实验一(电容式传感器的位移特性实验)
- 格式:doc
- 大小:72.00 KB
- 文档页数:3
位移传感器实验报告位移传感器实验报告引言:位移传感器是一种能够测量物体位移的装置。
它在工业自动化、机器人技术、医疗设备等领域有着广泛的应用。
本实验旨在通过对位移传感器的实验研究,探索其工作原理和性能特点。
一、实验目的本实验的目的是研究位移传感器的工作原理和性能特点,了解其在实际应用中的优缺点,为后续的工程设计和应用提供参考。
二、实验装置和方法实验所用的位移传感器是一种电容式位移传感器,其工作原理是通过测量电容的变化来实现对位移的测量。
实验装置包括位移传感器、信号调理电路、数据采集系统等。
在实验过程中,首先将位移传感器固定在待测物体上,然后通过调整传感器的位置和角度,使其与被测物体保持良好的接触。
接下来,将信号调理电路与传感器连接,并将其输出与数据采集系统相连。
最后,通过改变被测物体的位移,观察位移传感器的输出信号变化,并记录相应的数据。
三、实验结果与分析在实验过程中,我们通过改变被测物体的位移,观察位移传感器的输出信号变化,并记录了相应的数据。
实验结果显示,位移传感器的输出信号随着被测物体位移的增加而线性增加,且具有较高的精度和稳定性。
进一步分析发现,位移传感器的灵敏度与传感器的工作原理和结构有关。
电容式位移传感器通过测量电容的变化来实现对位移的测量,其灵敏度受到电容变化量的影响。
因此,在实际应用中,我们需要根据具体的需求选择合适的位移传感器,以确保测量结果的准确性和可靠性。
此外,位移传感器还具有一定的温度特性。
在实验过程中,我们发现位移传感器的输出信号受到环境温度的影响。
当环境温度发生变化时,位移传感器的输出信号也会发生相应的变化。
因此,在实际应用中,我们需要对位移传感器进行温度补偿,以提高测量的精度和稳定性。
四、实验总结通过本次实验,我们深入了解了位移传感器的工作原理和性能特点。
位移传感器是一种能够测量物体位移的重要装置,在工业自动化、机器人技术、医疗设备等领域有着广泛的应用。
在实际应用中,我们需要根据具体的需求选择合适的位移传感器,并进行相应的温度补偿,以确保测量结果的准确性和可靠性。
传感器与检测技术实验报告前言:位移传感器又称为线性传感器,是一种属于金属感应的线性器件,传感器的作用是把各种被测物理量转换为电量。
在生产过程中,位移的测量一般分为测量实物尺寸和机械位移两种。
按被测变量变换的形式不同,位移传感器可分为模拟式和数字式两种。
模拟式又可分为物性型和结构型两种。
常用位移传感器以模拟式结构型居多,包括电位器式位移传感器、电感式位移传感器、自整角机、电容式位移传感器、电涡流式位移传感器、霍尔式位移传感器等。
数字式位移传感器的一个重要优点是便于将信号直接送入计算机系统。
这种传感器发展迅速,应用日益广泛。
一、电容式传感器1、传感器照片(luoshida-m30)2、应用场景管件材质:ABS塑料安装方式:齐平/非齐平检测距离:2-20mm/2-30mm可调节工作电压:10-40VDC输出方式:NPN/PNP NO/NC/NO+NC连接方式:2M PVC线缆3、测量原理这种开关的测量通常是构成电容器的一个极板,而另一个极板是开关的外壳。
这个外壳在测量过程中通常是接地或与设备的机壳相连接。
当有物体移向接近开关时,不论它是否为导体,由於它的接近,总要使电容的介电常数发生变化,从而使电容量发生变化,使得和测量头相连的电路状态也随之发生变化,由此便可控制开关的接通或断开。
这种接近开关检测的物件,不限於导体,可以绝缘的液体或粉状物等。
4、比较优点:温度稳定性好,结构简单,适应性强,动态响应好,可以实现非接触测量,具有平均效应:缺点:输出阻抗高,负载能力差,寄生电容影响大,输出特性非线性二、霍尔式位移传感器1、传感器照片(MIRAN-WOA-C-R角度位移)2、应用场景供电电压24V DC,输出信号有4-20MA、0-5V、0-10V等3、测量原理如果马达角度传感器构造运转,而齿轮不转,说明你的机器已经被障碍物给挡住了。
此技术使用起来非常简单,而且非常有效;唯一要求就是运动的轮子不能在地板上打滑(或者说打滑次数太多),否则你将无法检测到障碍物。
传感器测试实验报告实验一直流激励时霍尔传感器位移特性实验一、实验目得:了解霍尔式传感器原理与应用。
二、基本原理:金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场与电流得方向上将产生电动势,这种物理现象称为霍尔效应.具有这种效应得元件成为霍尔元件,根据霍尔效应,霍尔电势UH=KHIB,当保持霍尔元件得控制电流恒定,而使霍尔元件在一个均匀梯度得磁场中沿水平方向移动,则输出得霍尔电动势为,式中k—位移传感器得灵敏度。
这样它就可以用来测量位移.霍尔电动势得极性表示了元件得方向.磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。
三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、±15V直流电源、测微头、数显单元.四、实验步骤:1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板得插座中,实验板得连接线按图9—1进行。
1、3为电源±5V,2、4为输出。
2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。
图9-1直流激励时霍尔传感器位移实验接线图3、测微头往轴向方向推进,每转动0、2mm记下一个读数,直到读数近似不变,将读数填入表9-1。
表9-1X(mm)V(mv)作出V—X曲线,计算不同线性范围时得灵敏度与非线性误差。
五、实验注意事项:1、对传感器要轻拿轻放,绝不可掉到地上。
2、不要将霍尔传感器得激励电压错接成±15V,否则将可能烧毁霍尔元件。
六、思考题:本实验中霍尔元件位移得线性度实际上反映得时什么量得变化?七、实验报告要求:1、整理实验数据,根据所得得实验数据做出传感器得特性曲线.2、归纳总结霍尔元件得误差主要有哪几种,各自得产生原因就是什么,应怎样进行补偿。
实验二集成温度传感器得特性一、实验目得:了解常用得集成温度传感器基本原理、性能与应用。
二、基本原理:集成温度传器将温敏晶体管与相应得辅助电路集成在同一芯片上,它能直接给出正比于绝对温度得理想线性输出,一般用于-50℃-+150℃之间测量,温敏晶体管就是利用管子得集电极电流恒定时,晶体管得基极—发射极电压与温度成线性关系。
传感器与检测技术实验指导教师:陈劲松实验一金属箔式应变片——单臂电桥性能实验错误!未指定书签。
实验二金属箔式应变片-全桥性能实验及电子秤实验错误!未指定书签。
实验三电容式传感器的位移特性实验 ..... 错误!未指定书签。
实验四Pt100热电阻测温实验.................. 错误!未指定书签。
实验一金属箔式应变片——单臂电桥性能实验一、 实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、 基本原理:金属丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是金属的电阻应变效应。
金属的电阻表达式为:SlR ρ=(1)当金属电阻丝受到轴向拉力F 作用时,将伸长l ∆,横截面积相应减小S ∆,电阻率因晶格变化等因素的影响而改变ρ∆,故引起电阻值变化R ∆。
对式(1)全微分,并用相对变化量来表示,则有:ρρ∆+∆-∆=∆S S l l R R (2)式中的l l ∆为电阻丝的轴向应变,用ε表示,常用单位με(1με=1×mm mm 610-)。
若径向应变为rr ∆,电阻丝的纵向伸长和横向收缩的关系用泊松比μ表示为)(l l r r ∆-=∆μ,因为S S ∆=2(rr ∆),则(2)式可以写成: llk l l l l l l R R ∆=∆∆∆++=∆++∆=∆02121)()(ρρμρρμ(3) 式(3)为“应变效应”的表达式。
0k 称金属电阻的灵敏系数,从式(3)可见,0k 受两个因素影响,一个是(1+μ2),它是材料的几何尺寸变化引起的,另一个是)(ρερ∆,是材料的电阻率ρ随应变引起的(称“压阻效应”)。
对于金属材料而言,以前者为主,则μ210+≈k ,对半导体,0k 值主要是由电阻率相对变化所决定。
实验也表明,在金属丝拉伸比例极限内,电阻相对变化与轴向应变成比例。
通常金属丝的灵敏系数0k =2左右。
用应变片测量受力时,将应变片粘贴于被测对象表面上。
《传感器技术》实验指导书权义萍南京工业大学自动化学院目录实验一金属箔式应变片单臂、半桥、全桥性能比较实验 (3)实验二直流全桥的应用――电子秤实验 (7)实验三电容式传感器的位移特性实验 (9)实验四压电式传感器振动实验 (11)实验五直流激励时霍尔式传感器位移特性实验 (13)实验六电涡流传感器综合实验 (15)实验七光纤传感器的位移特性实验 (18)实验一金属箔式应变片单臂、半桥性能比较实验一、实验目的:了解金属箔式应变片的应变效应,电桥工作原理和性能。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
,对单臂电桥输出电压U o1= EKε/4。
不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。
当应变片阻值和应变量相同时,其桥路输出电压U O2=EKε/2。
三、需用器件与单元:应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、±15V电源、±4V电源、万用表(自备)。
四、实验步骤:1、根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。
传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。
可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右图1-1 应变式传感器安装示意图2、接入模板电源±15V(从主控台引入),检查无误后,合上主控台电源开关,将实验模板调节增益电位器R W3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正负输入端与地短接,输出端与主控台面板上数显表输入端V i相连,调节实验模板上调零电位器R W4,使数显表显示为零(数显表的切换开关打到2V档)。
电容式传感器的位移特性实验报告资料一、实验内容:1、使用电容式传感器进行位移测量;2、采用锁相放大器,对位移测量进行信号检测,输出交流(AC)信号幅度和相位;3、掌握电容式传感器的阻抗和信号特性。
二、实验原理:1、电容式传感器:是将测量物体与一个接地电极分离,形成一个独立的电容二极管。
当测量物体发生位移时,该二极管电容Cc变化,即Cc=f(d),d是测量位移。
在保持传感器静态工作点C0不变的情况下,当Cc发生变化时,不受测物位移的干扰。
因此,电容式传感器可以实现高精度、无接触、无磨损位移测量。
2、锁相放大器:是一种适用于相位、频率、振幅等参数检测的精密电子测量仪器。
它可以对微弱的交流信号检测并输出信号幅度和相位。
三、实验器材:2、锁相放大器;3、信号调理器;4、多路开关;5、示波器。
四、实验过程:1、在传感器静态工作点时,接触传感器,调整微调电容,使电压稳定在一个固定值;2、调整开关,将传感器所测量的位移信号输入信号调理器内,进行信号调理,可以得到一个幅度为1V、频率为10kHz左右、带有微弱噪声的交流信号;3、将调理后的信号连接至锁相放大器的输入端,将锁相放大器的参考输入端连接至信号调理器输出端,调节锁相放大器的参考信号相位,使锁相放大器输出的交流信号幅度和参考信号相位一致;4、通过示波器连接至锁相放大器输出端,调节示波器测量参数,可以得到锁相放大器输出信号的AC幅度和相位值;5、通过多路开关改变传感器输入的位移值,重复以上步骤,得到传感器的位移特性曲线。
五、实验结果:在不同的测量点进行测量,在锁相放大器中得到具有不同幅度和相位的AC信号,通过信号处理以及调制,最终得到有关电容式传感器位移特性曲线,从中发现电容性传感器在不同测量点上具有不同的灵敏度,以及对于位移值的反应截然不同,这也是电容式传感器的特点,需要在实际应用中进行合理的选择和设计。
六、实验分析:通过实验,我们发现电容式传感器的测量值和测量量并非简单的线性关系,仅仅是对于位移变化而产生的电容变化,同时也受到感应现象、环境噪声的影响。
电容式传感器的位移特性实验电容式位移传感器实验是一种重要的引导应用考核技术,它要求用户在复杂的实验环境中结合理论知识和实际操作,使用电容式位移传感器来测量和检验其变化。
电容式位移传感器具有灵敏度高、稳定性好、良好的鲁棒性等优点,在工业控制领域中得到广泛应用。
实验 content一、研究内容1、电容式位移传感器介绍:介绍电容式位移传感器的原理工作原理、接线结构以及精度要求等。
2、等效电路仿真:使用电路仿真软件,仿真输入电压的变化对电容式位移传感器的影响。
3、实验素材:利用工业电容式位移传感器,测量传感器的位移特性,探查其非线性特性以及如何改善精度。
4、仪器设备:利用函数发生器、数字万用表、模拟量信号示波器等常用仪器设备,分别检测典型电容器位移传感器的精度。
5、结论性评价:评价:分析电容式位移传感器的特性,对它的优缺点进行总结,指出如何提高其精度,进一步建立相关的计算模型。
二、实验原理1、电容式位移传感器由两个电容构成,其原理是由于特定环境改变时,电容之间的介质改变,会在电容上形成电容电势差而发生变化,从而使电容式位移传感器的内部电路受到影响,最终通过电容变化改变其输出电压。
2、实验中利用函数发生器产生跨越输入电压,观察输出电压的变化,研究电容式位移传感器的补偿特性和灵敏度。
3、设置正反向斜率的步进电压,控制正反向补偿电压间隔,观察其非线性特性,探究其实际特性。
4、模拟量信号示波器给出电容式位移传感器的不同输出电压,观察实际精度,辅助分析结果。
三、实验结果1、经过仿真计算,确定电容式位移传感器补偿特性曲线,补偿范围较大,灵敏度及时响应速度较快,补偿特性良好。
2、观察实验电路中电容式位移传感器的输出电压,发现其在正反向补偿斜率步进电压下,相应的响应有非线性变化,合理,可靠。
3、通过模拟量信号示波器的输出,可分析典型电容式位移传感器的精度,表明电容式位移传感器的精度较高,可以满足应用要求。
四、结论1、电容式位移传感器具有灵敏度高、稳定性优、较好的精度等特点,在工业控制领域具有广泛应用。
电容式传感器测位移特性实验电容式传感器是一种常用的位移传感器,采用电容式将小的位移量变化,转变成模拟电压来发送,以实现检测和测量的目的,其具有快速响应、高精度和反应稳定的特点,被广泛应用到航空、航天、工业控制仪表等领域。
本实验将通过实验设备进行测量电容式传感器的位移特性,以更加深入的了解电容式传感器的工作特性。
实验装置是一台专业的电容测试仪,此外还配有一个线性位移模拟器、一个电容式传感器、一些实验电缆和接口线等辅助设备。
实验可分为三个步骤:绘制拟合曲线前的实验前准备工作、将电容式传感器的位移信号变为模拟电压的转换过程以及拟合测得的曲线。
1、实验前准备工作:首先,将位移模拟器接线连接到实验装置;随后,将电容式传感器接入实验装置,并将电容传感器安装在位移模拟器上;最后,调节电容测试仪偏置电路,矫正偏置电压,以设定有效位移信号范围。
2、将电容式传感器的位移信号变为模拟电压的转换过程:在实验中,将位移模拟器的调置电位从最小值(0mm)调至最大值(50mm),从而控制位移模拟器产生不同的位移量。
每次顺序调节时,实验装置将其位移量所产生的信号作为输入,经过转换后将电容式传感器的位移信号变成一定失真程度的模拟电压信号,从而可进行数据获取。
3、拟合测得的曲线:由于电容式传感器的反应特性的确定,在本实验中选择了一种标准的二次曲线进行拟合,以便更好地了解其工作原理。
在拟合曲线以及拟合曲线的过程中,采用的是软件的拟合算法,计算出最佳的参数并绘制拟合曲线。
实验结果表明,本次实验证明了电容式传感器位移特性测试实验使用电容式传感器和实验装置进行测量均具有可行性和准确性,为此类传感器的应用提供了足够的参考。
此外,本次实验也体现了软件算法拟合准确性以及实验数据在绘制曲线过程中的重要性等。
电容式传感器的位移特性实验
一、实验目的:
了解电容式传感器结构及其特点。
二、基本原理:
利用平板电容C=εA/d和相应的结构及测量电路,在ε、A、d三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)、测微小位移(变d)和测量液位(变A)等多种电容传感器。
利用电容传感器的动态响应特性和可以非接触测量等特点,可进行动态位移测量。
电容传感器具有结构简单、灵敏度高、分辨力高(可达0.01mm甚至更高)、动态响应好、可进行非接触测量等特点,它可以测量线位移、角位移,高频振动振幅,与电感式比较,电感式是接触测量,只能测低频振幅,电容传感器在测量压力、差压、液位、料位成分含量(如油、粮食中的水份)、非金属涂层、油膜厚度等方面均有应用。
目前半导体电容式压力传感器已在国内外研制成功,正在走向工业化应用。
三、需用器件与单元:
电容传感器、电容传感器实验模板、测微头、相敏检波、滤波模板、数显单元、直流稳压源。
四、实验步骤:
1、按图2-1将电容传感器装于电容传感器实验模板上。
图2-1 电容传感器安装示意图
2、将电容传感器连线插入电容传感器实验模板,实验线路见图2-2。
图2-2 电容传感器位移实验接线图
3、将电容传感器实验模板的输出端V01与数显表单元V i相接(插入主控箱V i孔),R w调节到中间位置。
4、接入±15V电源,旋动测微头推进电容传感器动极板位置,每间隔
0.2mm记下位移X与输出电压值,填入表2-1。
X(mm)
V(mv)
5、根据表2-1数据计算电容传感器的系统灵敏度S和非线性误差δf。
五、思考题:
图2-3为同心圆筒式电容位移传感器结构图,D为屏蔽套筒。
若外圆筒半径R=8mm,内圆柱半径r=7.25mm,外圆筒与内圆柱覆盖部分长度L=16mm。
根据实验所提供的电容传感器尺寸,计算其电容量C O和移动0.5mm时的变化量。
图2-3 同心圆筒式电容位移传感器结构图
如有侵权请联系告知删除,感谢你们的配合!。