同类项的概念.【解题过程】解:因为n ab 4与42b a m -是同类项,所以1m =,4n =,故选B.【思路点拨】根据同类项定义的特征逆向思维即可.【答案】B.(3)下列计算正确的是( )A .23a b ab +=B .2221a b a b -=C .22222(2)0a a --=D .2242a a a +=【知识点】合并同类项发则.【解题过程】解:A 中不是同类项,不能合并,故错;B 中虽是同类项,但是系数相加,字母和字母指数不能改变,故错;C 正确;D 中是同类项,但是字母和字母指数不能改变,故错.故选C.【思路点拨】合并同类项发则是系数相加所得结果作为和的系数,字母和字母指数不变.【答案】C.(4)如果773+y x n m 与3254n m x +-的和是单项式,那么x ,y 的值是( ).A .1x =,4y = B. 1x =-,4y = C .1x =,4y =- D .4y =-,4y =-.【知识点】同类项和合并同类项的概念.【解题过程】解:因为773+y x n m 与3254n m x +-的和是单项式,所以773+y x n m 与3254n m x +-是同类项,所以752x x =+,73y +=,所以1x =,4y =-,故选C.【思路点拨】因为只有同类项才可以合并,由和是单项式,则说明它们是同类项,根据同类项两相同特征建立方程即可.【答案】C.(二)课堂设计1.知识回顾(1)单项式的定义:数与字母的乘积形式.(2)单项式的系数:单项式中的数字因数,注意包括前面的符号.(3)单项式的次数:所含字母的指数和.2.问题探究探究一 同类项的定义 同类项的特征★▲●活动① (回顾旧知,感受分类的作用)师问:在一次“送温暖、献爱心”活动中,我们班同学非常积极,其中一位同学把储钱罐捐出来,满满的一罐硬币里有一元、五角、一角,你能以最快的方式统计一下这罐硬币共有多少钱吗? 学生抢答.师问:(1)分类需要什么样的标准?(2)分类的作用又是什么?师归纳:生活中处处有分类的现象,我们可以把具有相同特征的事物归为一类,利用好分类将会给我们的生活和学习带来便利.【设计意图】让学生感知分类需要标准,以及分类的数学思想,为同类项概念的学习作准备. ●活动② (整合旧知,探究同类项的定义和特征)师问:游戏一:找朋友,并说明你的分类标准是什么?(1) 325x y ;(2) 3223x y -;(3) 32x y z ;(4) 2315zy x ;(5)-125;(6)12;(7) 3a -; (8) 35a -. 生答:学生通过小组的讨论和交流,学生代表展示,按照所含的字母相同以及相同字母的指数相同为标准判断的(1)与(2);(3)与(4);(5)与(6);(7)与(8).注意:老师在肯定学生众多的答案中,最后确定(1)与(2);(3)与(4);(5)与(6);(7)与(8).师问:每一对“朋友”具有哪些相同的特征?生答:所含的字母相同,相同字母的指数也相同.总结:凡是所含的字母相同,相同字母的指数也相同的几个单项式就叫同类项.几个常数项也是同类项.师问:对于这个概念我们应抓住哪几个关键词理解?生答:①所含字母相同,②相同字母的指数也相同.师问:同类项与系数和字母的顺序有关吗?生答:无关.归纳:同类项的特征是“两相同,两无关”.二相同:字母相同,相同字母的指数也相同;二无关:与系数无关,与字母的顺序无关.游戏二:同类项速配.师问:先判断每一组是同类项吗?为什么?如果不是的,为前者配一个同类项.(1) 22x y 与23x y -;(2) 2abc 与2ab ;(3) 3pq -与3qp ;(4) 24x y -与25xy .生答:(1)是同类项,因为所含字母相同且相同字母的指数也相同;(2)不是同类项,因为所含字母不同,配的同类项为12abc ;(3)是同类项,因为所含字母相同且相同字母的指数也相同;(4)不是同类项,因为相同字母的指数不同,配的同类项为2x y -.总结:同类项的识别:二相同:字母相同,相同字母的指数也相同,这两条件缺一不可;二无关:与系数无关,与字母的顺序无关.不要忘记几个常数项也是同类项.【设计意图】强化同类项的概念以及基本特征“二相同和二无关”,从而能准确识别同类项.探究二 ★▲●活动① (大胆猜想,探究合并同类项法则).师问:类比数的运算,我们如何化简式子100252t t +呢?(1)运用有理数的运算律计算10022522⨯+⨯= ;100(2)252(2)⨯-+⨯-= .师问:你运用了有理数的哪些运算律?生答:逆用了乘法的分配律.师问:你能根据(1)中的方法完成下面的运算吗?并说明其中的道理.生答:100252t t +=(100252)t +⨯=352t ,逆用了乘法的分配律.归纳:事实上它们都有相同的结构,都是两个数分别与同一个数乘积的和,所以如果把t 看着数2或-2,根据乘法分配律运算就有100252t t +=(100252)t +⨯=352t 师问:填一填:并说明理由.100252t t -=( )t ;2232x x +=( )2x ;2234ab ab -=( )2ab . 生答:100252t t -=(100-252)t ;2232x x +=(3+2)2x ;2234ab ab -=(3-4)2ab师问:上述运算中式子的左边有什么共同特点?右边式子具有什么特征?你能从中得出什么规律?学生举手抢答.总结:左边多项式中各项都是同类项,右边是单项式,几个同类项可以合并为单项式.【设计意图】类比观察从而发现规律,都可以运用乘法的分配律分别合并为一个单项式,通过互动让学生初步知道合并的依据,理解数式的通性,掌握类比的数学思想.●活动② (集思广益,发现合并同类项的法则).师问:由上可知具有什么特征的几个单项式才可以合并成一个单项式?生答:同类项.师问:什么叫合并同类项?生答:把几个同类项合并成一个单项式,叫做合并同类项.师问:合并同类项的依据是什么?生答:乘法分配律.师问:观察上述式子的运算,合并同类项时,几个同类项中的哪部分在参与运算,哪部分不变? 生答:系数在相加所得的和作为结果的系数,而字母和字母的指数不变,简记“一加二不变”. 师问:不是同类项能不能合并?生答:不能.师问:下列合并同类项对吗?不对的,说明理由.①2a a +=; ②325a b ab +=;③22245x y x y x y -=-;④235325x x x +=;⑤ 53a a a a +-= . 生答:①错,因为字母和字母指数部分没有了;②错,因为他们不是同类项;③对;④错,因为他们不是同类项;⑤错,因为系数相加时符号错了.总结:合并同类项法则:几个同类项相加,系数相加所得结果作为结果的系数,字母和字母的指数不变.简记为 “一加二不变”【设计意图】在互动过程中凸显同类项系数相加,字母和指数不变,便于学生发现总结合并同类项的法则,设计一个互动是让学生巩固合并同类项法则.探究三 ★▲●活动① (基础性例题)师问:本节课学习了什么法则生答:我们学习了同类项以及合并同类项法则.师问:利用同类项以及合并同类项法则可以解决什么?生答:整式的化简或求值.例1.化简:222227498667ab a b ab a b ab -+-+--;【知识点】合并同类项.【解题过程】解:原式=222227746968ab ab a b a b ab --++--(用不同的符号划出多项式中的同类项).=222227764968ab ab a b a b ab -+-+--(加法交换律,注意交换时连同符号交换走). =22222(77)(64)(96)8ab ab a b a b ab -+-+--(加法结合律).=222(77)(64)(96)8ab a b ab -+-+--(乘法分配律).=2220238ab a b ab ++-=222283a b ab -+(注意升降幂排列).【思路点拨】按照同类项概念确定出多项式中同类项,再合并,注意每一步的依据.【答案】222283a b ab -+.师归纳:通常把一个多项式的各项按照某个字母的指数从大(小)到小(大)的顺序排列叫做降(升)幂排列常数项视作字母指数为0.师问:多项式的化简实际就是合并多项式中的同类项,化简步骤是什么?生答:先用不同标记确定同类项,再运用加法交换律结合律把同类项结合在一起,第三按照合并同类项法则合并,第四把结果进行升降幂排列.师问:在化简过程中应注意哪几点?生答:交换项的位置时注意项的符号跟着交换走,合并时注意系数相加,子母和字母的指数不变.总结:交换项的位置时注意连同符号交换走,没有同类项的项连同符号写下来,合并时注意“一加二不变”的原则,最后结果应从新升幂或降幂排列.练习:化简:222243244a b ab a b ++--【知识点】同类项的识别和合并.【解题过程】解:222243244a b ab a b ++--=222244342a a b b ab -+-+(加法交换律)=2222(44)(34)2a a b b ab -+-+(结合律)=22(44)(34)2a b ab -+-+(分配律)=22b ab -+【思路点拨】按照同类项概念确定出多项式中同类项,再合并,注意每一步的依据.【答案】22b ab -+.【设计意图】通过例习题的学习使学生熟练掌握同类项的特征,熟练合并同类项,让学生明白数学学习必须弄清算理.例2.求多项式22225432x x x x x -++--的值,其中12x =. 【知识点】多项式的化简求值【解题过程】解:22225432x x x x x -++--=22223542x x x x x +--+-=222(23)(54)2x x x x x +----=2(213)(54)2x x +----=2x -- 当12x =时,原式=15222=--=-. 【思路点拨】先化简,再代入求值,这样更简单. 【答案】52-. 师追问:直接把12x =代入计算又如何? 师问:哪种方法更简单?体会合并同类项的作用.总结:求多项式的值时,一般先化简,再代入指定的数值进行计算,合并时注意系数是负数的情况,必要时要正确使用括号,强调化简求值的格式书写.练习:2222748387y x xy y xy x ---+-,其中21=x ,21-=y .【知识点】化简求值.【解题过程】解:2222748387y x xy y xy x ---+-=2222743788x x y y xy xy -+---=2222(74)(37)(88)x x y y xy xy -+--+=22(74)(37)(88)x y xy -+--+=223164x xy y --当21=x ,21-=y 时 原式=2211113()16()4()2222⨯-⨯⨯--⨯- =1134444⨯+-⨯ =3414+- =154【思路点拨】先化简再求值更简单且不易出错. 【答案】154. 【设计意图】让学生熟练的掌握合并同类项法则,弄清书写格式和步骤,初步理解代数的值得含义.●活动2 (提升型例题)例3.把()x y -当作一个因式,对223()7()8()5()x y x y x y x y ---+---合并同类项.【知识点】合并同类项进行多项式的化简.【数学思想】整体思想.【解题过程】解:223()7()8()5()x y x y x y x y ---+---=223()8()7()5()x y x y x y x y -+-----=[]223()8()7()5()x y x y x y x y ⎡⎤-+---+-⎣⎦=2(38)()(75)()x y x y +--+-=211()12()x y x y ---【思路点拨】把()x y -看作整体,按照多项式的化简步骤依据进行即可.【答案】211()12()x y x y ---练习:22()3()4()5()x y y x y x x y -----+-【知识点】合并同类项进行多项式的化简.【数学思想】整体思想.【解题过程】22()3()4()5()x y y x y x x y -----+-=22()3()4()5()x y x y x y x y -+---+-=22()4()3()5()x y x y x y x y ---+-+-=2(14)()(35)()x y x y --++-=23()8()x y x y --+-【思路点拨】注意()x y -与()y x -互为相反数,()()x y y x -=--,22()()x y y x -=-.【答案】23()8()x y x y --+-.【设计意图】通过例习题的学习使学生熟练掌握同类项的特征,熟练合并同类项. 掌握()()x y y x -=--,22()()x y y x -=-的变形,渗透整体的数学思想.●活动3 (探究型例题)例4.若单项式4252+m b a 与832b a n -的和仍是单项式,则m 与n 的值分别是( ).A .2,4B .4,2C .1,1D .1,3【知识点】同类项的概念.【解题过程】4252+m b a 与832b a n -的和仍是单项式,所以523n =-,248m +=所以4n =,2m =,选A.【思路点拨】由和是单项式确定这两个单项式是同类项,按照两相同特征列出方程解之即可.【答案】A.练习:若347--n b a 与171+m ba 是同类项,求100)(n m - 的值.【知识点】同类项的概念.【解题过程】解:347--n b a 与171+m ba 是同类项,所以31n -=,14m +=所以4n =,3m =,100100()(34)1m n -=-=.【思路点拨】注意同类项两相同两无关的特征.【答案】1.【设计意图】通过例习题的学习,熟练掌握同类项的特征,准确判断识别.3. 课堂总结知识梳理(1)所含字母相同,且相同字母的指数也相同的单项式是同类项,两相同、两无关.(2)几个同类项合并成一项叫合并同类项,合并同类项法则是系数相加,字母和字母的指数不变.(3)多项式的化简实际就是合并同类项.重难点归纳(1)同类项的特征:两相同、两无关.(2)合并同类项的法则.(3)多项式的化简求值及步骤.(三)课后作业基础型 自主突破1.下列不是同类项的是( )A.-25和1B.224z xy -和224yz x -C.y x 2和2yx -D.3a -和34a【知识点】同类项的定义.【解题过程】解:A.都是常数项,故是同类项.B.虽所含字母相同,但相同字母的指数不相同,故不是同类项.C.所含字母相同且相同字母的指数也相同,与顺序无关,故是同类项.D.所含字母相同且相同字母的指数也相同,与系数无关,故是同类项.【思路点拨】根据同类项的定义判断.【答案】B.2.下列合并同类项正确的是( )①325a b ab +=;②33a a -=;③532523x x x =+;④770ab ba -=;⑤32323254y x y x y x -=-;⑥235--=-;A .①②③④B .③④⑤C .③④⑤⑥D .④⑤⑥【知识点】合并同类项.【解题过程】解:①多项式各项不是同类项,不能合并,故错;②各项是同类项,但应是系数相加,字母及指数不能变,故错;③多项式各项不是同类项,不能合并,故错;④系数是相反数的同类项合并为0,故对;⑤各项是同类项,系数相加仍是系数,字母及指数不变,故对;⑥是常数项,故对;所以选D.【思路点拨】按照合并同类项的法则逐一判断排除.【答案】D.3. 若单项式22m x y 与313n x y -是同类项,则m n +的值是 . 【知识点】同类项定义.【解题过程】解:单项式22m x y 与313n x y -是同类项,所以2n =,3m =,所以235m n +=+=.【思路点拨】根据同类项的定义逆向思维求出m 和n 的值,代入m n +计算即可.【答案】5.4. 化简:(1)22318115a b ab a b ab +--+-;(2)223()4()8()5()x y x y y x y x ---+---.【知识点】多项式的化简.【解题过程】解:(1)22318115a b ab a b ab +--+-=22381151a b a b ab ab --+-+=2(31)(811)(51)a b ab -----=2234a b ab +-;(3)223()4()8()5()x y x y y x y x ---+---=223()4()8()5()x y x y x y x y ---+-+-=223()8()4()5()x y x y x y x y -+---+-=211()()x y x y -+-.【思路点拨】根据合并同类项的法则,进行计算即可.合并同类项的法则是系数相加作为系数,字母和字母的指数不变.x y -与y x -是互为相反数的,注意()x y y x -=--,22()()x y y x -=-的变形.【答案】(1)2234a b ab +-;(2)211()()x y x y -+-.5.当4x =-, 2y =时,求代数式2232233333x y xy x x y xy y -+++--的值.【知识点】化简求值.【解题过程】解:2232233333x y xy x x y xy y -+++--=2222333333x y x y xy xy x y -++-+-=33x y -当4x =-, 2y =时,原式=33(4)2--=648--=72-.【思路点拨】先化简,在代入求值.【答案】72-.6.已知x 和y 的多项式22222ax bxy x x xy y +--++合并后不含二次项,求34a b -的值.【知识点】多项式的化简求值.【解题过程】解:22222ax bxy x x xy y +--++=2(1)(22)2a x b xy x y -++-+,又知合并后不含二次项,故1a =,1b =-,即34314(1)7a b -=⨯-⨯-=.【思路点拨】根据题意关于x 和y 的22222ax bxy x x xy y +--++不含二次项,由此可解出a ,b 的值,将其代入34a b -即可求解.【答案】7.能力型 师生共研1.若 2313a x y +与140.4b x y -是同类项,求2222221152346a b ab a b ab a b +---的值. 【知识点】多项式的化简求值 【解题过程】解:2313a x y +与140.4b x y -是同类项, 所以12b -=,34a +=,即1a =,1b =-.2222221152346a b ab a b ab a b +--- =2222221152346a b a b a b ab ab --+- =2211(523)()46a b ab --+- =112ab 当1a =,1b =-时,原式=11(1)12⨯⨯-=112-. 【思路点拨】根据同类项的定义求出a ,b 的值,再化简多项式后代入求值. 【答案】112-. 2..若当1x =时,多项式31ax bx ++的值为5,则当1x =-时,求多项式311122ax bx ++的值. 【知识点】多项式的化简求值.【数学思想】整体思想.【解题过程】解:因为31ax bx ++的值为5,即31ax bx ++=5,所以34ax bx +=当1x =时,4a b +=当1x =-,311122ax bx ++=1()12a b --+=1()12a b -++=-1. 【思路点拨】先根据当1x =时,多项式31ax bx ++的值为5,求出4a b +=,再求出当1x =-时,1()12a b -++,整体代入求值. 【答案】-1.探究型 多维突破1.有这样一道题:当0.35a =,0.28b =-时,求333337636310a a b a a b a -++--的值.小明说:本题中0.35a =,0.28b =-是多余的条件,小强马上反对说:这多项式中每一项都含有a 和b ,不给出a ,b 的值怎么能求出多项式的值呢?你同意哪位同学的观点?请说明理由.【知识点】多项式的化简求值.【解题过程】解:同意小明的说法,理由如下:333337636310a a b a a b a -++--=333337310663a a a a b a b +--+-=-3化简后不含有a 和b 的项,所以多项式的值就与a 和b 的取值无关.【思路点拨】先把多项式进行化简,看最后的结果是否含有a 和b .【答案】同意小明的说法. 2.(1)水库水位第一天连续下降了ah ,每小时平均下降2cm ,第二天连续上升了a h ,每小时平均上升了0.5cm ,这两天水位的变化情况如何?(2)某商店原有5袋大米,每袋重:r kg .上午卖出3袋,下午又购进同样包装的大米4袋.商店现有大米多少千克?【知识点】整式表示数量关系.【解题过程】(1)解:∵水库中水位第一天连续下降了a 小时,每小时平均下降2cm , ∴第一天水位的变化量是:2a -cm ,∵第二天连续上升了a 小时,每小时平均上升0.5 cm ,∴第二天水位的变化量是:0.5a cm ,∴这两天水位的总变化量为: 2a -cm +0.5a cm = 1.5a -cm ,即水位下降了1.5a cm(2)∵商店原有5袋大米,每袋重r kg ,上午卖出3袋,下午又购进同样包装的大米4袋 ∴商店现有大米=534r -+() =6r kg【思路点拨】(1)分别求出第一天水位的变化量,第二天水位的变化量,相加即可;(2)原有的大米减去上午卖出的大米加上下午购进的大米数量等于商店现有的大米数量.【答案】(1) 1.5a -cm ;(2)6r kg .自助餐下列各式中,是23x y 的同类项的是( )A .23a bB .22xy -C .2x yD .3xy【知识点】同类项的定义.【解题过程】解:A.字母不同, 不是同类项,故A 不符合题意;B.相同字母的指数不同,不是同类项,故B 不符合题意;C.23x y 的同类项的是2x y ;D.相同字母的指数不同不是同类项,故D 不符合题意;故选:C .【思路点拨】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【答案】C.2.合并同类项正确的是( ).A .2222x x x +=B .2244x x x +=C .2222x x -=D .2222x x x -=【知识点】合并同类项【解题过程】解:A.系数相加字母及指数不变,故A 正确;B.系数相加字母及指数不变,故B 错误;C.系数相加字母及指数不变,故C 错误;D.系数相加字母及指数不变,故D 错误;故选:A .【思路点拨】根据合并同类项的法则把系数相加即可.【答案】A.3.若24m m n x y +与623x y -的和是单项式,则mn = .【知识点】单项式定义和合并同类项发则.【解题过程】解:∵24m m n x y +与623x y -的和是单项式,∴26m =,2m n +=,∴3m =,1n =-,∴3mn =-,故答案为﹣3.【思路点拨】根据同类项的概念列出方程求得m ,n 的值即可.【答案】﹣3.4.已知多项式224223mx xy x x nxy y +--+-合并后不含二次项,则m n 的值是 .【知识点】同类项的定义.【解题过程】解:原式=2(2)(24)3m x n xy x y -++--由于不含二次项,故20m -=,240n +=,∴2m =,2n =-∴2(2)4m n =-=,故答案为:4.【思路点拨】先合并同类项,然后令二次项的系数为0即可.【答案】4.5.合并同类项:(1)22318115a b ab a b ab +--+-;(2)2222222a ab b a ab b -+++-;(3)223()7()8()5()x y y x y x x y -+---+-.【知识点】合并同类项【解题过程】解:(1)22318115a b ab a b ab +--+-=2(31)(811)(15)a b ab ---+-=2234a b ab +-;(2)2222222a ab b a ab b -+++-=23a ;(3)223()7()8()5()x y y x y x x y -+---+-=223()7()8()5()x y x y x y x y -----+-=2(38)()(75)()x y x y -----=25()2()x y x y ----【思路点拨】根据合并同类项的法则,进行计算即可.合并同类项的法则是系数相加作为系数,字母和字母的指数不变.【答案】(1)2234a b ab +-;(2)23a ;(3)25()2()x y x y ----.6.对于代数式22222735x xy y x kxy y +++-+,老师提出了两个问题,第一个问题是:当k 为何值时,代数式中不含xy 项,第二个问题是:在第一问的前提下,如果2x =,1y =-,代数式的值是多少?(1)小明同学很快就完成了第一个问题,也请你把你的解题写在下面吧.(2)在做第二个问题时,马小虎同学把1y =-,错看成1y =,可是他得到的最后结果却是正确的,你知道这是为什么吗?【知识点】整式表示数量关系.【解题过程】解:(1)因为22222735x xy y x kxy y +++-+=2222(2)(35)(7)x x y y xy kxy ++++-=2238(7)x y k xy ++-所以只要70k -=,这个代数式就不含xy 项,即7k =时,代数式中不含xy 项.(2)因为在第一问的前提下原代数式化简为:2238x y +当2x =,1y =-时,原式=2238x y +22328112820=⨯+⨯=+=(-).马小虎同学的计算过程应该为:当2x =,1y =时,原式=2238x y +22328112820=⨯+⨯=+=. 因为1±的平方都等于1,所以马小虎的最后结果是正确的.【思路点拨】(1)代数式中不含xy 项就是合并同类项以后xy 项得系数等于0,据此即可求得;(2)把2x =,1y =-和2x =,1y =-代入(1)中的代数式求值即可判断.【答案】(1)7k =;(2)当2x =,1y =-时,原式=2238x y +22328112820=⨯+⨯=+=(-).马小虎同学的计算过程应该为:当2x =,1y =时,原式=2238x y +22328112820=⨯+⨯=+=. 所以马小虎的最后结果是正确的.。
初中数学整式的加减教学设计【教学目标】1.理解整式的概念,能够准确区分整式和非整式。
2.掌握整式的加减法运算规则。
3.能够灵活应用整式的加减法进行计算和解决实际问题。
【教学时间】预计为2个课时,每个课时为40分钟。
【教学步骤】第一课时:1.导入(5分钟)教师通过一个数字游戏的方式,复习常见的数学运算符号,如加号、减号、乘号和除号,并提问学生加法和减法的运算规则。
2.引入(10分钟)教师将一个简单的代数式,如3a+5b-2a+4b,写在黑板上,并提问学生这是一个怎样的表达式。
引导学生总结出这是一个整式,并解释整式的概念。
3.整式的加法(15分钟)教师通过举例子的方式,讲解整式的加法运算规则:(1)相同的代数项相加,系数相加,保留相同的字母;(2)不同的代数项无法相加,只能合并在一起。
4.练习(10分钟)教师在黑板上出示一些整式加法的例题,学生在课本上完成相应的练习,并进行互相订正。
5.小结(5分钟)教师通过总结的方式,强调整式的加法规则,并提醒学生整式的加法运算需要注意项的合并。
第二课时:1.复习(5分钟)教师通过观察学生布置的课后作业,复习整式的加法运算规则。
2.整式的减法(10分钟)教师通过举例子的方式,讲解整式的减法运算规则:(1)减一个整数可以看作加一个相反数;(2)减法运算可以变为加法运算,并注意各项的合并。
3.练习(15分钟)教师在黑板上出示一些整式减法的例题,学生在课本上完成相应的练习,并进行互相订正。
4.实际问题(10分钟)教师提供一些实际生活中的问题,如小明手头有10个苹果,小红给他3个苹果,小李又给他2个苹果,问小明总共有多少个苹果。
通过这些实际问题,引导学生将问题转化为整式的加减法运算,并培养学生运用整式解决实际问题的能力。
5.小结(5分钟)教师通过总结的方式,强调整式的减法规则,并提醒学生减法可以转化为加法运算,并且灵活应用整式解决实际问题。
【教学评价】1.在课堂上观察学生的学习情况,包括是否能够正确区分整式和非整式,是否能够准确运用整式的加减法运算规则,以及是否能够灵活应用整式解决实际问题。
整式的加减第一课时教
案
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
整式的加减
第一课时
一、教学目标
知识与技能:1.?理解同类项的概念,并能正确辨别同类项。
2.?掌握合并同类项的法则,能进行同类项的合并。
3.会利用合并同类项将整式化简。
过程与方法:1.?探索在具体情境中用整式表示事物之间的数量关系,发展
学生的抽象概括能力。
2.通过类比数的运算律得出合并同类项的法则,在教学中渗透
“类比”的数学思想。
情感、态度与价值观:1.通过参与同类项、合并同类项法则的探究活动,提
高学习数学的兴趣。
2.培养学生合作交流的意识和探索精神。
二、教学重点与难点
重点:合并同类项法则。
难点:对同类项概念的理解以及合并同类项法则的应用。
三、学习课时(四课时——第一课时)
四、重、难点突破
通过实际问题引出同类项和合并同类项概念的探讨,在学习过程中,让学生自己经历探索与交流的活动,自主得到同类项的概念,并利用数的分配律观察并归纳出合并同类项的法则。
五、教学方法
讨论及探究式教学方法
六、教具准备
课件。
§15.1.2 整式的加减(1)
教学目的:
1、解字母表示数量关系的过程,发展符号感。
2、会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达能力。
教学重点:
会进行整式加减的运算,并能说明其中的算理。
教学难点:
正确地去括号、合并同类项,及符号的正确处理。
教学过程:
一、课前练习:
1、填空:整式包括 和
2、单项式3
22y x -的系数是 、次数是 3、多项式23523m m m +--是 次 项式,其中二次项
系数是 一次项是 ,常数项是
4、下列各式,是同类项的一组是( )
(A )y x 222与231yx (B )n m 22与22m n (C )ab 3
2与abc 5、去括号后合并同类项:)47()25()3(b a b a b a +-++-
二、探索练习:
1、如果用a 、b 分别表示一个两位数的十位数字和个位数字,那么这个两位数
可以表示为 交换这个两位数的十位数字和个位数字后得到的两位数为
这两个两位数的和为
2、如果用a 、b 、c 分别表示一个三位数的百位数字、十位数字和个位数字,那
么这个三位数可以表示为 交换这个三位数的百位数字和个位数字后得到的三位数为
这两个三位数的差为
●议一议:在上面的两个问题中,分别涉及到了整式的什么运算?
说说你是如何运算的?
▲整式的加减运算实质就是
运算的结果是一个多项式或单项式。
三、巩固练习:
1、填空:(1)b a -2与b a -的差是
(2)、单项式y x 25、y x 22-、22xy 、y x 24-的和为
(3)如图所示,下面为由棋子所组成的三角形,
一个三角形需六个棋子,三个三角形需
( )个棋子,n 个三角形需 个棋子
2、计算:
(1))134()73(22+-++k k k k
(2))2()2
123(22x xy x x xy x +---+ (3)[]14)2(53-++--a a a
3、(1)求272--x x 与1422-+-x x 的和
(2)求k k 742+与132-+-k k 的差
4、先化简,再求值:[]
224)32(235x x x x ---- 其中21-=x 四、提高练习:
1、若A 是五次多项式,B 是三次多项式,则A+B 一定是
(A ) 五次整式 (B )八次多项式
(C )三次多项式 (D )次数不能确定
2、足球比赛中,如果胜一场记3a 分,平一场记a 分,负一场
记0分,那么某队在比赛胜5场,平3场,负2场,共积多
少分?
3、一个两位数与把它的数字对调所成的数的和,一定能被11
整除,请证明这个结论。
4、如果关于字母x 的二次多项式3322+-++-x nx mx x 的值与x 的取值无关,
试求m、n的值。
五、小结:整式的加减运算实质就是去括号和合并同类项。
作业:第8页习题1、2、3。