2006年高考试题浙江卷理科数学试题及答案
- 格式:doc
- 大小:573.50 KB
- 文档页数:6
2006高考理科数学试题全国II 卷理科试题本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至2页。
第II卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第I卷 注意事项: 1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式 如果事件A、B互斥,那么()()()P A B P A P B +=+如果事件A、B相互独立,那么(.)().()P A B P A P B =如果事件A在一次试验中发生的概率是P,那么 n 次独立重复试验中恰好发生k 次的概率是()(1)k kn k n n P k C P P -=-一.选择题(1)已知集合{}2{|3},|log 1M x x N x x =<=>,则M N =(A )∅ (B ){}|03x x <<(C ){}|13x x << (D ){}|23x x <<(2)函数sin 2cos 2y x x =的最小正周期是(A )2π (B )4π (C )4π (D )2π 球的表面积公式24S R π=其中R表示球的半径 球的体积公式343V R π=其中R表示球的半径(3)23(1)i =- (A )32i (B )32i - (C )i (D )i - (4)过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为(A )316 (B )916 (C )38 (D )932(5)已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是(A) (B )6 (C) (D )12(6)函数ln 1(0)y x x =+>的反函数为 (A )1()x y e x R +=∈ (B )1()x y e x R -=∈(C )1(1)x y ex +=> (D )1(1)x y e x -=>(7)如图,平面α⊥平面β,,,A B AB αβ∈∈与两平面α、β所成的角分别为4π和6π。
绝密★启用前2006年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
满分150分,考试用时120分钟。
注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.答在试卷上的答案无效. 参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B ) =P (A ) +P (B ) 24R S π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 P (A ·B ) = P (A )·P (B ) 球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 234R V π=n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径k n k kn n P P C k P --=)1()(本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)已知集合|1log |||,3||2>=<=x x N x x M ,则=N M(A)φ(B )|30||<<x x (C)|31||<<x x(D )|32||<<x x (2)函数y = sin 2x cos 2x 的最小正周期是(A )2π(B )4π(C )4π(D)2π(3)=-2)1(3i(A )i 23 (B )i 23-(C)i (D )-i(4)过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为(A )163 (B )169 (C )83 (D )329 (5)已知△ABC 的顶点B 、C 在椭圆1322=+y x ,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是 (A)32 (B )6(C )34 (D )12(6)函数)0(1ln >+=x x y 的反函数为(A))(1R x ey x ∈=+ (B ))(1R x ey x ∈=-(C ))1(1>=+x e y x(D ))1(1>=-x e y x(7)如图,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α、β所成的角分别为4π和6π,过A 、B 分别作两平面交线的垂 线,垂足为‘、B A ',则AB:‘B A '=(A )2:1(B )3:1(C )3:2 (D)4:3(8)函数)(x f y =的图像与函数)0(log )(2>=x x x g 的图像关于原点对称,则)(x f 的表达式为(A))0(log 1)(2>=x xx f (B ))0()(log 1)(2<-=x x x f(C))0(log )(2>-=x x x f (D ))0)((log )(2<--=x x x f(9)已知双曲线12222=-b y a x 的一条渐近线方程为x y 34=,则双曲线的离心率为(A )35 (B )34 (C)45 (D )23(10)若=-=)(cos ,2cos 3)(sin x f x x f 则 (A )x 2cos 3- (B )3x 2sin - (C )x 2cos 3+ (D)x 2sin 3+(11)设是等差数列{}n a 的前n 项和,若3163=S S ,则=126S S (A )103(B)31 (C)81 (D )91 (12)函数∑→-=191)(n n x x f 的最小值为 (A )190 (B )171 (C)90 (D )45绝密 ★ 启用前2006年普通高等学校招生全国统一考试理科数学第Ⅱ卷(非选择题,共90分)注意事项:本卷共2页,10小题,用黑色碳素笔将答案在答题卡上。
2006年浙江数学卷(理科)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题(1) 设集合1||-=x A ≤x ≤2|,B=|x |0≤x ≤4,则A ∩B=(A)[0,2] (B)[1,2] (C)[0,4] (D)[1,4] (2) 已知=+-=+ni m i n m ni im 是虚数单位,则是实数,,,其中11(A)1+2i (B) 1-2i (C)2+i (D)2-I (3)已知0<a <1,log 1m <log 1n <0,则(A)1<n <m (B) 1<m <n (C)m <n <1 (D) n <m <1(3) 在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤≥+-≥-+2,02,02x y x y x 表示的平面区域的面积是(A)21 (B)23 (C)81 (D)89(6)函数y=21sin2=4sin 2x,x R ∈的值域是(A)[-21,23] (B)[-23,21](C)[2122,2122++-] (D)[2122,2122---](7)“a >b >c ”是“ab <222b a +”的(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不允分也不必要条件(8)若多项式=+-+++++=+n x n x n x a a x x 则,)1()1()1(11102110112(A)9 (B)10 (C)-9 (D)-10(9)如图,O 是半径为l 的球心,点A 、B 、C 在球面上,OA 、OB 、OC 两两垂直,E 、F 分别是大圆弧AB 与AC 的中点,则点E 、F 在该球面上的球面距离是(A)4π(B)3π(C)2π(D)42π(10)函数f:|1,2,3|→|1,2,3|满足f(f(x))= f(x),则这样的函数个数共有 (A)1个 (B)4个 (C)8个 (D)10个 2006年普通高等学校招生全国统一考试 数学(理科)二、填空题:本大题共4小题,每小题4分,共16分。
2006年浙江省高考数学试题(理)
佚名
【期刊名称】《中学教研:数学版》
【年(卷),期】2006(000)008
【总页数】5页(P43-47)
【正文语种】中文
【中图分类】G4
【相关文献】
1.2006年浙江省高考数学试题(文) [J],
2.“简洁、初等、本源”2016浙江(理)高考数学试题印象 [J], 潘建伟;虞关寿
3.稳中求新新中求活活中凸显能力——2006年浙江省高考数学试题评析及启示[J], 张忠尧
4.2020年高考数学试题的综合难度比较研究
——以浙江卷、海南卷及全国Ⅱ卷(文、理)为例 [J], 王亚妮;米鹏莉;巩铠玮
5.2020年高考数学试题的综合难度比较研究——以浙江卷、海南卷及全国Ⅱ卷(文、理)为例 [J], 王亚妮;米鹏莉;巩铠玮
因版权原因,仅展示原文概要,查看原文内容请购买。
第 1 页 共 5 页2006高考理科数学试题全国II 卷理科试题本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至2页。
第II卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第I卷 注意事项: 1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式 如果事件A、B互斥,那么()()()P A B P A P B +=+如果事件A、B相互独立,那么(.)().()P A B P A P B =如果事件A在一次试验中发生的概率是P,那么 n 次独立重复试验中恰好发生k 次的概率是()(1)k kn k n n P k C P P -=-一.选择题(1)已知集合{}2{|3},|log 1M x x N x x =<=>,则M N =(A )∅ (B ){}|03x x <<(C ){}|13x x << (D ){}|23x x <<(2)函数sin 2cos 2y x x =的最小正周期是(A )2π (B )4π (C )4π (D )2π 球的表面积公式24S R π=其中R表示球的半径 球的体积公式343V R π=其中R表示球的半径第 2 页 共 5 页(3)23(1)i =- (A )32i (B )32i - (C )i (D )i - (4)过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为(A )316 (B )916 (C )38 (D )932(5)已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是(A) (B )6 (C) (D )12(6)函数ln 1(0)y x x =+>的反函数为 (A )1()x y e x R +=∈ (B )1()x y e x R -=∈(C )1(1)x y ex +=> (D )1(1)x y e x -=>(7)如图,平面α⊥平面β,,,A B AB αβ∈∈与两平面α、β所成的角分别为4π和6π。
2006高考理科数学试题全国II卷理科试题本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至2页。
第II卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第I卷注意事项:1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式如果事件A、B互斥,那么()()()P A B P A P B+=+如果事件A、B相互独立,那么(.)().()P A B P A P B=如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率是球的表面积公式24S Rπ=其中R表示球的半径球的体积公式343V Rπ=其中R表示球的半径()(1)k k n kn n P k C P P -=- 一.选择题(1)已知集合{}2{|3},|log 1M x x N x x =<=>,则M N =(A )∅ (B ){}|03x x <<(C ){}|13x x << (D ){}|23x x <<(2)函数sin 2cos 2y x x =的最小正周期是(A )2π (B )4π (C )4π (D )2π(3)23(1)i =- (A )32i (B )32i - (C )i (D )i - (4)过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为(A )316 (B )916 (C )38 (D )932(5)已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是(A ) (B )6 (C ) (D )12(6)函数ln 1(0)y x x =+>的反函数为(A )1()x y ex R +=∈ (B )1()x y e x R -=∈(C )1(1)x y e x +=> (D )1(1)x y e x -=>(7)如图,平面α⊥平面β,,,A B AB αβ∈∈与两平面α、β所成的角分别为4π和6π。
2006年全国统一高考数学试卷(理科)(全国卷一)及答案2006年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.设集合 $M=\{x|x^2-x<0\}$,$N=\{x||x|<2\}$,则()。
A。
$M\cap N=\varnothing$B。
$M\cap N=M$C。
$M\cup N=\mathbb{R}$XXX2.已知函数 $y=e^x$ 的图象与函数 $y=f(x)$ 的图象关于直线 $y=x$ 对称,则()。
A。
$f(2x)=e^{2x}$($x\in\mathbb{R}$)B。
$f(2x)=\ln2\cdot\ln x$($x>0$)C。
$f(2x)=2e^x$($x\in\mathbb{R}$)D。
$f(2x)=\ln x+\ln 2$($x>0$)3.双曲线 $mx^2+y^2=1$ 的虚轴长是实轴长的2倍,则$m=$()。
A。
$\dfrac{3}{4}$B。
$1$C。
$-4$D。
$4$4.如果复数 $(m^2+i)(1+mi)$ 是实数,则实数 $m=$()。
A。
$1$B。
$-1$C。
$0$D。
不存在实数 $m$ 满足条件。
5.函数$y=\dfrac{\sin x}{1+\cos x}$ 的单调增区间为()。
A。
$(2k\pi,(2k+1)\pi)$,$k\in\mathbb{Z}$B。
$(2k\pi,(2k+1)\pi)$,$k\in\mathbb{N}$C。
$(2k\pi+\pi,(2k+1)\pi)$,$k\in\mathbb{Z}$D。
$(2k\pi+\pi,(2k+1)\pi+\pi)$,$k\in\mathbb{Z}$6.$\triangle ABC$ 的内角 $A$、$B$、$C$ 的对边分别为$a$、$b$、$c$,若 $a$、$b$、$c$ 成等比数列,且 $c=2a$,则 $\cos B=$()。