2第一章太阳系和地球系统的元素分布和分配
- 格式:ppt
- 大小:17.49 MB
- 文档页数:127
地球化学考试题绪论1.概述地球化学学科的特点。
答题要点:1) 地球化学是地球科学中的⼀个⼆级学科;2) 地球化学是地质学和化学、物理化学和现代科学技术相结合的产物; 3) 地球化学既是地球学科中研究物质成分的主⼲学科,⼜是地球学科中研究物质运动形式的学科;地球化学既需要地质构造学、矿物学、岩⽯学作基础,⼜能更深刻地揭⽰地质作⽤过程的形成和发展历史,使地球科学由定性向定量化发展; 4) 地球化学已形成⼀个较完整的学科体系,仍不断与相关学科结合产⽣新的分⽀学科; 5) 地球化学作为地球科学的⽀柱学科,既肩负着解决当代地球科学⾯临的基本理论问题—天体、地球、⽣命、⼈类和元素的起源和演化的重⼤使命,⼜有责任为⼈类社会提供充⾜的矿产资源和良好的⽣存环境。
2. 简要说明地球化学研究的基本问题。
答题要点: 1)地球系统中元素及同位素的组成问题; 2)地球系统中元素的组合和元素的赋存形式; 3)地球系统各类⾃然过程中元素的⾏为(地球的化学作⽤)、迁移规律和机理; 4)地球的化学演化,即地球历史中元素及同位素的演化历史。
3. 简述地球化学学科的研究思路和研究⽅法。
答题要点:研究思路 1)由于地球化学本质上是属于地球科学,所以其⼯作⽅法应遵循地球科学的思维途径;2)要求每个地球化学⼯作者有⼀个敏锐的地球化学思维,也就是要善于识别隐藏在各种现象中的地球化学信息,从⽽揭⽰地质现象的奥秘;3)具备有定性和定量测定元素含量及鉴别物相的技术和装置。
研究⽅法:⼀)野外阶段:1)宏观地质调研。
明确研究⽬标和任务,制定计划; 2)运⽤地球化学思维观察认识地质现象;3)采集各种类型的地球化学样品。
⼆)室内阶段:1)“量”的研究,应⽤精密灵敏的分析测试⽅法,以取得元素在各种地质体中的分配量。
元素量的研究是地球化学的基础和起点,为此,对分析⽅法的研究的要求:⾸先是准确;其次是⾼灵敏度;第三是快速、成本低。
2)“质”的研究,即元素的结合形式和赋存状态的鉴定和研究。
地球化学复习资料绪论1.地球化学:地球化学研究地壳(尽可能整个地球)中的化学成分和化学元素及其同位素在地壳中的分布、分配、共生组合、集中分散及迁移循徊规律、运动形式和全部运动历史的科学。
2.研究对象:地球(、、、、、、)太阳系3.研究内容:①元素的分布、分配②元素集中、分散、共生组合、迁移规律核心:元素的化学作用和变化。
4.学科特点(1)对象:地球、地壳等及地质作用用地球化学方法研究以认识自然作用。
(2)以化学等为基础,着重于化学作用。
矿物岩石学:由结构构造了解成因构造地质学:由物理运动了解过程古生物学:由形态获得信息(3)理论性与应用性理论性:从化学角度查明过程、原因应用性:生态环境及治理、农业。
矿产资源勘探、开发5.地球化学的研究方法I.野外工作方法(1).现场宏观观察:①地质现象的时空结构②查明区内各种地质体的岩石-矿物组成及相关作用关系③由此提供有关地球化学作用的空间展布、时间顺序和相互关系(2)地球化学取样:①代表性②系统性(空间、时间、成因)③统计性..室内研究方法(1)精确灵敏的测试方法(2)研究元素的结合形式和赋存状态(3)作用过程物理化学条件的测定(、、ƒo2、、、)(4)自然作用的时间参数(5)实验室模拟自然过程(6)多元统计计算和建立数学模型6.地球化学的发展趋势经验性→理论化定性→定量单学科研究→多学科结合研究理论和方法的发展使其参与和解决重大科学问题的能力不断增强。
第一章太阳系和地球系统元素的丰度1.太阳系元素组成的研究方法直接采样分析(地壳岩石、陨石等)光谱分析(太阳)由物质的物理性质与成分的对应关系推算(行星)利用飞行器观察、直接测定或取样分析测定气体星云或星际间物质分析研究宇宙射线2.陨石:落到地球上的行星物体碎块,即从行星际空间穿越大气层到达地表的星体残骸3. 陨石的分类4.陨石的化学成分(1)铁陨石:主要由金属(98%)和少量其它矿物如磷铁镍古矿[()3P]、陨硫铁()、镍碳铁矿(3C)和石墨等组成。
第一章太阳系和地球系统化学元素的分布与分配研究任何物质的存在和运动规律,都必须观察研究对象的质和量的特征。
地壳和地球的化学组成如何,元素的相对含量怎样,无疑是地球化学必须探讨的基础课题。
地球化学在研究太阳系、地球和地壳及其它不同地质体中元素的含量时,常采用“丰度”(abundance)“分布”(distribution)和“分布量”等不同术语,它们都表示一定空间中物质组成的相对平均含量。
1.1太阳系的化学成分太阳系由太阳、行星、行星物体(宇宙尘、彗星、小行星)和卫星所组成,其中太阳集中了整个太阳系99.8%的质量。
行星沿着椭圆轨道绕太阳而运行(图1.1)。
在它们中间可以划分为两种类型:接近太阳的较小的内行星-水星、金星、地球、火星,也称为类地行星;远离太阳的大的外行星-木星、土星、天王星、海王星和冥王星。
在火星和木星之间存在着数以兆计的小行星(小行星带)。
它们的大小相差极大,其中最大的谷神星直径达770km。
据估计,直径大于10km的小行星有104个,而直径大于1m 的则有1011个。
有些小行星的轨道是横切过行星的轨道。
在殒落到地球上来的陨石中,已经发现有两颗的轨道曾位于小行星带内。
确定太阳系或宇宙丰度的途径计有:(1)直接分析测定地壳岩石、各类陨石和月球岩石的样品;(2)对太阳及其它星体辐射的光谱进行定性和定量研究;(3)利用宇宙飞行器对邻近地球的星体进行就近观察和测定,或取样分析;(4)分析测定气体星云和星际间的物质;(5)分析研究宇宙射线。
图1.1 太阳系及其行星示意图上图-示大小比例,下图-示分布及运行轨道1.1.1陨石的化学成分陨石是落到地球上来的行星物体的碎块。
它们可能起源于彗星。
更加可能来自火星和木星之间的小行星带。
陨石可由显微质点大小到具有几千公斤的巨块。
据估计,每年落到地球表面的大约有500个陨石,其总质量可达3×106至3×107t。
然而,每年见到其殒落,但又能找到的陨石仅5到6个。
第一章元素的丰度与分布第一节元素的宇宙丰度我们常说的元素宇宙丰度,实际上是太阳系的元素丰度,元素的宇宙丰度是研究元素起源的理论依据,是解释各类天体演化过程的基础。
由太阳、行星及其卫星、小行星、营星、流星体和星际物质构成的天体系统称为太阳系。
太阳的质量占整个太阳系总质量的99.8%,而其它成员总合仅占o.2%。
按成分特点,九大行星可以划分为三种类型:类地行星:顾名思义,它指与地球类似的行星,包括水星、金星、地球和火星。
其特点是质量小、密度大、体积小、卫星少。
成分特点是以岩石物质为主,富含Mg、Si、Fe等,含亲气元素少;巨行星:木星和土星。
它们的体积大、质量大、密度小、卫星多。
如果以地球质量和体积分别为1,则土星分别为95.18和745,木星分别为317.94和1316。
其成分特点是主要含H、He,亲石和亲铁元素少;远日行星:天王星、海王星、具王星。
其成分特点是以冰物质为主。
H含量估计为10%,He、Ne平均为12%。
上述三类行星中岩石物质:冰物质:气物质的比值分别为1:10—‘:10—y—lo“’;O.02:o.07:o.9120.195:0.68:0.12。
以上三类行星主要元素的原子相对丰度如表1.1所示:随着行星际空间探测的发展,地球和月球成分的大量精细研究,各类陨石元素组成数据的积累,雪星、流星体成分的测定,“使之对太阳系化学组成的研究获得了比较满意的结果,对各行星及卫星也提出了多种化学组成模式。
如前所述,太阳系的行星成分可分三大类:岩石质的;岩石质和冰物质的;气物质的。
根据平衡凝聚模型,由于太阳星云凝聚过程中温度的差异,距太阳愈远温度愈低,因而各行星区凝聚物的成分和含量均不相同。
水星:主要由难熔金属矿物,铁镍合金和少量顽辉石组成;金星:除上述成分外,还含有钾(钠)铝硅酸盐,但不含水;地球;除上述成分外,还含有透闪石等一些含水硅酸盐和三种形式的铁(金属铁,FeO,FeS),其中金属钦和FeS形成低熔点混合物,在放射性加热下熔化、分异,形成早期地核。