《线性代数》综合复习题 2
- 格式:doc
- 大小:216.23 KB
- 文档页数:5
线性代数(试卷一)一、 填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。
2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则1B -= 。
4. 若A 为n m ⨯矩阵,则非齐次线性方程组AXb =有唯一解的充分要条件是_________5. 设A 为86⨯的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为_6. 设A 为三阶可逆阵,⎪⎪⎪⎭⎫ ⎝⎛=-1230120011A,则=*A 7.若A 为n m ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2)T-的模(范数)______________。
10.若()Tk11=α与()T121-=β正交,则=k二、选择题(本题总计10分,每小题2分) 1. 向量组r ααα,,,21 线性相关且秩为s ,则(D) A.s r =B.s r ≤C.r s ≤D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A)A.8 B.8-C.34D.34-3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R <C.)()(A R B R =D.)()(A R B R ≥4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。
5. 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____。
)(A AC AB = 则 C B = )(B 0=AB ,则0=A 或0=B 三、计算题(本题总计60分。
在掌握好基本概念、基本原理和基本方法的前提下,下面谈谈在复习过程中应注意的一些问题.一、加强计算能力训练,切实提高计算的准确性相当一部分同学在复习做题过程中会有这样的体会:对问题所涉及的概念、原理都很清楚,计算方法也知道,但就是无法算出正确答案来,或是计算有误,或是根本无法演算下去,造成不应有的丢分.例1 (2003年数学三)已知齐次线性方程组112233112233112233112233()0,()0,()0,()0.n n n n n n nn a b x a x a x a x a x a b x a x a x a x a x a b x a x a x a x a x a b x +++++=⎧⎪+++++=⎪⎪+++++=⎨⎪⎪+++++=⎪⎩其中10.ni i a =≠∑试讨论12,,,n a a a b 和满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解,在有非零解时,求此方程组的一个基础解系.分析 本题思路方法比较直接:当系数矩阵的行列式不为零时,仅有零解;当系数矩阵的行列式等于零时,有非零解.但涉及到行列式的计算、初等变换化矩阵为阶梯形以及求基础解系等大量的计算问题,特别是含有多个参数,进一步增加了计算的难度.解 方程组的系数行列式123123123123||n n n n a b a a a a a b a a a a a b a a a a a b++=++A 231231231231nin i nini ni n i nin i ab a a a aba b a a a b a a b a aba a a b====+++=++++∑∑∑∑23232312311()11n n ni n i n a a a a b a a a b a a b a a a a b=+=+++∑231100()0000n ni i a a a b a b b b==+∑11().nn i i b a b -==+∑(1)当100||.0,ni i b a b =≠+≠≠∑且时,方程组仅有零解A ;(2)当b =0时,原方程组的同解方程组为11220.n n a x a x a x +++=由10ni i a =≠∑可知a i (i =1,2,…,n )不全为零,不妨设10a ≠.因为秩r (A )=1,取23,,,nx x x 为自由未知量,可得方程组基础解系为T121(,,0,,0),a a =- αT231(,0,,,0),a a =- α…,T11(,0,0,,).n n a a -=- α当1100nn i i i i b a a b ===-≠≠∑∑时,由知,系数矩阵可化为123000000n a b a a a b b bb b b +⎛⎫⎪-⎪ ⎪→- ⎪ ⎪⎪-⎝⎭A →12311100101011ni n i a a a a a =⎛⎫-⎪ ⎪ -⎪ ⎪- ⎪ ⎪⎪-⎝⎭∑110010001001000-⎛⎫ ⎪- ⎪ ⎪→ ⎪- ⎪ ⎪⎝⎭由于秩r (A )=n -1,易知Ax =0的基础解系为T(1,1,1,,1).= α 评注1 本题行列式的计算方法很多,例如,系数矩阵可表示为121212n nn a a a a a a b b a a a ⎛⎫ ⎪ ⎪=+=+ ⎪ ⎪⎝⎭A EB E , 而r (B )=1,可方便地求出B 的特征值为0,0,…,01ni i a =∑,于是b =+A B E 的特征值为1211,,,,,nn n ii b b b b a λλλλ-=====+∑从而根据特征值可求出行列式为 11||||().nn i i b ba b -===+∑ A B +E评注2 当1ni i b α==-∑时,注意到系数矩阵A 的秩为r (A )=n -1,而T (1,1,,1)=≠0 α显然为A X =0的一个解,即可作为基础解系.例2 (2003年数学一)设矩阵1*322010232,101,,223001-⎛⎫⎛⎫⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A PB P A P 2+求B E 的特征值与特征向量,其中A *为A 的伴随矩阵,E 为3阶单位矩阵.分析 本题是基础题型,思路非常明确:先求A *及1P -,然后计算B =P -1A *P 及B +2E ,最后求B +2E 的特征值、特征向量,但计算量大,稍有疏忽,将很难得到最终的正确结果.解 由*322522232252,223225--⎛⎫⎛⎫⎪ ⎪==-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭可得A A 又由010101001⎛⎫ ⎪= ⎪ ⎪⎝⎭P 可得111100,001--⎛⎫ ⎪= ⎪ ⎪⎝⎭P于是 1*700254,225-⎛⎫ ⎪==-- ⎪ ⎪--⎝⎭B P A P 9002274.225⎛⎫ ⎪+=-- ⎪ ⎪--⎝⎭B E 根据9|(2)|274225λλλλ-⎛⎫⎪-=- ⎪ ⎪-⎝⎭E B +E 2(9)(3),λλ=-- 可知B +2E 的特征值为1239, 3.λλλ===解 [9E -(B +2E )] x =0,得基础解系为12111,1,01-⎛⎫⎛⎫ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭αα因此属于129λλ==的所有特征向量为12121111,,01k k k k -⎛⎫⎛⎫ ⎪ ⎪-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭是不全为零的任意常数.解[3E -(B +2E )] x =0,得基础解系为3301.1λ⎛⎫⎪= ⎪ ⎪⎝⎭因此属于的所有特征向a =33301,1k k ⎛⎫ ⎪⎪ ⎪⎝⎭量为 为非零的任意常数.评注 本题直接计算,工作量是相当大的.若由定义A α=λα,有*||λ=进而有A A ,αα11*11*1()()(),λ-----==|A |B P PA P P PA =P αααα11(2)()2.λ--⎛⎫=+ ⎪⎝⎭|A |B +E P P αα若求出A 的特征值λ及对应特征向量α, 则B +2E 的特征值为||2λ+A 及对应特征向量P -1α这样就不必求A *. 且根据222222222,222222222⎛⎫⎛⎫⎪ ⎪=+ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭知A E 的特征值为0,0,6,从而A 的特征值为1,1,7.二、扩展公式结论蕴涵,努力探索灵活解题途径线性代数概念多,公式、定理也多,巧妙地利用已有的公式与结论,往往可以达到简化计算的目的.例如有关A *的公式结论有:AA *= A *A =|A |E ,由此还可推出一系列相关的公式:*1(1)||||(2),n n -=≥A A **2()||(3),n n -=≥A A A *1*()(2).n k kn -=≥A A(2)若A 可逆,则A *=| A | A -1, (A *)-11.||=A A(3) *,(),()1,()1,(2).0,() 1.n r n r r n n r n =⎧⎪==-≥⎨⎪<-⎩A A A A(4) T **T 1**1()(),()().--==A A A A(5) 若A 可逆,且λ为A 的特征值,则A *有一个特征值为λ|A |.例3 (2000年数学一)设矩阵A 的伴随矩阵*100001001010038⎛⎫ ⎪⎪= ⎪ ⎪-⎝⎭A ,且ABA -1=BA -1+3E ,其中E 是4阶单位矩阵,求矩阵B .分析 本题相当于解矩阵方程.若先从A *求出A -1及A ,再代入已知关系式求B ,则计算量会相当大.考虑到题设与A *有关,若先用A *A =AA *=|A |E 化简,则方便得多.解 由ABA -1=BA -1+3E 先右乘A ,得 AB =B +3A , 再左乘A *,并利用A *A =|A |E ,得A *AB =A *B +3A *A ,即 |A |B = A *B +3| A |E . 再由|A *|=|A |4-1=|A |3,得 |A |3=8,即 |A |=2. 于是有2B =A *B +6E , (2E -A *)B =6E . 故11100001006(2)610100306--⎛⎫ ⎪ ⎪=-=⎪- ⎪-⎝⎭*B E A60000600.60600301⎛⎫ ⎪ ⎪= ⎪ ⎪-⎝⎭ 评注 题设与A *有关时,一般均可考虑利用AA *=A *A =|A |E 及其相关公式,结论先化简、再计算.例4 (2003年数学四)设矩阵21112111a ⎛⎫⎪= ⎪ ⎪⎝⎭A 可逆,向量11b ⎛⎫ ⎪= ⎪ ⎪⎝⎭α是矩阵A *的一个特征向量,λ是a 对应的特征值,其中A *是A 的伴随矩阵,试求,a b λ和的值.分析 题设与A *有关,先用A A *= A * A =|A |E 化简. 解 已知A * α=λα,利用A A *=|A |E ,有 | A |α=λA α, 因为A 可逆,知||0,0,λ≠≠于是有A ||λ=A A ,αα 即21111||121,1111b b a λ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A ① 解此方程组得a =2, b =1或-2.又211||1214112==A ,由式①可知:当b =1时λ=1; 当b =-2时λ=4. 又如,有关特征值与相似矩阵的重要公式和结论有:(1)设λ1,λ2,…,λn 为n 阶方阵A 的n 个特征值,则f (λ1),…,f (λn )为f (A )的n 个特征值,其中f (A )为A 的多项式.且121122,n nn a a a λλλ+++=+++ 12||.n λλλ= A(2) 若r (A )=1,则A 的特征值为λ1=λ2=…=λn -1=0,λn =a 11+a 22+…+a nn .(3) 若A ~B ,则|A |=| B |,r (A )=r (B ),特征多项式相同:|λE - A |=|λE -B |,λ∀,从而特征值相同,进而有a 11+a 22+…+a nn =b 11+b 22+…+b nn .例5 (2000年数学三)若4阶方阵A 与B 相似,矩阵A 的特征值为1111,,,2345,则行列式|B -1-E |= .分析 利用相似矩阵有相同的特征值的结论及通过特征值求行列式的结论即可. 解 由A ~B ,知B 的特征值是1111,,,2345,于是B -1的特征值是2,3,4,5,从而B -1-E 的特征值是1,2,3,4,故行列式 |B -1-E |=1·2·3·4=24.例6 (2001年数学一、三)设1111400011110000,,11110000111100⎛⎫⎛⎫⎪⎪⎪⎪== ⎪⎪ ⎪⎪⎝⎭⎝⎭A B 则A 与B(A) 合同且相似. (B) 合同但不相似.(C) 不合同但相似. (D) 不合同且不相似.分析 本题的关键知识点是:两个实对称矩阵若相似,则必合同.又r (A )=1,其特征值为12344,0.λλλλ====显然A 、B 为实对称矩阵,且A ~B ,于是A 与B 也合同.故应选(A ).评注 当A 、B 为实对称矩阵时,若A ~B ,则A 、B 有相同的特征值⇒x TAx 与x TBx 有相同的正负惯性指数⇒A 与B 合同.但若A 、B 为非对称矩阵,则A 与B 不合同(合同矩阵必为对称矩阵).例7(2007年数学一至四) 设矩阵⎪⎪⎪⎭⎫⎝⎛------=211121112A , ⎪⎪⎪⎭⎫⎝⎛=000010001B ,则A 与B (A)合同, 且相似. (B) 合同, 但不相似 .(C)不合同, 但相似. (D) 既不合同, 又不相似.解 由0||=-A E λ 得A 的特征值为0, 3, 3, 而B 的特征值为0, 1, 1,从而A 与B 不相似. 又r (A )=r (B )=2, 且A 、B 有相同的正惯性指数, 因此A 与B 合同. 故选(A) .评注1)若A 与B 相似, 则| A |=| B |;r (A )= r (B );tr (A )= tr (B ); A 与B 有相同的特征值. 2)若A 、B 为实对称矩阵, 则 A 与B 合同⇔ r (A )= r (B ), 且A 、B 有相同的正惯性指数.三、注重前后知识联系,努力培养综合思维能力线性代数不仅概念多,公式结论多,而且前后知识联系紧密,环环相扣,几乎从任何一个知识点都可切入将前后知识联系起来考查.例如:①行列式|A |=0⇔矩阵A 不可逆⇔秩r (A )<n⇔A 的行(列)向量组线性相关 ⇔Ax =0有非零解⇔λ=0是矩阵A 的特征值②β可由α1,α2,…,αn 惟一线性表示β=x1a1+x2α2+…+x nαn⇔Ax=β有惟一解x=(x1,x2,…,x n)T,A=(α1,α2,…,αn)⇔r(A)=r(A β)=n⇔|A|≠0⇔Ax=0只有零解⇔λ=0不是A的特征值③AB=0⇔A(b1,b2,…, b s)=0, B=( b1, b2,…, b s)⇔Ab j=0, j=1,2,…,s⇔b1,b2,…,b s均为Ax=0的解(⇒r(A)+r(B)≤n)⇔若b j≠0且A为n阶方阵时,b j为对应特征值λj=0的特征向量④AB=C⇔A(b1, b2,…, b r)=(C1, C2,…, C r)⇔Ab j=C j,j=1,2,…,r⇔b j为Ax=C j的解.⇔C1, C2,…, C r可由A的列向量组α1, α2,…, αs线性表示.[⇒r(C)=r(AB)≤r(A)或r(B)].例8(2003年数学一)设向量组I: α1, α2,…, αr可由向量组II:β1,β2,…,βs线性表示,则(A) 当r<s时,向量组II必线性相关. (B) 当r>s时,向量组II必线性相关.(C) 当r<s时,向量组I必线性相关. (C) 当r>s时,向量组I必线性相关.分析本题可由定理“若α1, α2,…, αs可由β1, β2,…, βt线性表出,且s>t,则α1, α2,…, αs 线性相关”,直接得正确选项(D).若不熟悉上述定理,可由反例通过排除法找到正确选项.也可根据上述结论④用秩来判定:由题设,存在s×r矩阵P,使(α1, α2,…, αr)=( β1, β2,…, βs)P s×r,则r(α1, α2,…, αr)=r{( β1,…, βs)P}≤r(β1,…, βs)≤s.当r>s时,有r(α1, α2,…, αr)≤s<r,此时α1, α2,…, αr必线性相关.例9(2002年数学一、二)已知4阶方阵A=α1, α2, α3, α4), α1, α2, α3, α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.分析本题可将A=(α1, α2, α3, α4),β=α1+α2+α3+α4及x=1234xxxx⎛⎫⎪⎪⎪⎪⎪⎝⎭代入Ax=β,找出具体的方程,再按通常方法求解.也可由β=α1+α2+α3+α4即β可由α1, α2, α3, α4线性表示,相当于已知1111⎛⎫⎪⎪⎪⎪⎝⎭为Ax=β的特解,及α1-2α2+α3+0·α4=0与α2, α3, α4线性无关知1210⎛⎫ ⎪- ⎪ ⎪ ⎪⎝⎭为Ax =0的基础解系.再根据解的结构理论知Ax =β的通解为1111x k ⎛⎫ ⎪ ⎪=+ ⎪ ⎪⎝⎭1210⎛⎫⎪-⎪ ⎪ ⎪⎝⎭,k 为任意常数. 评注 Ax =β的解与β可由A 的列向量组线性表示之间可相互转换.例10 已知3阶矩阵A 与三维向量x ,使得向量组x , Ax , A 2x 线性无关,且满足A 3x =3Ax -2A 2x .(1) 记P =(x , Ax , A 2x ),求3阶矩阵B ,使A =PBP -1; (2) 计算行列式|A +E |.分析 A =PBP -1⇔AP =PB ⇔P -1AP =B .本题(1) 有多种方法求解:设法求出A 的特征值、特征向量;将B 的每个元素作为未知量直接代入等式求解等等.但根据结论④,由已知一组关系式:Ax =Ax ,A 2x =A 2x ,及A 3x =3Ax -2A 2x 合并起来有(Ax ,A 2x ,A 3x )=( A x ,A 2x ,3 A x -2A 2x ),即 A (x , Ax , A 2x )=(x , A x ,A 2x )000103012⎛⎫⎪ ⎪ ⎪-⎝⎭, 也即AP =P 000103012⎛⎫⎪⎪ ⎪-⎝⎭,可方便地求得B =000103012⎛⎫ ⎪ ⎪ ⎪-⎝⎭. 至于行列式的计算可用特征值(A 、B 有相同特征值)或相似矩阵计算即可(A ~B ⇒A +E ~B +E ).评注 从本题可见,矩阵运算AB =C 与关系式Ab j =C j 之间的转换可化为线性方程组的解、矩阵的相似与对角化,进而还可利用特征值、相似矩阵求行列式等等.四、加强综合题型训练,全面系统地掌握好知识计算能力的提高不是一朝一夕的事,除了要不断归纳总结一些重要公式和结论并加以巧妙、适当的应用外,还要靠平时的积累,要养成踏踏实实、有始有终将最后结果计算出来的习惯,只要持之以恒、坚持练习,计算准确性的提高并不是一件困难的事. 而对整个知识的融会贯通、综合应用也有赖于适当地多做这方面的练习,下面介绍几个综合性较强的例题.例11 设A 、B 为三阶相似非零实矩阵,矩阵A =(a ij )3×3满足a ij =A ij (i ,j =1,2,3),A ij 为a ij的代数余子式,矩阵B 满足|E +2B |=|E +3B |=0,计算行列式|A *B -A *+B -E |.分析 由 |A *B -A *+B -E |= |A *(B -E )+(B -E )|= |(A *+E )(B -E )|= |A *+E |·|B -E |, 知,只需计算|A *+E |及|B -E |. 若能求出A 或B 的所有特征值,则问题即可解决.解 由a ij =A ij 知,A T =A *,于是 AA T =AA *=|A |E ,从而|A |2=|AA T |=||A |E |=|A |3, 即 |A |2(1-|A |)=0. 于是|A |=0或|A |=1.又A ≠0,不妨设a 11≠0,由 |A |=a 11A 11+a 12A 12+a 13A 13=2221112130a a a ++≠, 知 |A |=1.由 |E +2B |=|E +3B |=0, 知 1211,23λλ=-=-为B 的两个特征值.因为A ~B ,所以1211,23λλ=-=-也为A 的两个特征值. 设3λ为A 、B 的另一特征值,根据1=|A|=123316λλλλ=,得 36λ=.又 |A *B -A *+B -E |=|(A *+E )(B -E )|=|A *+E |·|B -E |=|A T+E |·|B -E |. 因为 |A T +E |=|(A +E )T |=|A +E | =(1λ+1)(2λ+1) (3λ+1) =1277233= ,|B -E |=(1λ-1)(2λ-1) (3λ-1)=34 5=1023⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭, 故 |A *B -A *+B -E |=770 1033=.评注 本题综合考查了矩阵运算、行列式按行(列)展开定理、特征值的概念及利用特征值求行列式等多个知识点.例12 设A 、B 为m ×n 矩阵,则Ax =0与Bx =0同解的充要条件是(A) A 、B 为等价矩阵. (B) A T x =0与B Tx =0同解. (C) A 、B 的行向量组等价. (D) A 、B 的列向量组等价.分析 可用反例通过排除法得到正确选项. 对于(A),相当于r (A )=r (B ),显然只是必要而非充分条件;对于(B),例如A =100 200⎛⎫⎪⎝⎭,B =200 100⎛⎫⎪⎝⎭,显然Ax =0与Bx =0同解,但A Tx =0与B Tx =0并不同解,排除(B);对于(C)、(D),考虑A =110 101⎛⎫⎪⎝⎭,B =010 001⎛⎫⎪⎝⎭,显然A 、B 的列向量组等价,但Ax =0与Bx =0不同解,排除(D),故应选(C).评注 本题综合考查了矩阵等价、向量组等价与齐次方程组同解等多个知识点.对于(C)成立,也可这样证明: 若Ax =0与Bx =0同解,考虑(I) Ax =0, (II)=⎧⎨=⎩0A x B x , (III)Bx =0.则易知(I)、(II)、(III)同解,从而有r (A )=r ⎛⎫⎪⎝⎭A B =r (B ),由此可推导出A 、B 的行向量组等价. 反过来,若A 、B 的行向量组等价,令A =12m ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭ ααα, B =12mβββ⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭, 即列向量组T T T 12,,,m ααα与T T T 12,,,m βββ等价,于是存在矩阵P 、Q ,使(T T T12,,,m ααα)=(T T T 12,,,m βββ)P , (T T T 12,,,m βββ)=(T T T 12,,,m ααα)Q ,即A =P T B , B =Q TA .从而由Ax =0有Bx =Q T Ax =0;反过来,由Bx =0,有Ax =P T Bx =0,即Ax =0与Bx =0同解.例13 设A 为三阶矩阵,123,,λλλ是A 的三个不同特征值,对应特征向量为123,,ααα,令123=++βααα.(1)证明2β,Aβ,A β线性无关;(2)若3=A βA β,求秩r (A -E )及行列式|A +2E |.分析 证明一组向量线性无关一般用定义法,而求秩r (A -E )及行列式|A +2E |,由于不知道A 的具体形式,无法直接计算,可考虑先求出A 的相似矩阵,再根据相似矩阵有相同的秩及行列式求解即可.解 (1)设123k k k 2++=βA βA β0, ①由题设(1,2,3)i i i ιλ==Aαα,于是123123λλλ=++=++AβAαAαAαααα,22112233λλλ22=++A βααα,代入①整理得222121311122322123333()()(++)k k k k k k k k k λλλλλλ++++++=0ααα.因为123,,ααα是三个不同特征值对应的特征向量,必线性无关,于是有2121312122322123330,0,0.k k k k k k k k k λλλλλλ⎧++=⎪++=⎨⎪++=⎩其系数行列式2112222331101λλλλλλ≠,必有1230k k k ===,故2β,Aβ,A β线性无关.(2)由3=A βA β有=232()()=()2A β,Aβ,A βAβ,A β,A βAβ,A β,Aβ=2000⎛⎫ ⎪()101 ⎪ ⎪010⎝⎭β,A β,A β, 令P =2()β,Aβ,A β,则P 可逆,且P -1AP =000101010⎛⎫⎪⎪ ⎪⎝⎭=B . 即A ~B ,于是A -E ~B -E ,A +2E ~B +2E . 从而有r (A -E )=r (B -E )=r 100111011-⎛⎫⎪- ⎪ ⎪-⎝⎭=2, |A +2E |=|B +2E |=200121012=6. 评注 本题综合考查了行列式、矩阵的秩、线性无关、特征值与特征向量以及相似矩阵的性质等多个重要知识点.例14 设随机变量X 的概率密度为1c o s , 0()22x x f x ⎧≤≤π⎪=⎨⎪0,⎩其他, 对X 独立地重复观察6次,用Y 表示观察值大于π3的次数,又已知A =11142335Y-⎛⎫⎪- ⎪ ⎪--⎝⎭具有重特征值.(1)求A 可对角化的概率;(2)当A 可对角化时,求可逆矩阵P ,使P -1AP 为对角形矩阵.分析 Y 服从二项分布B (6,p ),其中p =P X π⎧⎫>⎨⎬3⎩⎭,而判定A 可对角化,应先求出A 的特征值,再根据特征值i λ的重数i k 与其线性无关特征向量的个数相等:n -r (i λE -A )=i k ,将可对角化问题转化为特征矩阵i λE -A 的秩:r (i λE -A )=n -i k ,由此确定Y 的取值及其相应概率.解 (1)由于P 11cosd 222x X x ππ3π⎧⎫>==⎨⎬3⎩⎭⎰,于是Y ~B 16,2⎛⎫⎪⎝⎭.111||42335E A Y λλλλ---=---11042332Y λλλλ-=---- 11(2)41331Yλλλ-=---110(2)370331Y λλλ-=---- 2(2)(810).Y λλλ=--++①若=2λ为重根,则22-8×2+10+Y =0,即Y =2. 此时A =111242335-⎛⎫ ⎪- ⎪ ⎪--⎝⎭,|λE -A |=(λ-2)2(λ-6).特征值为123==2=6λλλ,.因为r (2E -A )=r 111222333-⎛⎫⎪-- ⎪ ⎪-⎝⎭=1,属于特征值12==2λλ的线性无关特征向量个数为3-r (2E -A )=2,表明A 可对角化. ②若=2λ为非重根,则2-810=0Y λλ++有重根,则有82-4(10+Y )=0,得Y =6.此时 A 2111=642||=(6)(2)335λλλ-⎛⎫⎪---- ⎪ ⎪--⎝⎭,,E A 特征值为123==6=2.λλλ,因为r (6E -A )=r 511622=21331-⎛⎫⎪-≠ ⎪ ⎪⎝⎭,表明A 不可对角化. 故A 可对角化的概率为24261115(2)C 1.2265p P Y ⎛⎫⎛⎫===-= ⎪ ⎪⎝⎭⎝⎭ (2) 由(1)知,A =111242335-⎛⎫⎪- ⎪ ⎪--⎝⎭,1232, 6.λλλ=== 解(2·E -A )x =0得特征向量12111,0.01⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭αα解(6E -A )x =0得特征向量为312.3⎛⎫ ⎪=- ⎪ ⎪⎝⎭α令 P =123111102013⎛⎫⎪(,,)=-- ⎪ ⎪⎝⎭ααα, 则有1200020.006-⎛⎫⎪= ⎪ ⎪⎝⎭P A P 评注 本题综合性较强,不仅涉及到线性代数的多个知识点,还要求利用概率统计中的相关知识.例15 设A 为三阶实对称矩阵,已知|A |=-12,A 的三个特征值之和为1.又102⎛⎫⎪= ⎪ ⎪-⎝⎭α是齐次线性方程组(A *-4E )x =0的一个解向量,(1)求A ;(2)求(A *+6E )x =0的通解;(3)求正交变换矩阵Q ,化二次型x T Ax 为标准形.分析 (1)设法求出A 的所有特征值、特征向量,即可确定A ;(2)(A *+6E )x =0的基础解系,即为A *的特征值λ=-6所对应的线性无关的特征向量,而A *与A 对应特征值的特征向量相同;(3)先将相同特征值的特征向量正交化,然后再单位化,以此为列所构成的矩阵Q 即为所求正交变换矩阵.解 由α为(A *-4E )x =0的解,知(A *-4E ) α=0,即 A *α=4α,于是AA *α=4A α,即 |A |α=4A α,A α=||4A α=-3α, 可见3λ3=-为A 的特征值,对应特征向量为31==02⎛⎫⎪⎪ ⎪⎝⎭αα-.设2,λλ1为A 的另两个特征值,由题设 21λλλ13++=,2||12λλλ13==-A . 利用3λ3=-及上两式可解是22λλ1==.设22λλ1==的特征向量为123x x x ⎛⎫⎪= ⎪ ⎪⎝⎭X ,由A 为实对称矩阵知:X T ·3α=0,即x 1-2x 3=0,解得021,00112⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭αα.由 12311223(,,)(,,,)λλλ=A αααααα,知1112233123(,,,)(,,)λλλ-=A αααααα1043021=200100026012--⎛⎫⎛⎫ ⎪ ⎪⎪⎪ ⎪ ⎪-⎝⎭⎝⎭102=020.202⎛⎫⎪ ⎪ ⎪-⎝⎭(2) 由2,1,2i i i ==A αα,知 **i i =2A A A αα,即 *62i i i ==-|A |A ααα,也即(A *+6E )i α=0,i =1,2, 可见12,αα即为(A *+6E )x =0的基础解系,故(A *+6E )x =0的通解为1122k k +αα,其中12,k k 为任意常数.(3) 由于12,αα已正交,故只需将123,,ααα单位化,有11101,||0⎛⎫ ⎪== ⎪ ⎪⎝⎭αηα222210,||1⎛⎫⎪==⎪⎪⎭αηα333110.||2⎛⎫⎪==⎪⎪-⎭αηα令Q =123,,)(ηηη=01000⎛⎫ ⎪⎪ ⎪ ⎪ - ⎝,则Q 为正交矩阵,令x =Qy ,则二次型f =x TAx 可化为标准形222123223f y y y =+-.评注 本题综合考查了线性方程组、实对称矩阵特征值与特征向量性质以及化二次型为标准形等多个重要知识点.。
2、题型:综合题3、难度级别:34、知识点:第三章 矩阵的初等变换与线性方程组5、分值:106、所需时间:10分钟7、试题关键字:矩阵的初等变换 8、试题内容:设,A B 为两个同型矩阵,试证:,A B 的秩满足()()R A R B =是A 与B 等价的充分必要条件.9、答案内容: 证明:()()()()()()()()12121122111221.,..,,,,.~~rr n r n r r n r n r r r n r n r r n r n r A B E F E B F P P Q Q P AQ P BQ A P P BQ Q ⨯--⨯-⨯-⨯--⨯-⨯---⇒⨯O ⎛⎫= ⎪O O ⎝⎭O ⎛⎫= ⎪O O ⎝⎭∴==rc r c 必要性与等价则存在可逆矩阵P,Q,使PAQ=B R(A)=R(B).充分性.设A,B 为m n 矩阵,R(A)=R(B)=r.则A 存在可逆矩阵使即.A B ⇒与等价10、评分细则:由题设()()PAQ B R A R B =⇒=(2分);将A 经初等变换化为标准形(2分) 将B 经初等变换化为标准形(2分);得出11221122,,,,P AQ P BQ P Q P Q =均可逆(2分);所以得出A 与B 等价(2分)._____________________________________________________________________________ 1、试题序号:347 2、题型:综合题 3、难度级别:44、知识点:第三章 矩阵的初等变换与线性方程组5、分值:106、所需时间:12分钟7、试题关键字:方程组的解与矩阵的秩 8、试题内容:已知四元非齐次线性方程组的系数矩阵的秩为3,123,,ααα是其解,且()()12231,1,0,2,1,0,1,3T Tαααα+=+=,求方程组的通解.9、答案内容: 解:412231312231223.() 3.0.()0.()(0,1,1,1)0,(0,1,1,1)0.111115()(2,1,1,5)(,,,)442444.12141454s T T T T A x b R A Ax Ax Ax Ax b Ax b αααααααααααααα⨯===+-+=-=+-+=--≠∴--=+++===⎛ ∴=⎝设方程组为对于其基础解系含4-3=1个解.是的解可以作为的一个基础解系为的一个解的通解为01,.11c c ⎫⎪⎪⎛⎫ ⎪ ⎪⎪⎪+ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭ ⎪ ⎪⎭为任意数 10、评分细则:由题设说明0Ax =的基础解系含一个解向量(2分);()122313αααααα+-+=-是0Ax =的一个解(2分);说明13αα-可以作为0Ax = 的一个基础解系(2分);说明()123414αααα+++为Ax b =的一个解(2分);所以得出Ax b =的通解(2分)._____________________________________________________________________________ 1、试题序号:348 2、题型:综合题 3、难度级别:44、知识点:第五章 相似矩阵及二次型5、分值:106、所需时间:15分钟7、试题关键字:初等矩阵及矩阵的相似与合同 8、试题内容:设1111400011110000,1111000011110000A B ⎛⎫⎛⎫⎪⎪⎪⎪== ⎪ ⎪⎪⎪⎝⎭⎝⎭试判断A 与B 是否合同,是否相似.若是,则求出使它们合同的矩阵. 9、答案内容:()()()()()()()()()()()()()()()()()()()()()()()()()()1234:4113112112113114112111010021131141100100001,211101000010000100,40143,T A B E E E E E E B P E E E P P AP BA E R A E R A A λλλλλ------=---⎛⎫ ⎪⎪=---= ⎪ ⎪⎝⎭=---⎛⎫ ⎪⎪∴ ⎪ ⎪⎝⎭-=⇒====-===-∴解与合同且相似.E 12E 12令E 12则可逆且使A 与B 合同的矩阵为且一定可以40000000,.00000000A B ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭对角化即与相似10、评分细则:判断出A 与B 合同且相似(2分);将A 进行初等行变换与列变换化为B 的过程以左乘及右乘初等矩阵的形式写出来(3分);因而写出使A 与B 合同的可逆矩阵P (2分);计算A 的特征值(2分);写出与A 相似的对角矩阵(1分)._____________________________________________________________________________1、试题序号:3492、题型:综合题3、难度级别:44、知识点:第四章 向量组的线性相关性5、分值:106、所需时间:15分钟7、试题关键字:向量组的线性关系与矩阵的秩 8、试题内容:设向量组12:,,,r B b b b L 能由向量组12:,,,s A a a a L 线性表示为()()1212,,,,,,r s b b b a a a K =L L ,其中K 为s r ⨯矩阵,且A 组线性无关.证明B 组线性无关的充分必要条件是()R K r =. 9、答案内容:()()()()()()()()()1212122121212122.,...,,,0..0.,00.,,,.0,,00.,r r r r r r r s R K r R b b b R K r R b b b r R b b b r b b x xb b b x x xx Bx B AK AKx A Kx x a a a S Kx R K r Kx x b =≥=≤∴=⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭⎛⎫ ⎪ ⎪====⇒= ⎪⎪⎝⎭∴=∴==∴=⇒=∴L L LL LL Q L Q L 11证充分性则有同时,则b 线行无关.必要性.设令则则有线行无关,R A b ,,r b L 线行无关.10、评分细则:充分性,由题设推出()12,,,r R b b b L r =()R K r ⇒≥,且有()()R K r R K r ≤⇒=(4分).必要性,令()12r B b b b =L ,设0Bx =,则有0AKx =(2分),由题设推出0Kx =0x ⇒=(2分);所以12,,,r b b b K 线性无关(2分)._____________________________________________________________________________ 1、试题序号:350 2、题型:综合题 3、难度级别:34、知识点:第二章 矩阵及其运算5、分值:106、所需时间:8分钟7、试题关键字:可逆矩阵及分块运算 8、试题内容:已知3阶矩阵A 与3维列向量x 满足323A x Ax A x =-,且向量组2,,x Ax A x 线性无关.(1) 记()2,,P x Ax A x =,求3阶矩阵B ,使AP PB =;(2)问A 是否可逆,说明理由. 9、答案内容:2232222()()(3)000()103.011000103.011(2).,,,.0..A x AxA x Ax A xA x AxA xAx A x x Ax A x B AP PB A P P B x Ax Ax P A B A ⇒=-⎛⎫⎪ ⎪ ⎪-⎝⎭⎛⎫ ⎪∴= ⎪ ⎪-⎝⎭=⇒=∴==∴Q 解:(1)AP=PB =线性无关可逆则不可逆10、评分细则:由题设及矩阵的分块运算法,计算出B (6分);由AP PB A B =⇒=(2分);所以0A B A ==⇒不可逆(2分)._____________________________________________________________________________ 1、试题序号:351 2、题型:综合题 3、难度级别:44、知识点:第三章 矩阵的初等变换与线性方程组5、分值:106、所需时间:12分钟7、试题关键字:方程组的解与矩阵的秩 8、试题内容:设4元非齐次线性方程组Ax b =的系数矩阵A 的秩为3,123,,ηηη是它的3个解向量,且()()1232,3,4,5,1,2,3,4T Tηηη=+=,求该方程组的通解.9、答案内容:1312131131:.() 3.0,2()()0.34200.562334,.4556Ax b R A Ax Ax Ax Ax b c c ηηηηηηηηηη===+-=-+-=-⎛⎫ ⎪- ⎪+-=≠= ⎪- ⎪-⎝⎭-⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪∴=+ ⎪ ⎪- ⎪ ⎪-⎝⎭⎝⎭解设方程组为且对于其基础解系只含一个解.为的一个解而可以作为一个基础解系的通解为为任意常数 10、评分细则:由题设推出0Ax =的基础解系含一个解向量(2分);由题设得出0Ax =的一个非零解(2分);说明这非零解可以作为0Ax =的一个基础解系(2分);求出Ax b =的一个解(2分);得出Ax b =的通解(2分)._____________________________________________________________________________ 1、试题序号:352 2、题型:综合题 3、难度级别:44、知识点:第三章 矩阵的初等变换与线性方程组5、分值:106、所需时间:10分钟7、试题关键字:矩阵的秩与方程组的解 8、试题内容:设()()()123123123,,,,,,,,TTTa a ab b bc c c αβγ===,证明三直线11112222:0;0l a x b y c l a x b y c ++==++=;3333:0,l a x b y c ++=其中220,1,2,3i i a b i +≠=,相交于一点的充分必要条件为:向量组,αβ线性无关,而向量组,,αβγ线性相关. 9、答案内容:()()()()11122233333.2,,,2,,,2,;b b c R b R b c b b c R R R R αβαβγαβαβγαβα⎧⎪⇔⎨⎪⎩-⎧⎛⎫⎛⎫⎪ ⎪ ⎪⇔=-=⎨ ⎪ ⎪⎪⎪ ⎪-⎩⎝⎭⎝⎭⇔=-=⇔==⇔1112223331111122222333证明:a x+b y+c =0三直线交于一点a x+b y+c =0有唯一解a x+b y+c =0a x+b y+c =0a a a x+b y+c =0有唯一解a a a x+b y+c =0a a 线性无关,,βγ线性相关.10、评分细则:由题设得出111222333000a xb yc a x b y c a x b y c ++=⎧⎪++=⎨⎪++=⎩有唯一解(2分)1111122222333332a b a b c R a b R a b c a b a b c -⎛⎫⎛⎫⎪ ⎪⇔=-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭(2分)()()()()22R R R R αβαβγαβαβγ⇔=-=⇔==(4分),αβ⇔线性无关,,,αβγ线性相关(2分)._____________________________________________________________________________1、试题序号:3532、题型:综合题3、难度级别:44、知识点:第三章 矩阵的初等变换与线性方程组5、分值:106、所需时间:12分钟7、试题关键字:方程组的解与矩阵的秩 8、试题内容:设矩阵()1234,,,A αααα=,其中234,,ααα线性无关,1232ααα=-.向量1234βαααα=-+-,求方程组Ax β=的通解.9、答案内容:()()()()12123412343412342341231234123412123434.11.11,,,2,,,,3,0x xx x x x Ax x x R R A Ax x x x x βααααααααββαααααααααααααααααα⎛⎫⎪ ⎪=-+-= ⎪ ⎪⎝⎭⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪∴== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭=-⇒===⎛ ⎝Q Q 解:,且为的一个解又线性无关且线性相关则有所以,的基础解系只含一个非零解。
线性代数考试题库及答案 第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数10323211112)(x x x xx f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ).(A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=100111010100111.6.行列式=-0100002000010 n n .7.行列式=--001)1(2211)1(111 n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211 ,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .16.已知行列式nn D001031002112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a d b a dc ad c b dcbad c b a d c b a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a xa a a a x;5. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. bn b b ----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn 321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 210001200000210001210001211.aa a aa a a a aD ---------=1101100011000110001.四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b a d c b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4.∏-=-11)(n k kax5.)111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。
《线性代数》总复习题一、判断题1. 仅当021====n k k k 时等式02211=++n n k k k ααα才成立,则向量组n ααα,,21线性无关. ( )2. 若r ααα ,,21线性相关,则r ααα ,,21,n r αα,1+也线性相关.( ) 3. 一个向量组如果含有零向量,则这个向量组一定线性相关. ( ) 4. 如果矩阵A 存在一个不为零的r 阶子式则矩阵的秩为r . ( )5. r ααα ,,21为向量组T 的一部分向量,如果r ααα,,21线性无关,则r ααα,,21为向量组T 的最大无关组. ( )6. 由n 维向量r ααα,,21生成的子空间或者是n 维的或者是r 维的.( ) 7. 任意齐次线性方程组或者无解,或者有唯一解,或者有无穷多解.( ) 8. 初等矩阵可理解为单位矩阵经过一次初等变换而得到. ( ) 9. 矩阵经过初等变换后得到的新矩阵实际上与原矩阵相等. ( ) 10. 矩阵经过初等变换其行列式的值不变. ( ) 11. 矩阵经过初等变换其秩不变. ( ) 12.线性方程组0=⨯x A n m 的解空间维数仅与m ,n 有关. ( ) 13.线性方程组b x A n m =⨯的解全体构成一个)(A R n -维子空间. ( ) 14.方阵A 为实对称矩阵当且仅当A 的特征值为实数. ( ) 15.方阵A 的对应于特征值λ的特征向量x 必定是齐次线性方程组0)(=-x E A λ的解. ( )16.矩阵的秩就是其列(或行)向量组中线性无关向量的个数. ( )17.如果向量空间V 的任一向量均可由r ααα,,21线性表示,则称r ααα,,21为V 的一个基. ( )18. 若在矩阵A 中有一个r 阶子式不为0,则A 中至少有一个r -1阶子式不为0. ( ) 19. 上三角方阵的值就是主对角线上元素的乘积. ( )20. 若r ααα ,,21线性相关,则1α 可由r αα,2线性表示. ( ) 二 、选择题1. 设B A ,为n 阶矩阵,且0≠A ,而0=AB ,则 A )0=B B )0=A 或0=B C) 0=BA D )()222B A B A +=+2.设B A ,为n 阶矩阵且A 可逆,则有A )11---=-A A B )()k k kB A AB =C )111)(---=B A ABD )1*-=n AA3.设⎥⎦⎤⎢⎣⎡=210A B A A ,其中21,A A 都是方阵,且0≠A ,则有 A )1A 可逆但2A 不一定可逆 B )2A 可逆但1A 不一定可逆C )1A 与2A 的可逆性不定D )1A 与2A 均可逆4.设A 为n 阶方阵,则0=A 的充分必要条件是A )两行(列)元素对应成比例B )必有一行为其余行的线性组合C )A 中有一行元素全为0D )任一行为其余行的线性组合 5.A 为n m ⨯矩阵,齐次线性方程组Ax =0仅有零解的充要条件是A 的(A ) 列向量组线性无关 (B )列向量组线性相关 (C )行向量组线性无关 (D )行向量组线性相关6.设线性方程组Ax =b 有m 个方程,n 个未知量,则正确的是(A ) 若Ax =0仅有零解,则Ax =b 有唯一解 (B ) 若Ax =0有非零解,则Ax =b 有无穷多解(C ) 若Ax =b 有无穷多解,则Ax =0仅有零解 (D ) 若Ax =b 有无穷多解,则Ax =0有非零解7.线性方程组Ax =b 有m 个方程,n 个未知量,且r(A )=r, 则此方程组(A )r=m 时,有解 (B )r=n 时,有唯一解 (C )m=n 时,有唯一解 (D )r<n 时,有无穷多解8.方程组 ⎪⎪⎩⎪⎪⎨⎧=-+=--=++=-+08870430252032321321321321x x x x x x x x x x x x 的解的情形是(A) 无解, (B) 基础解系中有一个向量 ,(C) 仅有零解 (D) 基础解系 中有两个向量9.设,,333222111333222111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=c b y c b y c b y B c b x c b x c b x A 且A B ==-27,,则A B + 等于 (A) 5 (B) 5- (C) 10- (D) 20- 10.设向量组αααα1234,,, 线性无关, 则线性无关的向量组是()14433221 , , , αααααααα-+++A ()14433221 , , , αααααααα--++B()14433221 , , , αααααααα-+-+C ()14433221 , , , αααααααα----D三、填空题1. 设A 为44⨯矩阵, B 为55⨯矩阵,且2=A ,2-=B ,则B A -= ,A B -= 2.设()E B A +=21,则当且仅当2B = 时,A A =2 3.已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-100110202211A ,则=A4.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100020101A ,()()=-+-E A E A 93215. []n n b b b a a a 2121⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=6. 行 列 式a b b d a c c d++++=________________.7. 设E (,)i j 表 示 由n 阶 单 位 矩阵 第i 行 与 第j 行互 换 得 到 的 初 等 矩 阵, 则E (,)i j -=1__________.8. 设A 为正交矩阵, 且*A A T -=, 其中*A 是A 的伴随矩阵, 则A 的行列式等于________.9. 设 A, B 都是n 阶方阵且A 可 逆, 则)(11---AB AB AA T =10. 行列式 i j k→→→123213= 11. 设,100010011⎪⎪⎪⎭⎫ ⎝⎛=AB 且⎪⎪⎪⎭⎫ ⎝⎛--=121112301B 则A -=112. 设V 是由向量TT )3,0,2(,)0,1,1(21==αα 生成的子空间,则向量T )3,1,5(1=β ,T TT)3,1,3(,)3,3,5(,)3,2,0(432-==-=βββ中 属于V .13.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=011012111A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001b ,则线性方程组b Ax =的解为14. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----020212022的特征值为 15.行列式 D =4443343332312423211412110000a a a a a a a a a a a a 的元素11a 的代数余子式为16.设向量Tb a ),0,,1(=α与向量T )1,1,1,1(-=β和T )1,1,1,1(--=γ都正交, 则a,b 分别为17.设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=1000010042103101A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=1020013600020021B ,则AB = ,(利用分块矩阵乘法求解)18.设向量T )4,3,2,1(=α,T )1,1,1,1(--=β ,则βα,,的夹角为19.非齐次线性方程组⎪⎩⎪⎨⎧=-+=--=+-5321132053321321321x x x x x x x x x 的通解为20.设Tx )2,3,(1=αT )3,1,2(2-=α T )1,2,3(3=α,则当=x 时321,,ααα线性相关.21. 已知α=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡11k 是A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡211121112的逆矩阵A 1-的特征向量,则k = .四、计算题1. 计算行列式1111 11111111 1111--+---+---=x x x x D2. 计 算 ()2333333433333333332333331≥=n nD n3. 设A 是3阶矩阵,*A 是A 的伴随矩阵,21=A ,求行列式()*123A A --的值.4. 讨论向量组,T)3,2,1(1-=α,T )5,2,0(2-=α ,T )2,0,1(3-=α的线性相关性.5. 设3维向量 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=1111λα , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=1112λα , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=λα1113 , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=20λλβ 问当λ取何值时, β 可由321,,ααα线性表示且表达式唯一.6. 求四维向量组T )5,3,1,2(1-=α T )3,1,3,4(2-=α T )4,3,2,3(3-=αT )17,15,1,4(4-=α T )0,7,6,7(5--=α的秩及最大无关组.7. 试确定参数λ,使矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=152********λλA 的秩最小.8. 验证四维向量T)1,1,1,1(1=αT )1,1,1,1(2--=α T )1,1,1,1(3--=αT)1,1,1,1(4--=α是4R 的一个基,并求向量T )1,1,2,1(=→β在这个基下的坐标.9.验证集合{}R x x x x x x V ∈-==211211,|)3,2,(是否为向量空间.10.问λ取何值时, 方程组 ⎪⎩⎪⎨⎧=++=++++=+++04707)2()33(0)33(28321321321x x x x x x x x x λλλλ 有非零解,并将其通解用基础解系表示出来.11.当λ取何值时,方程组⎪⎩⎪⎨⎧=--+=+--=--+λ4321432143212312022x x x x x x x x x x x x 无解?何时有解?在有解的情况下求其通解。
线性代数考试练习题带答案一、单项选择题(每小题3分,共15分)1.设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。
(A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.(A )1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.4.初等矩阵(A );(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,,n ααα线性无关,则(C )A. 12231,,,n n αααααα-+++必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;D. 以上都不对。
二、填空题(每小题3分,共15分)6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t7.设矩阵020003400A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -=8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。
9.行列式111213212223313233a b a b a b a b a b a b a b a b a b =______ ____;10. 设A 是4×3矩阵,()2R A =,若102020003B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()R AB =_____________;三、计算题(每小题10分,共50分)11.求行列式111213212223313233a b a b a b D a b a b a b a b a b a b +++=++++++的值。
《线性代数》综合练习资料第一章 n 阶行列式一、判断题1.如果n (n>1)阶行列式的值等于零,则行列式中必有两行成比例。
( × ) 2.如果n (n>1)阶行列式的值等于零,则行列式中必有一行全为零。
( × ) 3.交换一个行列式的两行(或两列),则行列式值改变符号 ( √ ). 4. 已知n 阶矩阵A 各列元素之和为0,则A =0 ( √ ) 5.ij ijA a D ,33⨯=为ij a 的代数余子式,则0231322122111=++A a A a A a . ( √ )6、齐次线性方程组有非零解,则系数行列式的值一定为零。
( √ )7、1122121233443434a b a b a a b b a b a b a a b b ++=+++ ( × )二.填空题:1.多项式=)(x P 333322221111x c b a x c b a xcb a (其中a,b,c 是互不相同的数)的根是 ,,x a x b x c === .2.. 三阶行列式 D =333222111435214352143521a a k a a a k a a a k a +++++++++ = 0 。
3、(),____1________.nn ij ij D a a D a a ===-=-若则4.设A 为m 阶方阵,B 为n 阶方阵,且|A |=3,|B|=2,C=00A B⎛⎫⎪⎝⎭,则|C |=______()16nm-⋅_____. 5、设四阶行列式3214214314324321,ij A 是其()j i ,元的代数余子式,则_______3331=+A A ,_______3432=+A A .根据定义求即可 6 .已知4阶行列式D 的第一行元素分别是-1,1,0,2;第四行元素对应的余子式依次为5,x ,7,4,则x = 3-7、已知n 阶行列式100110111 =D ,则D 的所有元素的代数余子式之和等于 n .三.选择题1、设)(则B a a a a a a a a a a a a D a a a a a a a a a D =---===333231312322212113121111333231232221131211324324324,1 (A)0 ; (B)―12 ; (C )12 ; (D )12.已知四阶行列式D 中第三列元素依次为-1,2,0,1,它们的余子式依次分别为5,3,-7,4, 则D= ( A )(A ) -15 (B ) -5 (C ) 5 (D ) 1 3、已知四阶行列式A 的值为2,将A 的第三行元素乘以―1加到第四行的对应元素上去,则现行列式的值( A )(A ) 2 ; (B ) 0 ; (C ) ―1 ; (D ) ―24、n 阶行列式D 不为零的充分必要条件是( D )(A )D 中至少有n n -2个元素不为零 (B )D 中所以元素都不为零(C )D 的任意两列元素之间不成比例 (D )以D 为系数行列式的非齐次线性方程组有唯一解5.如果行列式02002000110011=kk k ,则( A )。
《线性代数》综合练习题一、选择题1. 设A ,B 都是n 阶方阵,且AB=0,则必有( ).A.0=A 或0=BB.0=+B AC. 0||=A 或0||=BD. 0||||=+B A2. 设A ,B ,C 都是n 阶方阵,且ABC=E,其中E 为n 阶单位方阵,则必有( ).A. ACB=EB. BC A =EC. CBA=ED. BAC=E3. 设A ,B 都是n 阶方阵,且A 与B 等价,则( ).A. R(A)=R(B)B. )det()det(B A =C. )det()det(B E A E -=-λλD. 存在可逆矩阵P,使B AP P =-14. 设A 是n 阶可逆矩阵,*A 是A 的伴随矩阵,则=-1*)(A ( ). A.A A )det(1 B. 1)det(1-A A C.*)det(1A A D. A A *)det(1 5. 设方阵A 满足A 2-A -2E=0, 则必有( ).A.E A -=B. E A 2=C. A 可逆D. A 不可逆6. 设A 是n 阶可逆矩阵,*A 是A 的伴随矩阵,则=⋅|*|||A A ( ).A. 1B. n A ||C. 1||-n AD. 1||+n A7. 设A,B 为n 阶方阵,则必有( ).A. AB=BAB. │A+B│=│A│+│B│C. │A -B│=│A│-│B│D. │AB│=│A││B│8.设B A ,都是n 阶可逆矩阵,则下列结论不正确的是( ).A. B A +一定可逆B. AB 一定可逆C . 11--B A 一定可逆 D. TT B A 一定可逆.9.下列矩阵中,与矩阵⎪⎪⎭⎫ ⎝⎛1011可交换的是( ). A. ⎪⎪⎭⎫ ⎝⎛2011 B. ⎪⎪⎭⎫ ⎝⎛1111 C. ⎪⎪⎭⎫ ⎝⎛2032 D. ⎪⎪⎭⎫ ⎝⎛--121110.矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 为非奇异矩阵的充要条件是( ). A. 0=-bc ad B. 0=-cd abC. 0≠-bc adD. 0≠-cd ab11.设A 为n 阶方阵,k 为非零常数,则必有( ).A. ||||A kA =B. ||||A k kA =C. ||||1A k kA n -=D. ||||A k kA n =12.下列说法正确的是( ).A. 设A 为n 阶方阵,且A 2=A ,则A=E 或A=0.B. 设A,B,C 为n 阶方阵, AB=AC 且A≠0,则B=C.C. 设A ,B ,C 都是n 阶方阵,且AB=E ,CA=E ,则B=C.D. 设A 为n 阶方阵,且A 2=0,则A=0.13.矩阵⎪⎪⎭⎫ ⎝⎛5321的逆矩阵是( ). A. ⎪⎪⎭⎫ ⎝⎛--5321B. ⎪⎪⎭⎫ ⎝⎛--1325 C. ⎪⎪⎭⎫ ⎝⎛--5321 D. ⎪⎪⎭⎫ ⎝⎛--5231 14.设A 为3阶方阵,|A|=3,则|3A -1|= ( ).A. 1B. -1C. 9D. -915. 设C B A ,,都是n 阶可逆矩阵,则=-1)(ABC ( ). A. 111---C B A B. 111---A C BC. 111---B A CD. 111---A B C16. 设A 是一个3阶的反对称矩阵,则|A|= ( ).A. -1B. 0C. 1D. 无法确定17.设α⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321a a a ,β],,[321b b b =,)3,2,1(0,0=≠≠i b a i i ,则方阵A=αβ的秩为( ).A. 0B. 1C. 2D. 318.如果向量组线性相关,那么( ).A. 这个向量组中至少有一个零向量.B. 这个向量组中至少有两个向量成比例.C. 这个向量组中至少有一个向量可以由其余向量线性表示.D. 这个向量组中所有向量都可以由其余向量线性表示.19.下列说法正确的是( ).A. 等价的向量组含有相同的向量个数.B. 如果向量组线性相关,那么这个向量组中至少有一个零向量.C. 如果向量组线性相关,那么这个向量组中至少有两个向量成比例.D. n 维单位向量组是线性无关的.20.设向量组α1],0,0,1[=α2],1,0,0[=则β=( )时,它是α1, α2的线性组合.A. ]2,1,0[B. ]0,2,1[C. ]2,0,1[D. ]0,1,2[21.向量组α1,α2,… ,αm 的秩不为0的充要条件是( ).A. 向量组α1,α2,… ,αm 中至少有一个非零向量.B. 向量组α1,α2,… ,αm 中至多有一个非零向量.C. 向量组α1,α2,… ,αm 中全部是非零向量.D. 向量组α1,α2,… ,αm 线性无关.22.设向量组α1,α2,… ,αm 的秩为)2(-≤m r r ,则下列说法错误的是( ).A. 向量组α1,α2,… ,αm 中至少有一个含r 个向量的部分组线性无关.B. 向量组α1,α2,… ,αm 中含r 个向量的部分组都线性无关.C. 向量组α1,α2,… ,αm 中含1+r 个向量的部分组都线性相关.D. 向量组α1,α2,… ,αm 中含2+r 个向量的部分组都线性相关.23.设α1,α2,α3为3阶方阵A 的列向量组,则α1,α2,α3线性无关的充要条件是( ).A. │A│0≠B. A 的秩3)(<A RC. 方阵A 不可逆D. 方阵A 是奇异的24. 下列说法错误的是( ).A.1+n 个n 维向量必相关.B. 等价的向量组有相同的秩.C. 任一n 维向量一定可由n 维单位向量组线性表示.D. 零向量不可以由n 维单位向量组线性表示.25. 若R (A )=2,则5元齐次线性方程组A x =0的基础解系中有( )个向量。
一(1).选择题1. 设A ,B 为n 阶矩阵,则必有( )A.222()2+=++A B A AB BB.22()()+-=-A B A B A B C.()()()()-+=+-A E A E A E A E D.222()=AB A B 2.对于n 元齐次线性方程组0=Ax ,以下命题中,正确的是( )(A) 若A 的列向量组线性无关,则0=Ax 有非零解;(B) 若A 的行向量组线性无关,则0=Ax 有非零解;(C) 若A 的行向量组线性相关,则0=Ax 有非零解(D) 若A 的列向量组线性相关,则0=Ax 有非零解;3.若齐次线性方程组⎪⎩⎪⎨⎧=++=-+=+-0002321321321x x kx x kx x x x x 有非零解,则k 必须满足( )。
(A )4=k (B )1-=k (C )1-≠k 且4≠k (D )1-=k 或4=k4.若存在可逆矩阵C ,使1B C AC -=,则A 与B( )(A) 相等 (B) 相似 (C) 合同 (D) 可交换5. 向量组r ααα,,,21 线性相关且秩为s ,则( )(A )s r = (B) s r ≤ (C) r s ≤ (D) r s <6.矩阵A 与B 相似的充分条件是( )。
(A )B A = (B ))()(B r A r =(C )A 与B 有相同的特征多项式(D )n 阶矩阵A 与B 有相同的特征值且n 个特征值互不相同。
一(2).选择题1. 设A ,B 为n 阶矩阵,则必有( )A.222()2+=++A B A AB BB.22()()+-=-A B A B A B C.()()()()-+=+-A E A E A E A E D.222()=AB A B 2、设有n 维向量组(Ⅰ):12,,,r ααα和(Ⅱ):12,,,()m m r ααα>,则( ).(A) 向量组(Ⅰ)线性无关时,向量组(Ⅱ)线性无关;(B) 向量组(Ⅰ)线性相关时,向量组(Ⅱ)线性相关;(C) 向量组(Ⅱ)线性相关时,向量组(Ⅰ)线性相关;(D) 向量组(Ⅱ)线性无关时,向量组(Ⅰ)线性相关.3.设A 是n 阶矩阵,O 是n 阶零矩阵,且A 2-E =O ,则必有( )A. A =EB. A =-E C . A =A -1 D .|A |=14.已知向量组()()()2,5,4,0,0,,0,2,1,1,2,1321--==-=αααt 的秩为2,则=t ( )。
第二章复习题班级 姓名 学号 一 选择题 1.设行列式a a a a 11122122=m ,a a a a 13112321=n ,则行列式a a a a a a 111213212223++等于( D )(A )m+n (B )-(m+n) (C ) n -m(D ) m -n 2.设矩阵A=100020003⎛⎝ ⎫⎭⎪⎪⎪,则A -1等于( B )(A ) 13000120001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪(B ) 10001200013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪ (C )130********⎛⎝⎫⎭⎪⎪⎪⎪⎪(D ) 12000130001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪ 3.设矩阵A 的秩为r ,则A 中( C ) (A )所有r -1阶子式都不为0(B )所有r -1阶子式全为0 (C )至少有一个r 阶子式不等于0(D )所有r 阶子式都不为04.设n 阶方阵A 不可逆,则必有( A ) (A )秩(A)<n (B )秩(A)=n -1(C )A=0(D )方程组Ax=0只有零解5、设n 阶方阵A 、B 、C 满足关系式I ABC =,则有( D ) (A )I ACB =;(B )I CBA =;(C )I BAC =;(D )I BCA = 6. 设A 为3阶方阵,|A| = 3,则其行列式 | 3A|是( D ) (A )3 (B )32 (C )33 (D )347.已知四阶行列式A 的值为2,将A 的第三行元素乘以―1加到第四行的对应元素上去,则现行列式的值( A )(A ) 2 ; (B ) 0 ; (C ) ―1 ; (D ) ―28.设齐次线性方程组⎪⎩⎪⎨⎧=+-=++=+02020z y kx z ky x z kx有非零解,则k =( A )(A )2 (B )0 (C )-1 (D )-29.如果1333231232221131211==a a a a a a a a a D ,3332313123222121131211111232423242324a a a a a a a a a a a a D ---= ,则=1D [ C ](A )8 (B )12- (C )24- (D )2410.如果3333231232221131211==a a a a a a a a a D ,2323331322223212212131111352352352a a a a a a a a a a a a D ---=,则=1D[ B ](A )18 (B )18- (C )9- (D )27- 11.如果122211211=a a a a ,则方程组⎩⎨⎧=+-=+-022221211212111b x a x a b x a x a 的解是 [ B ] (A )2221211a b a b x =,2211112b a b a x =(B )2221211a b a b x -=,2211112b a b a x =(C )2221211a b a b x ----=,2211112b a b a x ----=(D )2221211a b a b x ----=,2211112b a b a x -----=二 填空题1.设A=(a ij )3×3,|A|=2,A ij 表示|A|中元素a ij 的代数余子式(i,j=1,2,3),则(a 11A 21+a 12A 22+a 13A 23)2+(a 21A 21+a 22A 22+a 23A 23)2+(a 31A 21+a 32A 22+a 33A 23)2= 4 .2. 11135692536=63. 设=-+----=31211142,410132213A A A D 则 04. 设矩阵A 为3阶方阵,且|A |=5,则|A*|=_25_____,|2A |=__40___5. 设⎪⎪⎪⎭⎫ ⎝⎛=543022001A ,则=-*1)(A 10001-1050102-42⎛⎫⎪⎪ ⎪⎝⎭6. 设A 是34⨯矩阵且2)(=A r ,⎪⎪⎪⎭⎫ ⎝⎛-=301020201B ,则=)(AB r 27. 设⎪⎪⎪⎭⎫⎝⎛=t A 11522111,且2)(=A r ,则=t 18. 设A 是4阶实矩阵,且*8A =,A = 29. 若=⎪⎪⎪⎭⎫ ⎝⎛=*A A 则,654032001 1800-1260-2-53⎛⎫ ⎪ ⎪ ⎪⎝⎭ ,1-A = 18001-126018-2-53⎛⎫⎪ ⎪ ⎪⎝⎭10. 行列式243012321---中元素0的代数余子式的值为___2____11. 设行列式4321630211118751=D ,设j j A M 44,分布是元素j a 4的余子式和代数余子式,则44434241A A A A +++ = 0 ,44434241M M M M +++= -66三计算题1. 设A=120340121-⎛⎝⎫⎭⎪⎪⎪,B=22341--⎛⎝⎫⎭⎪.求(1)AB T;(2)|4A|.解(1)AB T=120340121223410-⎛⎝⎫⎭⎪⎪⎪--⎛⎝⎫⎭⎪⎪⎪=861810310⎛⎝⎫⎭⎪⎪⎪.(2)|4A|=43|A|=64|A|,而|A|=1203401212 -=-.所以|4A|=64·(-2)=-1282.123423413412412312342341341241231234123411313410113101010131160.1412013131111230311--===-=---解3.111a b cb c ac a b+++()11111111111011111a b c a b c c cb c a b c a a a b c ac a b c a b b b+++++=+++=+++= ++++解。
《线性代数》综合复习题
一 选择题 (本题每小题只有一个正确答案,共5小题,每小题4分,共20分。
)
1. 已知矩阵A =⎪⎪⎭⎫
⎝⎛-1011,B =⎪⎪⎭
⎫
⎝⎛1101
,则AB -BA=( ) A.⎪⎪⎭⎫
⎝⎛--12
01 B.⎪⎪⎭⎫
⎝⎛-1011 C.⎪⎪⎭
⎫
⎝⎛10
01 D.⎪⎪⎭
⎫
⎝⎛00
00 2. 设A 为3阶方阵,且3
131=
-A ,则|A |=( )
A.-9
B.-3
C.-1
D.9
3. 设A 、B 为n 阶方阵,满足A 2=B 2
,则必有( ) A.A =B B.A =-B C.|A|=|B|
D.|A|2=|B|2
4. 设A 、B 均为n 阶可逆矩阵,且AB =BA ,则下列结论中,不正确...的是( ) A.AB -1=B -1A B.B -1A =A -1B C.A -1B -1=B -1A -1
D.A -1B =BA -1
5. 设向量α1=(a 1, b 1, c 1),α2=(a 2, b 2, c 2),β1=(a 1, b 1, c 1, d 1),β2=(a 2, b 2, c 2, d 2),下列命题中正确的是( )
A.若α1,α2线性相关,则必有β1,β2线性相关
B.若α1,α2线性无关,则必有β1,β2线性无关
C.若β1,β2线性相关,则必有α1,α2线性无关
D.若β1,β2线性无关,则必有α1,α2线性相关
6. 设m ×n 矩阵A 的秩r (A )=n -3(n >3),α,β,γ是齐次线性方程组Ax =0的三个线性无关的解向量,则方程组Ax =0的基础解系为( ) A.α,β,α+β B.β,γ,γ-β C.α-β,β-γγ-α D.α,α+β,α+β+γ
9.设矩阵A =⎪⎪⎪
⎭
⎫
⎝
⎛00
1010
100,则A 的特征值为( ) A.1,1,0 B.-1,1,1 C.1,1,1
D.1,-1,-1
10.设n A 为阶可逆方阵,设*A 是A 的伴随矩阵,则( )。
(A )1|||*|-=n A A (B ) |||*|A A = (C )n A A |||*|= (D )|||*|1-=A A 。
11.设n B A 均为,阶方阵,满足等式0=AB ,则必有( ) (A )0=A 或 0=B (B ) 0=+B A (C )0||=A 或 0||=B (D ) 0||||=+B A
12、线性方程组,0=AX 若A 是n 阶方阵n A R <)(,,则该方程组( )。
(A ) 有唯一解 (B ) 有无穷多解
(C ) 无解 (D ) (A )、(B)、(C)都不对。
13、设A 为n 阶方阵,且0=A ,则( ).
(A )A 中必有两行(列)的对应元素成比例;
(B )A 中任意一行(列)向量是其余各行(列)向量的线性组合; (C )A 中必有一行(列)向量是其余各行(列)向量的线性组合; (D )A 中至少有一行(列)向量为零向量.
二、填空题
1、0
03
221
1
1
= 。
2、设向量组A 的秩为1r ,向量组B 的秩为2r ,且A 与B 等价,则1r 与2r 的关系是____________。
3、设A 为三阶方阵,且4||=A ,则._______________|2|1=-A
4、设t ηηη,,,21 及t t ηληληλ+++ 2211都是非齐次线性方程组b A =X 的解向量,则=+++t λλλ 21________________。
5、若A 为正交矩阵,则detA =
6 .设矩阵A =⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎭⎫
⎝⎛--75
3240,311102B ,则A T
B =__________. 7 .已知行列式1
1
1
032
1
2-a
=0,则数a =__________. 8.已知向量组⎪⎪⎪⎪
⎪⎭
⎫
⎝⎛+=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4212,0510,2001321t ααα的秩为2,则数t =__________.
9.设向量组α1=(1,2,3),α2=(4,5,6),α3=(3,3,3)与向量组β1,β2,β3
等
价,则向量组β1,β2,β3的秩为__________. 10.设方程组⎩⎨
⎧=+=+0
2022121kx x x x 有非零解,则数k =__________.
11.已知向量α=(1,-2,3,4)与β=(3,a ,5,-7)正交,则数a =__________. 12.已知3阶矩阵A 的3个特征值为1,2,3,则|A *
|=__________.
13.
=0
000
00
0a
b
b a b a a b
______________
14.三阶行列式1
542223
21=D ,则=++131211|A A A __________
15.设A ,B 均为n 阶矩阵,E AB =2)(,则2
)(BA =__________
16.设A 为n 阶方阵,且2=A ,*A 为A 的伴随矩阵,则1*-+A A =_________ 17.设矩阵⎪⎪⎪
⎭
⎫ ⎝⎛-=83102113201t A 的秩为2,则t=___________
18.设0=AX 为一个4元齐次线性方程组,若321,,ξξξ为它的一个基础解系,则秩(A )=_________
19.设⎪⎪⎪⎭
⎫ ⎝⎛=110101011A ,则A 的特征值为_________
三、解答题
1、计算下列行列式
3
2
1
4
214314324321
2、设3阶方阵A 和B 满足B A E AB +=+2
,其中,⎪⎪⎪
⎭
⎫ ⎝
⎛=10
1020
101A ,求B 。
3、已知向量组T )1,2,0,1(1-=α,T )1,0,1,3(2-=α,T )3,4,1,1(3-=α,
T
)3,10,0,3(4=α,求此向量组的一个最大线性无关组,并把不属于最大线性
无关组的向量用最大线性无关组线性表出。
4、求下列非齐次线性方程组的通解。
⎪⎩⎪
⎨⎧=-+=+-=--3
2214321
32321X X X X X X X X
5、(满分10分)求下列矩阵的特征值和特征向量。
⎪⎪⎪⎭
⎫
⎝
⎛--21
2044
010 6计算行列式D=
50
2
1
011321014321
---的值.
7.已知A =⎪⎪⎭
⎫
⎝
⎛-=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫
⎝⎛-1013
,1102
,2141C B ,矩阵X 满足AXB =C ,求解X . 8.设矩阵A =⎪⎪⎪⎭
⎫
⎝⎛--40
2000
201,求可逆矩阵P 和对角矩阵Λ,使得P -1
AP =Λ.
9.已知线性方程组⎪⎩⎪
⎨⎧-λ=++λ-=+λ+-=λ++3
22321
321321x x x x x x x x x ,
(1)讨论λ为何值时,方程组无解、有惟一解、有无穷多个解.
(2)在方程组有无穷多个解时,求出方程组的通解(要求用其一个特解和导出组的基础解
系表示).
10.设向量组)0,1,1(1-=α,)1,4,2(2=α,)1,5,1(3=α,)1,0,0(4=α,求该向量组的秩,并判断其线性相关性。
11.试判定二次型32312
32
22
1321422),,(x x x x x x x x x x f ++++=的正定性。
12.设111011001A -⎛⎫ ⎪
= ⎪ ⎪-⎝⎭
,求矩阵B ,使E AB A =-2
13.当A 为2阶方阵,且满足)2,1(,==i i A i i αα 其中T
T
)3,4(,)2,3(21==αα,求矩阵A
14.当a 为何值时,方程组⎪⎩
⎪
⎨⎧=+-=++=++14321
31321321ax x x x x x x x 有无穷多解?
此时,求方程组的通解。