理想气体状态方程习题
- 格式:ppt
- 大小:104.00 KB
- 文档页数:12
〖问题与讨论~P24理想气体的状态方程〗1. 根据玻意耳定律P A V A =P B V B ,根据查理定律P B T B =P C T C(*) 2. 根据T A =T B ,V B =V C ,将P B =P A V A V B 代入(*)式,得到P A V A T A =P B V B T B。
〖问题与练习~P25〗1.根据PV T=C ,可知一定质量的理想气体,不可能压强与体积不变而温度发生变化,所以(1)不可能;压强不变,而温度升高,体积只能增加,不可能减小,所以(2)不可能;而温度不变,体积增加,压强减小,方程可能成立,则(3)是正确的;同样,体积不变、增加压强,温度必升高,所以(4)不可能。
答案:C 。
2. 由于外界大气压不变,玻璃管内空气含量较少,对压强影响不是很大。
因此,当玻璃管竖直向上提起时,管内水银柱的高度变化不会很大,管内空气柱长度增加,体积增大。
我们可以把这个过程看做等温过程,由于体积增大,玻璃管内空气压强会减小,水银柱的长度会增加。
也可以利用理想气体状态方程,通过定量计算玻璃管内空气柱的体积和压强的变化得出结果。
§4 气体热现象的微观意义〖问题与练习~P30〗1. 例如城市交通,在交叉路口不同方向红绿灯的时间分配是根据长时间对车流量的统计来设定的。
但有时也会出现偏差,如遇到大型活动或突发事件。
2. 根据理想气体状态方程得,压强变为原来的0.5倍。
温度升高为原来的1.5倍,说明气体分子的平均动能增加为原来的1.5倍,分子在单位面积上撞击器壁的平均作用力增加为原来的1.5倍。
二而体积增大为原来的3倍,说明分子在单位面积上撞击器壁的分子数平均变为原来的1/3,所以压强变为原理的0.5倍。
〖练习与巩固〗1.一定质量的理想气体,如果保持气体的体积不变,温度升高。
下列说法中正确的是A.气体的压强增大B.单位时间内气体分子对器壁碰撞的次数增多C.每个分子的速率均增大D.单位体积内分子数不变2.一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为p1、V1、T1,在另一平衡状态下的压强、体积和温度分别为p2、V2、T2,下列关系中正确的是 A.p1=p2,V1=2V2,T1=T2B.p1=p2,V1= V2,T1=2T2C.p1=2p2,V1=2V2,T1=2T2D.p1=2p2,V1=V2,T1=2T23.在一定温度下,当一定质量气体的体积增大时,气体的压强减小,这是由于 A.单位体积内的分子数变少,单位时间内对单位面积器壁碰撞的次数减少B.气体分子的密集程度变小,分子对器壁的吸引力变小C.每个分子对器壁的平均撞击力变小D.气体分子的密集程度变小,单位体积内分子的重量变小4.某种气体在不同温度下的气体分子速率分布曲线如图所示,图中f(v)表示v处单位速率区间内的分子数百分率,所对应的温度分别为TⅠ、TⅡ、TⅢ,则TⅠ、TⅡ、TⅢ的大小关系为A.TⅠ>TⅡ>TⅢB.TⅢ>TⅡ>TⅠC.TⅡ>TⅠ,TⅡ>TⅢD.TⅠ=TⅡ=TⅢ5.(多选题)某同学利用DIS实验系统研究一定量理想气体的状态变化,实验后计算机屏幕显示如图的p-T图像。
理想气体状态方程应用练习题在学习物理学的过程中,理想气体状态方程是一个非常重要的知识点。
它不仅在理论研究中有着广泛的应用,在实际生活和工程领域也发挥着重要的作用。
接下来,让我们通过一些练习题来深入理解和掌握理想气体状态方程的应用。
一、基础练习题1、一密闭容器中装有一定质量的理想气体,在温度为 27℃时,压强为 10×10^5 Pa。
若将温度升高到 127℃,则容器内气体的压强变为多少?解:已知初始温度$T_1 = 27 + 273 = 300$ K,初始压强$P_1 =10×10^5$ Pa,最终温度$T_2 = 127 + 273 = 400$ K。
根据理想气体状态方程$P_1V_1/T_1 = P_2V_2/T_2$,由于容器密闭,体积不变,即$V_1 = V_2$。
所以$P_2 = P_1×T_2/T_1 =10×10^5×400/300 ≈ 133×10^5$ Pa2、一个容积为 20 L 的钢瓶中装有 150 atm 的氧气,若使用掉一半的氧气后,瓶内氧气的压强变为多少?温度不变。
解:初始压强$P_1 = 150$ atm,初始体积$V_1 = 20$ L,使用掉一半氧气后,剩余气体的物质的量为原来的一半。
因为温度不变,根据理想气体状态方程$P_1V_1 = P_2V_2$,体积不变,$V_1 = V_2$。
所以$P_2 = P_1/2 = 150/2 = 75$ atm二、综合练习题1、一定质量的理想气体,在压强不变的情况下,温度从 0℃升高到 100℃时,其体积增加了 1/3。
求原来气体的温度是多少?解:设原来气体的温度为$T_1$,最终温度$T_2 = 100 + 273 =373$ K。
根据理想气体状态方程$V_1/T_1 = V_2/T_2$,压强不变,$P_1 = P_2$。
已知体积增加了 1/3,即$V_2 = 4/3 V_1$。
高中物理热学--理想气体状态方程试题及答案、单选题1•一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为压强、体积和温度分别为P2、V2、A. p i =p2, V i=2V2, T i= 1T22 C. p i =2p2, V i=2V2, T i= 2T2 T2,下列关系正确的是iB. p i =p2, V i= 2 V2 , T i= 2T2D . p i =2p2 , V i=V2, T i= 2T22.已知理想气体的内能与温度成正比。
如图所示的实线为汽缸内一定质量的理想气体由状态i到状态2的变化曲线,则在整个过程中汽缸内气体的内能A.先增大后减小C.单调变化B.先减小后增大D.保持不变3•地面附近有一正在上升的空气团,它与外界的热交热忽略不计•已知大气压强随高度增加而降低,则该气团在此上升过程中(不计气团内分子间的势能)A.体积减小,温度降低B.体积减小,温度不变C•体积增大,温度降低 D.体积增大,温度不变4.下列说法正确的是A. 气体对器壁的压强就是大量气体分子作用在器壁单位面积上的平均作用力B. 气体对器壁的压强就是大量气体分子单位时间作用在器壁上的平均冲量C. 气体分子热运动的平均动能减少,气体的压强一定减小D. 单位面积的气体分子数增加,气体的压强一定增大5 .气体内能是所有气体分子热运动动能和势能的总和,其大小与气体的状态有关,分子热运动的平均动能与分子间势能分别取决于气体的A .温度和体积B .体积和压强C.温度和压强 D .压强和温度6.带有活塞的汽缸内封闭一定量的理想气体。
气体开始处于状态a,然后经过程ab到达状态b或进过过程ac到状态c, b、c状态温度相同,如V-T所示。
设气体在状态b和状态c的压强分别为Pb、和PC ,在过程ab和ac 吸收的热量分别为Qab和Qac,贝UA. Pb >Pc, Qab>QacB. Pb >Pc, Qab<QacC. Pb <Pc, Qab>QacD. Pb <Pc, Qab<Qac中7.下列说法中正确的是A. 气体的温度升高时,分子的热运动变得剧烈,分子的平均动能增大,撞击器壁时对器壁的作用力增大,从而气体的压强一定增大B. 气体的体积变小时,单位体积的分子数增多,单位时间内打到器壁单位面积上的分子数增多,从而气体的压强一定增大C. 压缩一定量的气体,气体的内能一定增加D. 分子a从远处趋近固定不动的分子b,当a到达受b的作用力为零处时,a的动能一定最大&对一定量的气体,若用N表示单位时间内与器壁单位面积碰撞的分子数,则p i、V i、T i,在另一平衡状态下的14.一定质量的理想气体由状态A 经状态B 变为状A 当体积减小时,V 必定增加B 当温度升高时,N 必定增加C 当压强不变而体积和温度变化时,D 当压强不变而体积和温度变化时,二、双选题9•一位质量为60 kg 的同学为了表演“轻功”,他用打气筒 只相同的气球充以相等质量的空气(可视为理想气体) ,然 这4只气球以相同的方式放在水平放置的木板上, 在气球的 放置一轻质塑料板,如图所示。
理想气体状态方程专题训练一、封闭气体压强计算1.在图中,各装置均静止,已知大气压强为P0 ,液体密度为ρ,求被封闭气体的压强p2.如图所示,一个横截面积为S的圆筒形容器竖直放置.金属圆板A的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆板的质量为M.不计圆板与容器内壁之间的摩擦.若大气压强为p0,则求被圆板封闭在容器中的气体的压强p.3.如图所示,光滑水平面上放有一质量为M的汽缸,汽缸内放有一质量为m、可在气缸内无摩擦滑动的活塞,活塞面积为S,现用水平恒力F向右推汽缸,最后汽缸和活塞达到相对静止状态,求此时缸内封闭气体的压强P。
(已知外界大气压为P0)二、理想气体状态方程的基础应用4.一定质量的理想气体由状态A经过状态B变为状态C,其有关数据如p-T图象甲所示.若气体在状态A的温度为-73.15℃,在状态C的体积为0.6m3.求:(1)状态A的热力学温度;(2)说出A至C过程中气体的变化情形,并根据图象提供的信息,计算图中V A的值;(3)在图乙坐标系中,作出由状态A经过状态B变为状态C的V-T图象,并在图线相应位置上标出字母A、B、C.如果需要计算才能确定坐标值,请写出计算过程.三、单一封闭气体问题5.一足够长的粗细均匀的玻璃管开口向上竖直放置,管内由15cm长的水银柱封闭着50cm长的空气柱.若将管口向下竖直放置,空气柱长变为多少cm?(设外界大气压强为75cmHg,环境温度不变)6.在如图所示的气缸中封闭着温度为400K的空气,一重物用绳索经滑轮与缸中活塞相连接,重物和活塞均处于平衡状态,这时活塞离缸底的高度为10cm,如果缸内空气变为300K,问:(1)重物是上升还是下降?(2)这时重物将从原处移动多少厘米?(设活塞与气缸壁间无摩擦)7.如图所示,固定的绝热气缸内有一质量为m的“T”型绝热活塞(体积可忽略),距气缸底部h0处连接一U形管(管内气体的体积忽略不计).初始时,封闭气体温度为T0,活塞距离气缸底部为1.5h0,两边水银柱存在高度差.已知水银的密度为ρ,大气压强为p0,气缸横截面积为s,活塞竖直部分长为1.2h0,重力加速度为g.试问:(1)初始时,水银柱两液面高度差多大?(2)缓慢降低气缸内封闭气体的温度,当U形管两水银面相平时封闭气体的温度是多少?8.一汽缸竖直放在水平地面上,缸体质量M= 10kg,活塞质量M=4kg,活塞横截面积S=2×10-3 m2,活塞上面的汽缸内封闭了一定质量的理想气体,下面有气孔O与外界相通,大气压强p0=1.0×105Pa.活塞下面与劲度系数k = 2×103 N/m 的轻弹簧相连.当汽缸内气体温度为127℃时弹簧为自然长度,此时缸内气柱长度L1=20 cm,g取10m/s2,缸体始终竖直,活塞不漏气且与缸壁无摩擦.①当缸内气柱长度L2=24cm时,缸内气体温度为多少K?②缸内气体温度上升到T0以上,气体将做等压膨胀,则T0为多少K?四、多个相互关联的封闭气体问题9.如图,绝热气缸A与导热气缸B均固定于地面,由刚性杆连接的绝热活塞与两气缸间均为摩擦。
高中物理热学-- 理想气体状态方程 试题及答案一、单选题1.一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为p 1、V 1、T 1,在另一平衡状态下的压强、体积和温度分别为p 2、V 2、T 2,下列关系正确的是A .p 1 =p 2,V 1=2V 2,T 1= 21T 2 B .p 1 =p 2,V 1=21V 2,T 1= 2T 2C .p 1 =2p 2,V 1=2V 2,T 1= 2T 2D .p 1 =2p 2,V 1=V 2,T 1= 2T 22.已知理想气体的内能与温度成正比。
如图所示的实线为汽缸内一定 质量的理想气体由状态1到状态2的变化曲线,则在整个过程中汽缸内气体的内能A.先增大后减小B.先减小后增大C.单调变化D.保持不变3.地面附近有一正在上升的空气团,它与外界的热交热忽略不计.已知大气压强随高度增加而降低,则该气团在此上升过程中(不计气团内分子间的势能)A.体积减小,温度降低B.体积减小,温度不变C.体积增大,温度降低D.体积增大,温度不变4.下列说法正确的是A. 气体对器壁的压强就是大量气体分子作用在器壁单位面积上的平均作用力B. 气体对器壁的压强就是大量气体分子单位时间作用在器壁上的平均冲量C. 气体分子热运动的平均动能减少,气体的压强一定减小D. 单位面积的气体分子数增加,气体的压强一定增大5.气体内能是所有气体分子热运动动能和势能的总和,其大小与气体的状态有关,分子热运动的平均动能与分子间势能分别取决于气体的A .温度和体积B .体积和压强C .温度和压强D .压强和温度6.带有活塞的汽缸内封闭一定量的理想气体。
气体开始处于状态a ,然后经过过程ab 到达状态b 或进过过程ac 到状态c ,b 、c 状态温度相同,如V-T 图所示。
设气体在状态b 和状态c 的压强分别为Pb 、和PC ,在过程ab 和ac 中吸收的热量分别为Qab 和Qac ,则A. Pb >Pc ,Qab>QacB. Pb >Pc ,Qab<QacC. Pb <Pc ,Qab>QacD. Pb <Pc ,Qab<Qac7.下列说法中正确的是A.气体的温度升高时,分子的热运动变得剧烈,分子的平均动能增大,撞击器壁时对器壁的作用力增大,从而气体的压强一定增大B.气体的体积变小时,单位体积的分子数增多,单位时间内打到器壁单位面积上的分子数增多,从而气体的压强一定增大C.压缩一定量的气体,气体的内能一定增加D.分子a从远处趋近固定不动的分子b,当a到达受b的作用力为零处时,a的动能一定最大8.对一定量的气体,若用N表示单位时间内与器壁单位面积碰撞的分子数,则A 当体积减小时,V必定增加B 当温度升高时,N必定增加C 当压强不变而体积和温度变化时,N必定变化D 当压强不变而体积和温度变化时,N可能不变二、双选题9.一位质量为60 kg的同学为了表演“轻功”,他用打气筒给4只相同的气球充以相等质量的空气(可视为理想气体),然后将这4只气球以相同的方式放在水平放置的木板上,在气球的上方放置一轻质塑料板,如图所示。
气体定律的练习题一、理想气体状态方程理想气体状态方程可表示为PV = nRT,其中P为气体的压力,V为气体的体积,n为气体的物质的量,R为气体常数,T为气体的绝对温度。
1. 一个容器中有2mol的氧气,该容器的体积为10L,温度为20°C。
计算氧气的压力。
解析:首先将温度转换为绝对温度,即20°C + 273.15 = 293.15 K。
代入理想气体状态方程中,得到P * 10 = 2 * 8.314 * 293.15,解得P ≈ 38.85 Pa。
2. 一瓶氮气的体积为5L,温度为25°C,物质的量为0.5mol。
求氮气的压力。
解析:将温度转换为绝对温度,即25°C + 273.15 = 298.15 K。
代入理想气体状态方程中,得到P * 5 = 0.5 * 8.314 * 298.15,解得P ≈ 81.86 Pa。
二、玻意耳-马略特定律根据玻意耳-马略特定律,当气体的物质的量和温度不变时,气体的压力与体积成反比。
3. 一气缸中的气体初始压力为2 atmos,体积为10L。
如果将气体的体积减小为5L,求气体的最终压力。
解析:根据玻意耳-马略特定律,初始压力P1 * 初始体积V1 = 终端压力P2 * 终端体积V2,代入已知条件,得到2 * 10 = P2 * 5,解得P2 = 4 atmos。
4. 一容器中的氧气体积为10L,压力为2 atm。
如果将氧气体积增大到20L,求氧气的最终压力。
解析:根据玻意耳-马略特定律,初始压力P1 * 初始体积V1 = 终端压力P2 * 终端体积V2,代入已知条件,得到2 * 10 = P2 * 20,解得P2 = 1 atm。
三、查理定律根据查理定律,当气体的压力和温度不变时,气体的体积与物质的量成正比。
5. 一个容器中含有3mol的气体,体积为12L。
如果将气体的物质的量增加到6mol,求气体的最终体积。
解析:根据查理定律,初始物质的量n1 / 初始体积V1 = 终端物质的量n2 / 终端体积V2,代入已知条件,得到3 / 12 = 6 / V2,解得V2 = 24L。
《气体》习题课学案专题一:三个实验定律和理想气体状态方程的应用例题1:如图所示,汽缸长为L =1 m ,固定在水平面上,汽缸中有横截面积为S =100 cm2的光滑活塞,活塞封闭了一定质量的理想气体,当温度为t =27 ℃,大气压强为p0=1×105Pa 时,气柱长度为l =90 cm ,汽缸和活塞的厚度均可忽略不计.求:(1)如果温度保持不变,将活塞缓慢拉至汽缸右端口,此时水平拉力F 的大小是多少?(2)如果汽缸内气体温度缓慢升高,使活塞移至汽缸右端口时,气体温度为多少摄氏度?总结方法:练习1.一定质量的气体,压强为3 atm ,保持温度不变,当压强减小了2 atm ,体积变化了4 L ,则该气体原来的体积为( )A.43 LB.2 LC.83L D.3 L 练习2:如图23所示,柱形容器内用不漏气的轻质绝热活塞封闭一定量的理想气体,容器外包裹保温材料.开始时活塞至容器底部的高度为H 1,容器内气体温度与外界温度相等为T 0,大气压强为P 0.在活塞上逐步加上多个砝码后,活塞下降到距容器底部H 2处,气体温度升高了ΔT , 此时气体压强是多少?(2)然后取走容器外的保温材料,活塞位置继续下降,最后静 止于距容器底部H 3处,求:气体最后的温度.图2-3专题二:相互关联的两部分气体的分析方法例题3:如图8-4所示,一个密闭的汽缸,被活塞分成体积相等的左、右两室,汽缸壁与活塞是不导热的;它们之间没有摩擦,两室中气体的初始体积均为V0、温度均为T0..现利用右室中的电热丝对右室加热一段时间,达到平衡后,左室的体积变为原来的3/4,气体的温度T1=300 K,求右室气体的温度.总结方法:练习:如图,绝热汽缸A与导热汽缸B均固定于地面,由刚性杆连接的绝热活塞与两汽缸间均无摩擦.两汽缸内装有处于平衡状态的理想气体,开始时体积均为V0、温度均为T0.缓慢加热A中气体,停止加热达到稳定后,A中气体压强为原来的1.2倍.设环境温度始终保持不变,求汽缸A中气体的体积V A和温度T A.专题三、变质量问题:例题4:氧气瓶的容积是40 L,其中氧气的压强是130 atm,规定瓶内氧气压强降到10 atm 时就要重新充氧,有一个车间,每天需要用1 atm的氧气400 L,这瓶氧气能用几天?假定温度不变.提示:总结方法:练习1.(2016·全国乙卷)一氧气瓶的容积为0.08 m3,开始时瓶中氧气的压强为20个大气压.某实验室每天消耗1个大气压的氧气0.36 m3.当氧气瓶中的压强降低到2个大气压时,需重新充气.若氧气的温度保持不变,求这瓶氧气重新充气前可供该实验室使用多少天.练习2.(变质量问题)某种喷雾器的贮液筒的总容积为7.5 L,如图所示,装入6 L的药液后再用密封盖将贮液筒密封,与贮液筒相连的活塞式打气筒每次能压入300 cm3,1 atm的空气,设整个过程温度保持不变,求:(1)要使贮气筒中空气的压强达到4 atm,打气筒应打压几次?(2)在贮气筒中空气的压强达到4 atm时,打开喷嘴使其喷雾,直到内外气体压强相等,这时筒内还剩多少药液?课后反思:。
理想气体状态方程练习题气缸活塞类问题1.如图所示,开口向上竖直放置的内壁光滑气缸,其侧壁是绝热的,底部导热,内有两个质量均为m 的密闭活塞,活塞A 导热,活塞B 绝热,将缸内理想气体分成Ⅰ、Ⅱ两部分.初状态整个装置静止不动且处于平衡状态,Ⅰ、Ⅱ两部分气体的高度均为l 0,温度为T 0.设外界大气压强为P 0保持不变,活塞横截面积为S ,且mg =P 0S ,环境温度保持不变.求:在活塞A 上逐渐添加铁砂,当铁砂质量等于2m 时,两活塞在某位置重新处于平衡,活塞A 下降的高度.2.如图所示,固定的竖直圆筒由上段细筒和下段粗筒组成,粗筒横截面积是细筒的4倍,细筒足够长,粗筒中A 、B 两轻质光滑活塞间封有空气,活塞A 上方有水银。
用外力向上托住活塞B ,使之处于静止状态,活塞A 上方的水银面与粗筒上端相平,水银深H=10cm ,气柱长L=20cm ,大气压强p 0=75cmHg 。
现使活塞B 缓慢上移,直到水银的一半被推入细筒中。
求①筒内气体的压强;②筒内气柱长度。
3.如图所示,一个上下都与大气相通的直圆筒,内部横截面的面积S=0.01米2,中间用两个活塞A 与B 封住一定质量的理想气体,A、B 都可沿圆筒无摩擦地上、下滑动,但不漏气,A 的质量可不计、B 的质量为M,并与一倔强系数k=5×103牛/米的较长的弹簧相连.已知大气压强p 0=1×105帕,平衡时,两活塞间的距离l 0=0.6米.现用力压A.使之缓慢向下移动一定距离后,保持平衡.此时,用于压A 的力F=5×102牛.求活塞A 向下移的距离.(假定气体温度保持不变.)4.如图所示,在横截面积为S =100cm 2开口向上竖直放置的圆柱形气缸内,质量m =1kg厚度不计的活塞可作无摩擦滑动,活塞下方封闭有长l 1=25.0cm 的空气柱,此时气缸上部的长度l 2=40.0cm .现将另一活塞从气缸开口处缓慢往下推动Δl ,使气缸下部空气柱长度变为'1l =20.0cm ,压强为'1p .设活塞下推过程中气体温度不变,已知大气压强p 0=1.0×105Pa,g =10m/s 2.求:①下部空气柱的压强'1p .②活塞下推的距离Δl .5.如图所示,有两个不计质量的活塞M 、N 将两部分理想气体封闭在绝热气缸内,温度均是270C .M 活塞是导热的,N 活塞是绝热的,均可沿气缸无摩擦地滑动,已知活塞的横截面积均为S=2cm 2,初始时M 活塞相对于底部的高度为H=27cm ,N 活塞相对于底部的高度为h=18cm .现将一质量为m=400g 的小物体放在M 活塞的上表面上,活塞下降.已知大气压强为p 0=1.0×105Pa,①求下部分气体的压强多大;②现通过加热丝对下部分气体进行缓慢加热,使下部分气体的温度变为1270C ,求稳定后活塞M 、N 距离底部的高度.l 1l 2Δl '2l '1l '1p A B ⅠⅡ液柱移动类1.[2015·新课标全国卷Ⅱ,3(2)]如图,一粗细均匀的U 形管竖直放置,A 侧上端封闭,B 侧上端与大气相通,下端开口处开关K 关闭;A 侧空气柱的长度为l =10.0cm ,B 侧水银面比A 侧的高h =3.0cm 。