中考数学知识点 一次函数复习 精选例题解析 一次函数(1)
- 格式:doc
- 大小:339.02 KB
- 文档页数:6
一次函数的基本概念知识点1:理解一次函数、正比例函数的概念.形如y=kx +b (k ≠0)的函数,称y 是x 的一次函数;特殊地,若b=0,即y=kx(k ≠0)的函数,称y 是x 的正比例函数。
一次函数有两个基本特征:其一是自变量x 的次数是1;其二是自变量的系数 k ≠0例 1、判断哪些函数是一次函数:3y x =,2y x =+,213x y -=,92y x=+,12y x =-例2:已知y 是x 的一次函数,当3x =时,1y =,当2x =-时,14y =-,求:(1)这个一次函数的关系式和自变量的取值范围。
(2)当5x =时函数的值。
(3)当4y =时自变量的值。
例3..已知m y +与n x -成正比例(其中m ,n 是常数)(1)求证:y 是x 的一次函数;(2)如果1-=x 时,15-=y ,7=x 时,1=y ,求这个一次函数的解析式.这里,先设所求的一次函数关系式为y kx b =+,其中k ,b 是待确定的常数,然后根据已知条件列出以k ,b 为未知数的方程组,求得k ,b 的值,从而求出所求的关系式。
这种求函数关系式的方法叫做待定系数法。
待定系数法是一种重要的数学方法,有广泛的用途。
例3是例2的深化知识点2:y=kx+b(k≠0)的图象1、图象:一条直线;2、与坐标轴的交点:①y=kx+b(k≠0)交x轴于(-b/k,0),交y轴于(0,b);②y=kx(k≠0)过坐标原点(只有这一个交点),即(0,0)。
3、位置:由k、b决定①b决定图象与y轴的交点在x轴的上方还是下方(即(0,b)点的位置);②K决定直线的位置(即过一、三象限或二、四象限)。
注意看图识性,见数想形.例4.已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象与y轴的交点在x轴的上方?(4)k为何值时,它的图象平行于直线y=-x?知识点3:y=kx+b(k≠0)图象的性质k>0时,y随x的增大而增大,从左到右直线上升。
初中数学函数专题--一次函数第1节一次函数基础突破内容导航方法点拨知识点1 正比例函数图像(y=kx)1.正比例函数图像是一条经过原点的直线。
2.性质(1)正比例函数图像必过(2)k>0,函数图像经过象限,y随x的增大而(3)K<0,函数图像经过象限,y随x的增大而知识点2 一次函数图像(y=kx+b)1.一次函数图像是一条直线。
2.k值(1)k>0,直线必定经过第一、三象限,y随x的增大而(2)k<0,直线必定经过第二、四象限,y随x的增大而(3)|k|越大,直线倾斜程度越大,越靠近y轴3.b值函数b值决定一次函数与y轴交点的位置(1)b>0,直线必定经过第一、二象限,交于y轴正半轴(2)b<0,直线必定经过第三、四象限,交于y轴负半轴(3)b=0,直线过原点知识点3 待定系数法求直线解析式1.待定系数法:先设出函数关系式中的未知系数,然后根据条件求解未知系数,从而求出这个函数关系式的方法叫待定系数法,其中未知系数也称为待定系数。
2.步骤:“一设二列三解四还原”例题演练例1.1.一次函数y=﹣2x+7的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵一次函数y=﹣2x+7,k=﹣2,b=7,∴该函数经过第一、二、四象限,不经过第三象限,故选:C.例1.2.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x﹣k的图象大致是()A.B.C.D.【解答】解:∵正比例函数y=kx(k≠0)的图象在第二、四象限,∴k<0.∵1>0,﹣k>0,∴一次函数y=x﹣k的图象经过第一、二、三象限.故选:A.例1.3.已知一次函数y1=mx+n与正比例函数y2=mnx(m,n为常数,mn≠0),则函数y1与y2的图象可能是()A.B.C.D.【解答】解:A、由一次函数的图象可知,m<0,n>0,故mn<0;由正比例函数的图象可知mn<0,两结论一致,故本选项正确;B、由一次函数的图象可知,m<0,n>0,故mn<0;由正比例函数的图象可知mn>0,两结论不一致,故本选项不正确;C、由一次函数的图象可知,m>0,n>0,故mn>0;由正比例函数的图象可知mn<0,两结论不一致,故本选项不正确;D、由一次函数的图象可知,m>0,n<0,故mn<0;由正比例函数的图象可知mn>0,两结论不一致,故本选项不正确.故选:A.例1.4.当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是.【解答】解:y=(2﹣2k)x+k﹣3经过第二、三、四象限,∴2﹣2k<0,k﹣3<0,∴k>1,k<3,∴1<k<3;故答案为1<k<3;练1.1.下列一次函数中,函数图象不经过第三象限的是()A.y=2x﹣3B.y=x+3C.y=﹣5x+1D.y=﹣2x﹣1【解答】解:函数y=2x﹣3的图象经过第一、三、四象限,故选项A不符合题意;函数y=x+3的图象经过第一、二、三象限,故选项B不符合题意;函数y=﹣5x+1的图象经过第一、二、四象限,故选项C符合题意;函数y=﹣2x﹣1的图象经过第二、三、四象限,故选项D不符合题意;故选:C.练1.2.已知正比例函数y=kx(k≠0)的函数值随x值的增大而增大,则一次函数y=﹣2kx+k 在平面直角坐标系内的图象大致是()A.B.C.D.【解答】解:∵正比例函数y=kx(k≠0)函数值随x的增大而增大,∴k>0,∴﹣k<0,∴一次函数y=﹣2kx+k的图象经过一、二、四象限;故选:C.练1.3.直线y=kx+b与直线y=kbx,它们在同一个坐标系中的图象大致是()A.B.C.D.【解答】解:根据一次函数的图象分析可得:A、由一次函数y=kx+b图象可知k>0,b<0;即kb<0,两函数解析式均成立;B、由一次函数y=kx+b图象可知k<0,b>0;一次函数y=kbx的图象可知kb<0,与次函数y=kbx的图象可知kb>0矛盾;C、由一次函数y=kx+b图象可知k>0,b>0;即kb>0,与次函数y=kbx的图象可知kb<0矛盾;D、由一次函数y=kx+b图象可知k>0,b<0;即kb<0,与次函数y=kbx的图象可知kb>0矛盾.故选:A.练1.4.一次函数y=mx+n与正比例函数y=mnx(m、n为常数,且m≠0),它们在同一坐标系中的大致图象是()A.B.C.D.【解答】解:A、由一次函数的图象可知,m<0,n>0,故mn<0;由正比例函数的图象可知mn<0,两结论一致,故本选项正确;B、由一次函数的图象可知,m<0,n>0,故mn<0;由正比例函数的图象可知mn>0,两结论不一致,故本选项不正确;C、由一次函数的图象可知,m>0,n>0,故mn>0;由正比例函数的图象可知mn<0,两结论不一致,故本选项不正确;D、由一次函数的图象可知,m>0,n<0,故mn<0;由正比例函数的图象可知mn>0,两结论不一致,故本选项不正确.故选:A.练1.5.一次函数y=(2m﹣1)x+2的值随x值的增大而增大,则常数m的取值范围为m >.【解答】解:∵一次函数y=(2m﹣1)x+2中,函数值y随自变量x的增大而增大,∴2m﹣1>0,解得m>.故答案为:m>.练1.6.当直线y=(2﹣2k)x+k﹣4经过第二、三、四象限时,则k的取值范围是1<k<4.【解答】解:∵直线y=(2﹣2k)x+k﹣4经过第二、三、四象限,∴,∴1<k<4.故答案为:1<k<4.例2.1.点A(x1,y1)和B(x2,y2)都在直线y=x﹣3上,且x1>x2,则y1与y2的关系是()A.y1≥y2B.y1=y2C.y1<y2D.y1>y2【解答】解:∵k=1>0,∴y随x的增大而增大.又∵x1>x2,∴y1>y2.故选:D.例2.2.已知一次函数y=2x+5,当﹣2≤x≤6时,y的最大值是17.【解答】解:∵一次函数y=2x+5,∴该函数的图象y随x的增大而增大,∵﹣2≤x≤6,∴当x=6时,y取得最大值,此时y=17,故答案为:17.练2.1.已知点(,m),(﹣2,n)都在直线y=2x+b上,则m与n的大小关系是()A.m>n B.m=n C.m<n D.不能确定【解答】解:∵点(,m),(﹣2,n)都在直线y=2x+b上,∴m=2×+b=b+1,n=2×(﹣2)+b=b﹣4,而b+1>b﹣4,∴m>n.故选:A.练2.2.如图,已知点A(﹣3,y1)和B(﹣2,y2)都在直线y=kx+b上,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.大小不确定【解答】解:∵一次函数y=kx+b过第二象限、第三象限、第四象限,∴k<0,∴y随x的增大而减小,∵﹣3<﹣2,∴y1>y2.故选:A.练2.3.已知一次函数y=﹣x+3,当﹣3≤x≤4时,y的最大值是.【解答】解:∵一次函数y=﹣x+3,∴y随x的增大而减小,∵﹣3≤x≤4,∴x=﹣3时,y取得最大值,此时y=﹣×(﹣3)+3=,故答案为:.练2.4.已知一次函数y=﹣3x+2,当﹣1≤x≤5时,一次函数的最大值是5.【解答】解:∵一次函数y=﹣3x+2,k=﹣3<0,∴该函数y随x的增大而减小,∴当﹣1≤x≤5时,x=﹣1取得最大值,此时y=﹣3×(﹣1)+2=5,故答案为:5.练2.5.已知一次函数y=kx﹣b,当自变量x的取值范围是1≤x≤3时,对应的因变量y的取值范围是5≤y≤10,那么k﹣b的值为5或10.【解答】解:①k>0时,由题意当x=1时,y=5,∴k﹣b=5;②k<0时,由题意当x=1时,y=10,∴k﹣b=10;故答案为:5或10.例3.1.根据下列条件分别确定函数y=kx+b的解析式:(1)y与x成正比例,当x=2时,y=3;(2)直线y=kx+b经过点(3,2)和点(﹣2,1).【解答】解:(1)∵y与x成正比例,∴设y=kx,∵当x=2时,y=3,∴3=2k,∴k=,∴正比例函数的解析式为:y=x;(2)∵直线y=kx+b经过点(3,2)和点(﹣2,1),∴,解得:,∴解析式为:y=.例3.2.如图,一次函数y=kx﹣3的图象经过点M.(1)求这个一次函数的表达式.(2)判断点(2,﹣7)是否在该函数的图象上.【解答】解:(1)∵一次函数y=kx﹣3的图象经过点M(﹣2,1),∴﹣2k﹣3=1,解得:k=﹣2,∴这个一次函数表达式为y=﹣2x﹣3;(2)当x=2时,y=﹣2×2﹣3=﹣7,∴点(2,﹣7)在该函数的图象上.例3.3.如图,直线y=﹣x+8与x轴、y轴交于A,B两点,∠BAO的平分线所在的直线AM的解析式是y=﹣x+3.【解答】解:对于直线y=﹣x+8,令x=0,求出y=8;令y=0求出x=6,∴A(6,0),B(0,8),即OA=6,OB=8,根据勾股定理得:AB=10,在x轴上取一点B′,使AB=AB′,连接MB′,∵AM为∠BAO的平分线,∴∠BAM=∠B′AM,∵在△ABM和△AB′M中,,∴△ABM≌△AB′M(SAS),∴BM=B′M,设BM=B′M=x,则OM=OB﹣BM=8﹣x,在Rt△B′OM中,B′O=AB′﹣OA=10﹣6=4,根据勾股定理得:x2=42+(8﹣x)2,解得:x=5,∴OM=3,即M(0,3),设直线AM解析式为y=kx+b,将A与M坐标代入得:,解得:,∴直线AM解析式为y=﹣x+3.故答案为:y=﹣x+3.练3.1已知直线l的图象如图所示.(1)求直线l的函数表达式;(2)求证:OC=OD.【解答】解:(1)由图象知:A(﹣3,﹣1),B(1,3),设直线l的函数表达式为y=kx+b(k≠0),依题意得,解得,即直线l的函数表达式为y=x+2;(2)在y=x+2中,令y=0,则x=﹣2;令x=0,则y=2,∴C(﹣2,0),D(0,2),∴OC=2,OD=2,∴OC=OD.练3.2如图,在直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),C是y轴上的点.(1)求直线AB的解析式.(2)求△OAC的面积.【解答】解:(1)设直线AB的解析式是y=kx+b,根据题意得:解得:,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,S△OAC=×6×4=12;练3.3已知:如图,在△AOB中,点E在线段AB上,A(3,2),B(5,0),E(4,m),求:(1)直线AB的解析式;(2)△AOE的面积.【解答】解:(1)设直线AB的解析式为y=kx+b,把A(3,2),B(5,0)代入得,解得,,∴直线AB的解析式为y=﹣x+5;(2)把E(4,m)代入y=﹣x+5得,m=﹣4+5=1,∴E(4,1),∴,,∴.练3.4如图,在平面直角坐标系xOy中,直线y=2x﹣1分别与x轴、y轴交于点A、B,∠ABC=45°,那么直线BC的表达式是y=x﹣1.【解答】解:过C作CD⊥AB于D,如图:∵直线y=2x﹣1分别与x轴、y轴交于点A、B,∴A(,0),B(0,﹣1),∴OA=,OB=1,AB==,在Rt△AOB中,tan∠OAB==2,∴tan∠DAC=,即=2,设AD=x,则CD=2x,AC=x,∵∠ABC=45°,CD⊥AB,∴CD=BD,∴2x=x+,∴x=,∴AC=x=,∴OC=OA+AC=3,∴C(3,0),设直线BC解析式为y=kx+b,则,解得,∴直线BC的表达式为y=x﹣1,故答案为:y=x﹣1.练3.5如图,直线y=x+2与x轴、y轴分别交于点B和点A,点C是线段OA上的一点,若将△ABC沿BC折叠,点A恰好落在x轴上的A′处,则点C的坐标为(0,).【解答】解:当x=0时,y=x+2=2,∴点A的坐标为(0,2);当y=0时,x+2=0,解得:x=﹣,∴点B的坐标为(﹣,0).∴AB==.∵AB=A′B,∴OA′=﹣=1.设OC=m,则AC=A′C=2﹣m.在Rt△A′OC中,A′C2=A′O2+OC2,即(2﹣m)2=12+m2,解得:m=,∴点C的坐标为(0,).。
一次函数一、正比例函数的概念一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做正比例系数.二、一次函数1.一次函数的定义一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做x的一次函数.特别地,当一次函数y=kx+b中的b=0时,y=kx(k是常数,k≠0).这时,y叫做x的正比例函数.2.一次函数的一般形式一次函数的一般形式为y=kx+b,其中k,b为常数,k≠0.一次函数的一般形式的结构特征:(1)k≠0,(2)x的次数是1;(3)常数b可以为任意实数.3.注意(1)正比例函数是一次函数,但一次函数不一定是正比例函数.(2)一般情况下,一次函数的自变量的取值范围是全体实数.(3)判断一个函数是不是一次函数,就是判断它是否能化成y=kx+b(k≠0)的形式.三、一次函数的图象及性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线.k的符号函数图象图象的位置性质k>0 图象经过第一、三象限y随x的增大而增大k <0 图象经过第二、四象限y随x的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象(2)一次函数的性质函数字母取值图象经过的象限函数性质y=kx+b (k≠0) k>0,b>0 一、二、三y随x的增大而增大k>0,b<0一、三、四y=kx+b (k≠0) k<0,b>0 一、二、四y随x的增大而减小k<0,b<0 二、三、四3.k,b的符号与直线y=kx+b(k≠0)的关系在直线y=kx+b(k≠0)中,令y=0,则x=-bk,即直线y=kx+b与x轴交于(–bk,0).①当–bk>0时,即k,b异号时,直线与x轴交于正半轴.②当–bk=0,即b=0时,直线经过原点.③当–bk<0,即k,b同号时,直线与x轴交于负半轴.4.两直线y=k1x+b1(k1≠0)与y=k2x+b2(k2≠0)的位置关系:①当k1=k2,b1≠b2,两直线平行;②当k1=k2,b1=b2,两直线重合;③当k1≠k2,b1=b2,两直线交于y轴上一点;④当k1·k2=–1时,两直线垂直.四、待定系数法1.定义:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而得出函数解析式的方法叫做待定系数法.2.待定系数法求正比例函数解析式的一般步骤(1)设含有待定系数的函数解析式为y=kx(k≠0).(2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k的一元一次方程.(3)解方程,求出待定系数k.(4)将求得的待定系数k的值代入解析式.3.待定系数法求一次函数解析式的一般步骤(1)设出含有待定系数k、b的函数解析式y=kx+b.(2)把两个已知条件(自变量与函数的对应值)代入解析式,得到关于系数k,b的二元一次方程组.(3)解二元一次方程组,求出k,b.(4)将求得的k,b的值代入解析式.五、一次函数与正比例函数的区别与联系—正比例函数一次函数区别一般形式y=kx+b(k是常数,且k≠0)y=kx+b(k,b是常数,且k≠0)图象经过原点的一条直线一条直线k,b符号的作用k的符号决定其增减性,同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k,b的符号共同决定直线经过的象限求解析式的条件只需要一对x,y的对应值或一个点的坐标需要两对x,y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样,都是过两点画直线,但画一次函数的图象需取两个不同的点,而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时,y的值随x值的增大而增大;b.当k<0时,y的值随x值的增大而减小.六、一次函数与方程(组)、不等式1.一次函数与一元一次方程任何一个一元一次方程都可以转化为kx+b=0(k,b为常数,且k≠0)的形式.从函数的角度来看,解这个方程就是寻求自变量为何值时函数值为0;从函数图象的角度考虑,解这个方程就是确定直线y=kx+b与x轴的交点的横坐标.2.一次函数与一元一次不等式任何一个一元一次不等式都能写成ax+b>0(或ax+b<0)(a,b为常数,且a≠0)的形式.从函数的角度看,解一元一次不等式就是寻求使一次函数y=ax+b(a≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=ax+b(a≠0)在x轴上(或下)方部分的点的横坐标满足的条件.3.一次函数与二元一次方程组一般地,二元一次方程mx+ny=p(m,n,p是常数,且m≠0,n≠0)都能写成y=ax+b(a,b为常数,且a≠0)的形式.因此,一个二元一次方程对应一个一次函数,又因为一个一次函数对应一条直线,所以一个二元一次方程也对应一条直线.进一步可知,一个二元一次方程对应两个一次函数,因而也对应两条直线.从数的角度看,解二元一次方程组相当于考虑自变量为何值时,两个函数的值相等,以及这两个函数值是何值;从形的角度看,解二元一次方程组相当于确定两条直线的交点坐标,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.七、一次函数图象与图形面积解决这类问题的关键是根据一次函数解析式求出一次函数图象与坐标轴的交点的坐标,或两条直线的交点坐标,进而将点的坐标转化成三角形的边长,或者三角形的高.如果围成的三角形没有边在坐标轴上或者与坐标轴平行,可以采用“割”或“补”的方法.八、一次函数的实际应用1.主要题型: (1)求相应的一次函数表2.用一次函数解决实际问题的一般步骤为(1)设定实际问题中的自变量与因变量的取值范围;(4)利用函数性质解决问题3.方案最值问题:对于求方案问题,通常涉及两个相关量事物的取值范围,再根据另一个事物所要满4.方法技巧求最值的本质为求最优方案,解法有两种(2)直接利用所求值与其变量之间满足的若为分段函数,则应分类讨论,先计算出每显然,第(2)种方法更简单快捷.经典例1.若一次函数22y x =+的图象经过点【答案】8【分析】将点(3,)m 代入一次函数的解析式【解析】解:由题意知,将点(3,)m 代入一即:232=⨯+m ,解得:8m =.故答案【点睛】本题考查了一次函数的图像和性质2.有一个装有水的容器,如图所示.容器中,水面高度以每秒0.2cm 的速度匀速增加关系是( )A .正比例函数关系B .一次函数关系【答案】B【分析】设水面高度为,hcm 注水时间为【详解】解:设水面高度为,hcm 注水时间所以容器内的水面高度与对应的注水时间满【点睛】本题考查的是列函数关系式,判断函数表达式;(2)结合一次函数图象求相关量、求步骤为:变量;(2)通过列方程(组)与待定系数法求一次函数关决问题;(5)检验所求解是否符合实际意义;(6)关量,解题方法为根据题中所要满足的关系式,通过所要满足的条件,即可确定出有多少种方案. 两种:(1)可将所有求得的方案的值计算出来,再进满足的一次函数关系式求解,由一次函数的增减性可算出每个分段函数的取值,再进行比较. 经典例题 一次函数和正比例函数的定义过点(3,)m ,则m =_________. 解析式中即可求出m 的值.代入一次函数22y x =+的解析式中, 故答案为:8.和性质,点在图像上,则将点的坐标代入解析式中即容器内的水面高度是10cm ,现向容器内注水,并同速增加,则容器注满水之前,容器内的水面高度与对关系C .二次函数关系D .反比例函数关系间为t 分钟,根据题意写出h 与t 的函数关系式,从而水时间为t 分钟,则由题意得:0.210,h t =+ 时间满足的函数关系是一次函数关系,故选B . 判断两个变量之间的函数关系,掌握以上知识是解求实际问题的最值等. 函数关系式;(3)确定自变量)答. 通过列不等式,求解出某一个再进行比较;减性可直接确定最优方案及最值;定义式中即可.并同时开始计时,在注水过程度与对应的注水时间满足的函数关系从而可得答案.识是解题的关键.1.已知函数1(2)2(2)x x y x x-+<⎧⎪=⎨-≥⎪⎩,当函数值A .﹣2 B .﹣23【答案】A【分析】根据分段函数的解析式分别计算【解析】解:若x <2,当y =3时,﹣x 若x ≥2,当y =3时,﹣2x=3,解得:x=﹣【点睛】本题考查了反比例函数的性质、键.2.下列函数关系式:(1)y =﹣x ;(2A .1 B .2【答案】B【分析】根据一次函数的定义条件进行逐一【详解】解:(1)y =﹣x 是正比例函数 (2)y =x ﹣1符合一次函数的定义,故正(4)y =x 2属于二次函数,故错误.综上所【点睛】本题主要考查了一次函数的定义b 为常数,k≠0,自变量次数为1.经典1.若m <﹣2,则一次函数()y m x =++A . B .【答案】D【分析】由m <﹣2得出m+1<0,1﹣【解析】解:∵m <﹣2,∴m +1<0,1函数值为3时,自变量x 的值为( )C .﹣2或﹣23D .﹣2或﹣32计算,即可得出结论. +1=3,解得:x =﹣2; ﹣23,不合题意舍去;∴x =﹣2,故选:A .、一次函数的图象上点的坐标特征;根据分段函数)y =x ﹣1;(3)y =1x;(4)y =x 2,其中一次函数C .3D .4行逐一分析即可.函数,是特殊的一次函数,故正确; 故正确;(3)y =1x属于反比例函数,故错误; 综上所述,一次函数的个数是2个.故选:B .定义.本题主要考查了一次函数的定义,一次函数经典例题 一次函数的图象及性质 11m -的图象可能是( )C .D .m >0,进而利用一次函数的性质解答即可. ﹣m >0,段函数进行分段求解是解题的关次函数的个数是( ) 函数y=kx+b 的定义条件是:k 、所以一次函数()11y m x m =++-的图象【点睛】本题考查的是一次函数的图像与性影响是解题的关键 .2.对于一次函数2y x =+,下列说法不正A .图象经过点()1,3 C .图象不经过第四象限 【答案】D【分析】根据一次函数的图像与性质即可求【解析】A.图象经过点()1,3,正确;C.图象经过第一、二、三象限,故错误;【点睛】此题主要考查一次函数的图像与性1.在平面直角坐标系中,已知函数y A . B .【答案】A【分析】求得解析式即可判断.【解析】解:∵函数y =ax +a (a ≠0)的图∴直线交y 轴的正半轴,且过点(1,2,【点睛】此题考查一次函数表达式及图像的2.已知一次函数3y kx =+的图象经过点A .()1,2- B .()1,2-【答案】B【分析】先根据一次函数的增减性判断出【解析】∵一次函数3y kx =+的函数值A .当x=-1,y=2时,-k+3=2,解得选项符合题意;C .当x=2,y=3时,2k+3的图象经过一,二,四象限,故选:D . 像与性质,不等式的基本性质,掌握一次函数y kx +法不正确的是( ) B .图象与x 轴交于点()2,0- D .当2x >时,4y <即可求解.B.图象与x 轴交于点()2,0-,正确 ; D.当2x >时,y >4,故错误;故选D . 像与性质,解题的关键是熟知一次函数的性质特点=ax +a (a ≠0)的图象过点P (1,2),则该函数的 C . D .的图象过点P (1,2),∴2=a +a ,解得a =1,∴),故选:A . 图像的相关知识.经过点A ,且y 随x 的增大而减小,则点A 的坐标可以C .()2,3D .()3,4断出k 的符号,再将各项坐标代入解析式进行逐一判数值y 随x 的增大而减小,∴k ﹤0,k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3b =中的,k b 对函数图像的特点.函数的图象可能是( )∴y =x +1, 标可以是( ) 逐一判断即可. ,k+3=-2,解得k=-5﹤0,此,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意,故选:B . 【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键.经典例题 用待定系数法确定一次函数的解析式1. 小红在练习仰卧起坐,本月1日至4日的成绩与日期具有如下关系:日期x (日) 1 2 3 4成绩y (个) 4043 4649小红的仰卧起坐成绩y 与日期x 之间近似为一次函数关系,则该函数表达式为__________. 【答案】y =3x +37.【分析】利用待定系数法即可求出该函数表达式. 【解析】解:设该函数表达式为y =kx +b ,根据题意得:40243k b k b +⎧⎨+⎩==,解得337k b ⎧⎨⎩==,∴该函数表达式为y =3x +37.故答案为:y =3x +37.【点睛】本题考查了一次函数的应用,会利用待定系数法求出一次函数的解析式是解题的关键.2.将函数y =2x 的图象向上平移3个单位,则平移后的函数解析式是( ) A .y =2x +3 B .y =2x ﹣3C .y =2(x +3)D .y =2(x ﹣3)【答案】A【分析】直接利用一次函数“上加下减”的平移规律即可得出答案.【解析】解:∵将函数y =2x 的图象向上平移3个单位,∴所得图象的函数表达式为:y =2x +3.故选:A . 【点睛】本题考查一次函数图象与几何变换,正确记忆“左加右减,上加下减”的平移规律是解题关键.1.我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x (厘米)时,秤钩所挂物重为y (斤),则y 是x 的一次函数.下表中为若干次称重时所记录的一些数据. x (厘米) 1 2 4 7 1112 y (斤)0.751.001.502.753.253.50(1)在上表x ,y 的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?【答案】(1)x =7,y =2.75这组数据错误斤.【分析】(1)利用描点法画出图形即可判断【解析】解:(1)观察图象可知:x =7(2)设y =kx +b ,把x =1,y =0.75,x 解得1412k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴1142y x =+, 当x 答:秤杆上秤砣到秤纽的水平距离为【点睛】此题考查画一次函数的图象的方法解此题的关键.2.把直线y =2x ﹣1向左平移1个单位长度【答案】y =2x +3【分析】直接利用一次函数的平移规律进而【解析】解:把直线y =2x ﹣1向左平移再向上平移2个单位长度,得到y =2x 【点睛】本题考查了一次函数的平移,熟练经典1.在平面直角坐标系xOy 中,对于横、纵坐据错误;(2)秤杆上秤砣到秤纽的水平距离为16厘米可判断.(2)设函数关系式为y =kx +b ,利用待定系,y =2.75这组数据错误.=2,y =1代入可得0.7521k b k b +=⎧⎨+=⎩,=16时,y =4.5,16厘米时,秤钩所挂物重是4.5斤.的方法,待定系数法求一次函数的解析式,一次函数位长度,再向上平移2个单位长度,则平移后所得直律进而得出答案.平移1个单位长度,得到y =2(x +1)﹣1=2x +1, +3.故答案为:y =2x +3. 熟练掌握是解题的关键.经典例题一次函数与一元一次方程 纵坐标相等的点称为“好点”.下列函数的图象中厘米时,秤钩所挂物重是4.5待定系数法解决问题即可. 次函数的实际应用,正确计算是所得直线的解析式为_____. 象中不存在...“好点”的是( )A .y x =-B .2y x =+C .2y x=D .22y x x =-【答案】B【分析】根据“好点”的定义判断出“好点”即是直线y=x 上的点,再各函数中令y=x ,对应方程无解即不存在“好点”. 【解析】解:根据“好点”的定义,好点即为直线y=x 上的点,令各函数中y=x , A 、x=-x ,解得:x=0,即“好点”为(0,0),故选项不符合; B 、2x x =+,无解,即该函数图像中不存在“好点”,故选项符合;C 、2x x=,解得:x =x =是原方程的解,即“好点”)和(,),故选项不符合;D 、22x x x =-,解得:x=0或3,即“好点”为(0,0)和(3,3),故选项不符合; 故选B.【点睛】本题考查了函数图像上的点的坐标,涉及到解分式方程,一元二次方程,以及一元一次方程,解题的关键是理解“好点”的定义.2.在平面直角坐标系中,O 为坐标原点.若直线y =x +3分别与x 轴、直线y =﹣2x 交于点A 、B ,则△AOB 的面积为( ) A .2 B .3C .4D .6【答案】B【分析】根据方程或方程组得到A (﹣3,0),B (﹣1,2),根据三角形的面积公式即可得到结论. 【解析】解:在y =x +3中,令y =0,得x =﹣3,解32y x y x =+⎧⎨=-⎩得,12x y =-⎧⎨=⎩,∴A (﹣3,0),B (﹣1,2),∴△AOB 的面积=12⨯3×2=3,故选:B . 【点睛】本题考查了两直线与坐标轴围成图形的面积,求出交点坐标是解题的关键.1.已知在平面直角坐标系xOy 中,直线y =2x +2和直线y =23x +2分别交x 轴于点A 和点B .则下列直线中,与x 轴的交点不在线段AB 上的直线是( )A .y =x +2B .y x +2C .y =4x +2D .y +2 【答案】C【分析】分别求出点A 、B 坐标,再根据各选项解析式求出与x 轴交点坐标,判断即可. 【解析】解:∵直线y =2x +2和直线y =23x +2分别交x 轴于点A 和点B .∴A (﹣1,0),B (﹣3,0) A. y =x +2与x 轴的交点为(﹣2,0);故直线y =x +2与x 轴的交点在线段AB 上;B. y x +2与x ,0);故直线y x +2与x 轴的交点在线段AB 上;C.y=4x+2与x轴的交点为(﹣12,D.yx+2与x【点睛】本题考查了求直线与坐标轴的交点2.如图,直线542y x=+与x轴、y轴分则点1A的坐标是_____.【答案】(4,125)【分析】首先根据直线AB来求出点A案.【解析】解:在542y x=+中,令∴A(8-5,0),B(0,4),由旋转可得∴∠ABO=∠A1BO1,∠BO1A1=∠AOB=90∴∠OBO1=90°,∴O1B∥x轴,∴点A横坐标为O1B=OB=4,故点A1的坐标是【点睛】本题主要考查了旋转的性质以及一关键.经典例1.如图,直线y=kx+b(k、b是常数k≠00);故直线y=4x+2与x轴的交点不在线段AB上,0);故直线y+2与x轴的交点在线段的交点,注意求直线与x轴交点坐标,即把y=0代入轴分别交于A、B两点,把AOBV绕点B逆时针旋转和点B的坐标,A1的横坐标等于OB,而纵坐标等x=0得,y=4,令y=0,得5042x=+,解得x=-5可得△AOB ≌△A1O1B,∠ABA1=90°,OB=90°,OA=O1A1=85,OB=O1B=4,1的纵坐标为OB-OA的长,即为48-5=125;标是(4,125),故答案为:(4,125).以及一次函数与坐标轴的交点问题,利用基本性质结经典例题一次函数与一元一次不等式)与直线y=2交于点A(4,2),则关于x的不等式上;在线段AB上;故选:C代入函数解析式.针旋转90°后得到11AO BV,坐标等于OB-OA,即可得出答8,性质结合图形进行推理是解题的等式kx+b<2的解集为_____.【答案】x <4【分析】结合函数图象,写出直线y =+【解析】解:∵直线y =kx +b 与直线y ∴关于x 的不等式kx +b <2的解集为:【点睛】本题考查的是利用函数图像解不等2.一次函数y kx b =+的图象如图所示,A .k 0<B .1b =-C .【答案】B【分析】根据一次函数的图象与性质判断即【解析】由图象知,k ﹥0,且y 随x 的增大图象与y 轴负半轴的交点坐标为(0,-1当x ﹥2时,图象位于x 轴的上方,则有【点睛】本题考查一次函数的图象与性质1.如图,直线(0)y kx b k =+<经过点A .1x ≤B .1x ≥ 【答案】A 【分析】将(1,1)P 代入(y kx b k =+【解析】解:由题意将(1,1)P 代入y =+整理kx b x +≥得,()10k x b -+≥,∴【点睛】本题考查了一次函数的图像和性质kx b 在直线y =2下方所对应的自变量的范围即可=2交于点A (4,2),∴x <4时,y <2,x <4.故答案为:x <4.解不等式,理解函数图像上的点的纵坐标的大小对图,则下列结论正确的是( )y 随x 的增大而减小 D .当2x >时,kx b +<判断即可.的增大而增大,故A 、C 选项错误; 1),所以b=﹣1,B 选项正确;则有y ﹥0即+kx b ﹥0,D 选项错误,故选:B . 性质,利用数形结合法熟练掌握一次函数的图象与性过点(1,1)P ,当kx b x +≥时,则x 的取值范围为(C .1x < D .1x >0)<,可得1k b -=-,再将kx b x +≥变形整理,得(0)kx b k <,可得1k b +=,即1k b -=-,∴0bx b -+≥,由图像可知0b >,∴10x -≤和性质,解题关键在于灵活应用待定系数法和不等式围即可.小对图像的影响是解题的关键.0x象与性质是解答本题的关键. ( )得0bx b -+≥,求解即可.,∴1x ≤,故选:A .不等式的性质.1.某公司新产品上市30天全部售完,图销售利润与上市时间之间的关系,则最大日【答案】1800【解析】【分析】从图1和图2中可知,当t=30润=销售量×每件产品销售利润即可求解【详解】由图1知,当天数t=30时,市场从图2知,当天数t=30时,每件产品销售所以当天数t=30时,市场的日销售利润最【点睛】本题考查一次函数的实际应用,利用数形结合法理解题目已知信息是解答的2.小华端午节从家里出发,沿笔直道路匀路线匀速回家装载货物,然后按原路原速返从商店出发开始所用时间为t (分钟),图中线段AB 表示小华和商店的距离1y (列问题:(1)填空:妈妈骑车的速度是__________经典例题 一次函数的应用图1表示产品的市场日销售量与上市时间之间的关最大日销售利润是__________元.时,日销售量达到最大,每件产品的销售利润也达求解.市场日销售量达到最大60件;品销售利润达到最大30元,利润最大,最大利润为60×30=1800元,故答案为:,也考查了学生的观察能力、理解能力和解决实际解答的关键.道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮原速返回商店,小华到达商店比妈妈返回商店早5图1表示两人之间的距离s (米)与时间t (分钟(米)与时间t (分钟)的函数关系的图象的一部分______米/分钟,妈妈在家装载货物所用时间是_____间的关系,图2表示单件产品的润也达到最大,所以由日销售利:1800决实际问题的能力,仔细审题,时骑三轮车从商店出发,沿相同分钟.在此过程中,设妈妈分钟)的函数关系的图象;图2一部分,请根据所给信息解答下__________分钟,点M的坐标是___________;(2)直接写出妈妈和商店的距离2y (米(3)求t 为何值时,两人相距360米.【答案】(1)120,5,()20,1200;(2钟)时,两人相距360米.【分析】(1)先求出小华步行的速度,然后达商店比妈妈返回商店早5分钟,即可求出求出M 的坐标;(2)分①当0≤t <15时,②当15≤t <(3)由题意知,小华速度为60米/分钟种情况讨论即可.【解析】解:(1)由题意可得:小华步行的妈妈骑车的速度为:1800601010-⨯∵小华到达商店比妈妈返回商店早5分钟∴装货时间为:35-15×2=5(分钟),即妈妈由题意和图像可得妈妈在M 点时开始返回此时纵坐标为:20×60=1200(米),∴点(2)①当0≤t <15时y 2=120t ,②当将(20,1800),(35,0),代入得1800⎧⎨⎩∴此段的解析式为y 2=-120x+4200,综上其函数图象如图,米)与时间t (分钟)的函数关系式,并在图2中画.)2120(015)1800(1520)1204200(2035)t t y t t t ≤<⎧⎪=≤<⎨⎪-+≤≤⎩,见解析;(然后即可求出妈妈骑车的速度;先求出妈妈回家用可求出装货时间;根据题意和图像可得妈妈在M 点时20时,③当20≤t≤35时三段求出解析式即可,根据解分钟,妈妈速度为120米/分钟,分①相遇前,②相遇后步行的速度为:180030=60(米/分钟), =120(米/分钟);妈妈回家用的时间为:1800120=15分钟,∴可知妈妈在35分钟时返回商店, 即妈妈在家装载货物的时间为5分钟;始返回商店,∴M 点的横坐标为:15+5=20(分钟),点M 的坐标为()20,1200;故答案为:120,5,15≤t <20时y 2=1800,③当20≤t≤35时,设此段函数解20035k b k b =+=+,解得1204200k b =-⎧⎨=⎩, 综上:2120(015)1800(1520)1204200(2035)t t y t t t ≤<⎧⎪=≤<⎨⎪-+≤≤⎩;;中画出其函数图象; ;3)当t 为8,12或32(分回家用的时间,然后根据小华到点时开始返回商店,然后即可根据解析式画图即可;相遇后,③在小华到达以后三(分钟), ),()20,1200;函数解析式为y 2=kx+b ,(3)由题意知,小华速度为60米/分钟①相遇前,依题意有6012036018t t ++②相遇后,依题意有6012036018t t +-③依题意,当20t =分钟时,妈妈从家里出此时小华距商店为180********-⨯=即30t =分钟时,小华到达商店,而此时妈妈距离商店为1800101206-⨯∴()120536018002t -+=⨯,解得∴当t 为8,12或32(分钟)时,两人相距【点睛】本题考查了一次函数的实际应用1.新龟兔赛跑的故事:龟兔从同一地点同遥领先,就躺在路边呼呼大睡起来.当它一S 1、S 2分别表示乌龟和兔子赛跑的路程,A . B .【答案】C【分析】分别分析乌龟和兔子随时间变化它【解析】对于乌龟,其运动过程可分为两段可排除B ,D 选项 对于兔子,其运动过程开始跑得快,所以路程增加快;中间睡觉时【点睛】本题考查了函数图象的性质进行简别作为点的横、纵坐标,那么坐标平面内由2.某种机器工作前先将空油箱加满,然后中,油箱里的油量y (单位:L )与时间(1)机器每分钟加油量为_____L ,机器(2)求机器工作时y 关于x的函数解析式分钟,妈妈速度为120米/分钟, 01800=,解得8t =(分钟); 01800=,解得12t =(分钟); 家里出发开始追赶小华,(米),只需10分钟,20600=(米)360>(米), 32t =(分钟),人相距360米.应用,由图像获取正确的信息是解题关键.地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲当它一觉醒来,发现乌龟已经超过它,于是奋力直追,t 为赛跑时间,则下列图象中与故事情节相吻合的 C . D .变化它们的路程变化情况,即直线的斜率的变化.为两段:从起点到终点乌龟没有停歇,其路程不断增动过程可分为三段:据此可排除A 选项睡觉时路程不变;醒来时追赶乌龟路程增加快.故选进行简单的合情推理,对于一个函数,如果把自变量面内由这些点组成的图形就是这个函数的图象.然后停止加油立即开始工作,当停止工作时,油箱中与时间x (单位:min )之间的关系如图所示.机器工作的过程中每分钟耗油量为_____L .解析式,并写出自变量x的取值范围.骄傲自满的兔子觉得自己遥力直追,最后同时到达终点.用吻合的是( ).问题便可解答.不断增加;最后同时到达终点,故选:C自变量与函数的每一对对应值分油箱中油量为5L.在整个过程(3)直接写出油箱中油量为油箱容积的一半时x 的值.【答案】(1)3,0.5;(2)1352y x =-+,1060x ≤≤;(3)5或40. 【分析】(1)根据10min 加油量为30L 即可得;根据60min 时剩余油量为5L 即可得;(2)根据函数图象,直接利用待定系数法即可得;(3)先求出机器加油过程中的y 关于x 的函数解析式,再求出15y =时,两个函数对应的x 的值即可.【解析】(1)由函数图象得:机器每分钟加油量为303()10L = 机器工作的过程中每分钟耗油量为3050.5()6010L -=- 故答案为:3,0.5;(2)由函数图象得:当10min x =时,机器油箱加满,并开始工作;当60min x =时,机器停止工作则自变量x 的取值范围为1060x ≤≤,且机器工作时的函数图象经过点(10,30),(60,5)设机器工作时y 关于x 的函数解析式y kx b =+ 将点(10,30),(60,5)代入得:1030605k b k b +=⎧⎨+=⎩ 解得1235k b ⎧=-⎪⎨⎪=⎩ 则机器工作时y 关于x 的函数解析式1352y x =-+;(3)设机器加油过程中的y 关于x 的函数解析式y ax =将点(10,30)代入得:1030a = 解得3a = 则机器加油过程中的y 关于x 的函数解析式3y x =油箱中油量为油箱容积的一半时,有以下两种情况: ①在机器加油过程中:当30152y ==时,315x =,解得5x = ②在机器工作过程中:当30152y ==时,135152x -+=,解得40x = 综上,油箱中油量为油箱容积的一半时x 的值为5或40. 【点睛】本题考查了函数图象、利用待定系数法求一次函数和正比例函数的解析式等知识点,从函数图象中正确获取信息是解题关键.经典例题 一次函数与几何图形综合1.如图,直线AM 的解析式为1y x =+与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为()1,1.过点B 作1EO MA ⊥交MA 于点E ,交x 轴于点1O ,过点1O 作x 轴的垂线交MA 于点1A 以11O A 为边作正方形1111O A B C ,点1B 的坐标为()5,3.过点1B 作12E O MA ⊥交MA 于1E ,交x 轴于点2O ,过点2O 作x 轴的垂线交MA 于点2A ,以22O A 为边作正方形2222O A B C ,L ,则点2020B 的坐标______.。
一次函数及其性质● 知识点一 一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,当0b =时,即y kx =,这时即是前一节所学过的正比例函数.⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.(y=-3x+3是一次函数,其中这里k=-3,b=3)⑵当0b =,0k ≠时,y kx =仍是一次函数.(y=3x 是一次函数也是正比例函数,其中k=3,b=0)⑶当0b =,0k =时,它不是一次函数.(y=4这不是一次函数,因为k=0,b=0) ⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 练习:若23y x b =+-是正比例函数,则b 的值是( )A.0B.23 C.23- D.32- ● 知识点二 一次函数的图象及其画法⑴一次函数y kx b =+(0k ≠,k ,b 为常数)的图象是一条直线.⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.①如果这个函数是正比例函数,通常取()00,,()1k ,两点;②如果这个函数是一般的一次函数(0b ≠),通常取()0b ,,0bk⎛⎫- ⎪⎝⎭,,即直线与两坐标轴的交点.⑶由函数图象的意义知,满足函数关系式y kx b =+的点()x y ,在其对应的图象上,这个图象就是一条直线l ,反之,直线l 上的点的坐标()x y ,满足y kx b =+,也就是说,直线l 与y kx b =+是一一对应的,所以通常把一次函数y kx b =+的图象叫做直线l :y kx b =+,有时直接称为直线y kx b =+. ● 知识点三 一次函数的性质⑴当0k >时,一次函数y kx b =+的图象从左到右上升,y 随x 的增大而增大; ⑵当0k <时,一次函数y kx b =+的图象从左到右下降,y 随x 的增大而减小. ● 知识点四 一次函数y kx b =+的图象、性质与k 、b 的符号⑴ 一次 函数()0k kx b k =+≠ k ,b符号 0k > 0k <0b > 0b < 0b = 0b > 0b <0b =图象Ox yyx OOx yyx OOx yyxO性质y 随x 的增大而增大y 随x 的增大而减小⑵一次函数y kx b =+中,当0k >时,其图象一定经过一、三象限;当0k <时,其图象一定经过二、四象限.当0b >时,图象与y 轴交点在x 轴上方,所以其图象一定经过一、二象限; 当0b <时,图象与y 轴交点在x 轴下方,所以其图象一定经过三、四象限. 反之,由一次函数y kx b =+的图象的位置也可以确定其系数k 、b 的符号.知识点五 用待定系数法求一次函数的解析式⑴定义:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待字系数法. ⑵用待定系数法求函数解析式的一般步骤: ①根据已知条件写出含有待定系数的解析式; ②将x y ,的几对值,或图象上的几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组; ③解方程(组),得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式.类型一:正比例函数与一次函数定义例1、当m 为何值时,函数y=-(m-2)x +(m-4)是一次函数?举一反三: 【变式1】如果函数是正比例函数,那么( ).A .m=2或m=0B .m=2C .m=0D .m=1【变式2】已知y-3与x 成正比例,且x=2时,y=7. (1)写出y 与x 之间的函数关系式; (2)当x=4时,求y 的值; (3)当y=4时,求x 的值.类型二:待定系数法求函数解析式例2、求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.举一反三:【变式1】已知弹簧的长度y(cm)在一定的弹性限度内是所挂重物的质量x(kg)的一次函数,现已测得不挂重物时,弹簧的长度为6cm,挂4kg的重物时,弹簧的长度是7.2cm,求这个一次函数的表达式.【变式2】已知直线y=2x+1.(1)求已知直线与y轴交点M的坐标;(2)若直线y=kx+b与已知直线关于y轴对称,求k,b的值.【变式3】判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.类型三:函数图象的应用例3、图中的图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,回答下列问题:(1)汽车共行驶了___________ km;(2)汽车在行驶途中停留了___________ h;(3)汽车在整个行驶过程中的平均速度为___________ km/h;(4)汽车自出发后3h至4.5h之间行驶的方向是___________.举一反三:【变式1】图中,射线l甲、l乙分别表示甲、乙两运动员在自行车比赛中所走的路程s与时间t的函数关系,求它们行进的速度关系。
一次函数考点1:一次函数图象与性质1.(2021·辽宁丹东市·中考真题)若实数k 、b 是一元二次方程(3)(1)0x x +-=的两个根.且k b <.则一次函数y kx b =+的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C 【分析】根据一元二次方程的解法求出k 、b 的值.由一次函数的图像即可求得. 【详解】∵实数k 、b 是一元二次方程(3)(1)0x x +-=的两个根.且k b <. ∵3,1k b =-=,∵一次函数表达式为31y x =-+.有图像可知.一次函数不经过第三象限. 故选:C .2.(2021·黑龙江大庆市·中考真题)已知反比例函数ky x=.当0x <时.y 随x 的增大而减小.那么一次的数y kx k =-+的图像经过第( ) A .一.二.三象限 B .一.二.四象限 C .一.三.四象限 D .二.三.四象限【答案】B 【分析】根据反比例函数的增减性得到0k >.再利用一次函数的图象与性质即可求解.解:∵反比例函数ky x=.当0x <时.y 随x 的增大而减小. ∵0k >.∵y kx k =-+的图像经过第一.二.四象限. 故选:B .3.(2021·湖北中考真题)下列说法正确的是( ) A .函数2y x =的图象是过原点的射线 B .直线2y x =-+经过第一、二、三象限C .函数()20y x x=-<.y 随x 增大而增大 D .函数23y x =-.y 随x 增大而减小 【答案】C 【分析】根据一次函数的图象与性质、反比例函数的图象与性质逐项判断即可得. 【详解】A 、函数2y x =的图象是过原点的直线.则此项说法错误.不符题意;B 、直线2y x =-+经过第一、二、四象限.则此项说法错误.不符题意;C 、函数()20y x x=-<.y 随x 增大而增大.则此项说法正确.符合题意; D 、函数23y x =-.y 随x 增大而增大.则此项说法错误.不符题意; 故选:C .4.(2020•成都)一次函数y =(2m ﹣1)x +2的值随x 值的增大而增大.则常数m 的取值范围为 .【分析】先根据一次函数的性质得出关于m 的不等式2m ﹣1>0.再解不等式即可求出m 的取值范围.【解析】∵一次函数y =(2m ﹣1)x +2中.函数值y 随自变量x 的增大而增大.∵2m ﹣1>0.解得m >12.故答案为:m >12.考点2:一次函数解析式的确定5.(2021·甘肃武威市·中考真题)将直线5y x =向下平移2个单位长度.所得直线的表达式为( ) A .52y x =- B .52y x =+C .()52y x =+D .()52y x =-【答案】A只向下平移.让比例系数不变.常数项减去平移的单位即可. 【详解】解:直线5y x =向下平移2个单位后所得直线的解析式为5-2y x = 故选:A6.(2021·安徽)某品牌鞋子的长度y cm 与鞋子的“码”数x 之间满足一次函数关系.若22码鞋子的长度为16cm.44码鞋子的长度为27cm.则38码鞋子的长度为( ) A .23cm B .24cmC .25cmD .26cm【答案】B 【分析】设y kx b =+.分别将()22,16和()44,27代入求出一次函数解析式.把38x =代入即可求解. 【详解】解:设y kx b =+.分别将()22,16和()44,27代入可得:16222744k bk b =+⎧⎨=+⎩. 解得125k b ⎧=⎪⎨⎪=⎩ .∵152y x =+. 当38x =时.1385242y cm =⨯+=.故选:B .7.(2021·陕西中考真题)在平面直角坐标系中.若将一次函数21y x m =+-的图象向左平移3个单位后.得到个正比例函数的图象.则m 的值为( ) A .-5 B .5C .-6D .6【答案】A 【分析】根据函数图像平移的性质求出平移以后的解析式即可求得m 的值. 【详解】解:将一次函数21y x m =+-的图象向左平移3个单位后 得到的解析式为:2(3)1y x m =++-. 化简得:25y x m =++.∵平移后得到的是正比例函数的图像.∵50m+=.解得:5m=-.故选:A.8.(2021·山东中考真题)甲、乙、丙三名同学观察完某个一次函数的图象.各叙述如下:甲:函数的图象经过点(0.1);乙:y随x的增大而减小;丙:函数的图象不经过第三象限.根据他们的叙述.写出满足上述性质的一个函数表达式为_______.【答案】y=-x+1(答案不唯一).【分析】设一次函数解析式为y=kx+b.根据函数的性质得出b=1.k<0.从而确定一次函数解析式.本题答案不唯一.【详解】解:设一次函数解析式为y=kx+b.∵函数的图象经过点(0.1).∵b=1.∵y随x的增大而减小.∵k<0.取k=-1.∵y=-x+1.此函数图象不经过第三象限.∵满足题意的一次函数解析式为:y=-x+1(答案不唯一).9.(2021·四川泸州市·中考真题)一次函数y=kx+b(k≠0)的图像与反比例函数m yx =的图象相交于A(2.3).B(6.n)两点(1)求一次函数的解析式(2)将直线AB沿y轴向下平移8个单位后得到直线l.l与两坐标轴分别相交于M.N.与反比例函数的图象相交于点P.Q.求PQMN的值【答案】(1)一次函数y=142x-+.(2)12PQMN=.【分析】(1)利用点A(2.3).求出反比例函数6yx=.求出B(6.1).利用待定系数法求一次函数解析式;(2)利用平移求出y=142x--.联立1426y xyx⎧=--⎪⎪⎨⎪=⎪⎩.求出P(-6,-1),Q(-2,-3),在Rt∵MON中.由勾股定理MN=45PQ=5【详解】解:(1)∵反比例函数myx=的图象过A(2.3).∵m=6,∵6n=6.∵n=1.∵B(6,1)一次函数y=kx+b(k≠0)的图像与反比例函数6yx=的图象相交于A(2.3).B(6.1)两点.∵61 23 k bk b+=⎧⎨+=⎩.解得124kb⎧=-⎪⎨⎪=⎩.一次函数y=14 2x-+.(2)直线AB沿y轴向下平移8个单位后得到直线l.得y=14 2x--.当y=0时.1402x.8x=-.当x=0时.y=-4.∵M(-8.0).N(0.-4).1426y x y x ⎧=--⎪⎪⎨⎪=⎪⎩. 消去y 得28120x x ++=. 解得122,6x x =-=-. 解得1123x y =-⎧⎨=-⎩.2261x y =-⎧⎨=-⎩.∵P (-6,-1),Q (-2,-3), 在Rt ∵MON 中.∵MN 2245OM ON +=, ∵PQ ()()22261325-++-+=∵251245PQ MN ==.考点3:一次函数与方程、不等式的关系10.(2021·内蒙古赤峰市·中考真题)点(),P a b 在函数43y x =+的图象上.则代数式821a b -+的值等于( )A .5B .-5C .7D .-6【答案】B 【分析】把点P 的坐标代入一次函数解析式可以求得a 、b 间的数量关系.所以易求代数式8a -2b +1的值. 【详解】解:∵点P (a .b )在一次函数43y x =+的图象上. ∵b =4a +3.8a -2b +1=8a -2(4a +3)+1=-5.即代数式821a b -+的值等于-5. 故选:B .11.(2020•乐山)直线y =kx +b 在平面直角坐标系中的位置如图所示.则不等式kx +b ≤2的解集是( )A .x ≤﹣2B .x ≤﹣4C .x ≥﹣2D .x ≥﹣4【分析】根据待定系数法求得直线的解析式.然后求得函数y =2时的自变量的值.根据图象即可求得.【解析】∵直线y =kx +b 与x 轴交于点(2.0).与y 轴交于点(0.1). ∵{2k +b =0b =1.解得{k =−12b =1 ∵直线为y =−12x +1.当y =2时.2=−12x +1.解得x =﹣2.由图象可知:不等式kx +b ≤2的解集是x ≥﹣2. 故选:C .12.(2020•济宁)数形结合是解决数学问题常用的思想方法.如图.直线y =x +5和直线y =ax +b 相交于点P .根据图象可知.方程x +5=ax +b 的解是( )A .x =20B .x =5C .x =25D .x =15【分析】两直线的交点坐标为两直线解析式所组成的方程组的解. 【解析】∵直线y =x +5和直线y =ax +b 相交于点P (20.25) ∵直线y =x +5和直线y =ax +b 相交于点P 为x =20.故选:A .考点4:一次函数的实际应用13.(2021·甘肃武威市·中考真题)如图1.小刚家.学校、图书馆在同一条直线上.小刚骑自行车匀速从学校到图书馆.到达图书馆还完书后.再以相同的速度原路返回家中(上、下车时间忽略不计).小刚离家的距离()m y 与他所用的时间()min x 的函数关系如图2所示.(1)小刚家与学校的距离为___________m .小刚骑自行车的速度为________m/min ; (2)求小刚从图书馆返回家的过程中.y 与x 的函数表达式; (3)小刚出发35分钟时.他离家有多远?【答案】(1)3000.200;(2)()20090002045y x x =-+≤≤;(3)2000m 【分析】(1)从起点处为学校出发去处为图书馆.可求小刚家与学校的距离为3000m.小刚骑自行车匀速行驶10分钟.从3000m 走到5000m 可求骑自行车的速度即可; (2)求出从图书馆出发时的时间与路程和回到家是的时间与路程.利用待定系数法求解析式即可;(3)小刚出发35分钟.在返回家的时间内.利用函数解析式求出当35x =时.函数值即可. 【详解】解:(1)小刚骑自行车匀速从学校到图书馆.从起点3000m 处为学校出发去5000m 处为图书馆.∵小刚家与学校的距离为3000m.小刚骑自行车匀速行驶10分钟.从3000m 走到5000m. 行驶的路程为5000-3000=2000m. 骑自行车的速度为2000÷10=200m/min. 故答案为:3000.200;(2)小刚从图书馆返回家的时间:()500020025min ÷=.总时间:()252045min +=. 设返回时y 与x 的函数表达式为y kx b =+. 把()()20,5000,45,0代入得:205000450k b k b +=⎧⎨+=⎩.解得.2009000k b =-⎧⎨=⎩.()20090002045y x x ∴=-+≤≤.(3)小刚出发35分钟.即当35x =时.2003590002000y =-⨯+=.答:此时他离家2000m .14.(2021·贵州毕节市·中考真题)某中学计划暑假期间安排2名老师带领部分学生参加红色旅游.甲、乙两家旅行社的服务质量相同,且报价都是每人1000元,经协商,甲旅行社的优惠条件是:老师、学生都按八折收费:乙旅行社的优惠条件是:两位老师全额收费,学生都按七五折收费,(1)设参加这次红色旅游的老师学生共有x 名,y 甲,y 乙(单位:元)分别表示选择甲、乙两家旅行社所需的费用,求y 甲,y 乙关于x 的函数解析式; (2)该校选择哪家旅行社支付的旅游费用较少?【答案】(1)甲800y x = ,乙750500y x =+ (2)当学生人数超过10人时,选择乙旅行社支付的旅游费最少;当学生人数少于10人时,选择甲旅行社支付的旅游费最少;学生人数等于10人时,选择甲、乙旅行社支付费用相等. 【分析】(1)根据旅行社的收费=老师的费用+学生的费用,再由总价=单价×数量就可以得出y 甲 、y 乙与x 的函数关系式;(2)根据(1)的解析式,若y y =甲乙,y y >甲乙,y y <甲乙,分别求出相应x 的取值范围,即可判断哪家旅行社支付的旅游费用较少. 【详解】 (1)由题意,得甲10000.8800y x x =⨯⨯=,乙1000210000.75(2)750500y x x =⨯+⨯-=+,答:y 甲 、y 乙 与x 的函数关系式分别是: 甲800y x = ,乙750500y x =+(2)当y y =甲乙时,800750500x x =+,解得10x = , 当y y >甲乙时,800750500x x =+,解得10x >, 当y y <甲乙时,800750500x x =+,解得10x <,答:当学生人数超过10人时,选择乙旅行社支付的旅游费最少;当学生人数少于10人时,选择甲旅行社支付的旅游费最少;学生人数等于10人时,选择甲、乙旅行社支付费用相等.15.(2021·辽宁大连市·中考真题)如图.四边形ABCD 为矩形.3AB =.4BC =.P 、Q 均从点B 出发.点P 以2个单位每秒的速度沿BA AC -的方向运动.点Q 以1个单位每秒的速度沿BC CD -运动.设运动时间为t 秒. (1)求AC 的长; (2)若BPQSS =.求S 关于t 的解析式.【答案】(1)5AC =;(2)223,023123,455228,4t t S t t t t t ⎧≤≤⎪⎪⎪=-+<≤⎨⎪->⎪⎪⎩【分析】(1)由题意易得90B ∠=︒.然后根据勾股定理可求解; (2)由题意易得∵当点P 在AB 上时.即302t ≤≤.则2,BP t BQ t ==.∵当点P 在AC 上.点Q 在BC 上时.即342t <≤.过点P 作PE ∵BC 于点E .然后可得()382,825PC t PE t =-=-.∵当点P 与点C 重合.点Q 在CD 上时.即4t >.则有4,7BP CQ t ==-.进而根据面积计算公式可求解.【详解】解:(1)∵四边形ABCD 是矩形.∵90B ∠=︒.∵3AB =.4BC =. ∵225AC AB +BC ;(2)由题意得当点P 到达点C 时.点Q 恰好到达点C .则有:当点P 在AB 上时.即302t ≤≤.如图所示:∵2,BP t BQ t ==. ∵211222S BP BQ t t t =⋅=⨯⨯=; 当点P 在AC 上.点Q 在BC 上时.即342t <≤.过点P 作PE ∵BC 于点E .如图所示:∵82PC t =-.由(1)可得3sin 5PCE ∠=. ∵()3sin 825PE CP PCE t =⋅∠=-. ∵()21133128222555S BQ PE t t t t =⋅=⨯⨯-⨯=-+; 当点P 与点C 重合.点Q 在CD 上时.即4t >.如图所示:∵4,4BP CQ t ==-. ∵()11442822S BP PQ t t =⋅=⨯⨯-=-; 综上所述:S 关于t 的解析式为223,023123,455228,4t t S t t t t t ⎧≤≤⎪⎪⎪=-+<≤⎨⎪->⎪⎪⎩. 16.(2021·黑龙江绥化市·中考真题)小刚和小亮两人沿着直线跑道都从甲地出发.沿着同一方向到达乙地.甲乙两地之间的距离是720米.先到乙地的人原地休息.已知小刚先从甲地出发4秒后.小亮从甲地出发.两人均保持匀速前行.第一次相遇后.保持原速跑一段时间.小刚突然加速.速度比原来增加了2米/秒.并保持这一速度跑到乙地(小刚加速过程忽略不计).小刚与小亮两人的距离S (米)与小亮出发时间t (秒)之间的函数图象.如图所示.根据所给信息解决以下问题.(1)m =_______.n =______;(2)求CD 和EF 所在直线的解析式;(3)直接写出t 为何值时.两人相距30米.【答案】(1)160163,;(2)80(4880)CD S t t =-+≤≤;40057201443EF S t t ⎛⎫-+≤≤ ⎝=⎪⎭;(3)t 为46 .50.110.138时.两人相距30米.【分析】(1)依次分析A 、B 、C 、D 、E 、F 各点坐标的实际意义:A 点是小刚先走了4秒.B 点小亮追上小刚.相遇.C 点是小刚开始加速.D 点是小刚追上小亮.E 点是小刚到达乙地.F 点是小亮到达乙地.则根据A 点的意义.可以求出m 的值.根据E 点的意义可以求出n 的值;(2)根据题意分别求得C 、D 、E 、F 各点坐标.代入直线解析式.用待定系数法求得解析式;(3)根据题意分别求出写出,,,BC CD DE EF 四 条直线的解析式.令S=30.即可求解.【详解】(1)∵小刚原来的速度1644=÷=米/秒.小亮的速度7201445=÷=米/秒B 点小亮追上小刚.相遇4165m m ∴⨯+=⨯=16m ∴E 点是小刚到达乙地720805160[(80)80](65)423-⨯∴+-⨯-=+ 1603n ∴=. (2)由题意可知点C 横坐标为801616482-+= ∵小刚原来的速度1644=÷=米/秒.小亮的速度7201445=÷=米/秒∵纵坐标为()()54481632-⨯-=()48,32C ∴设11(48,32)(80,0)CD S k t b C D =+,,11114832800k b k b +=⎧⎨+=⎩ 解得:11180k b =-⎧⎨=⎩ 80(4880)CD S t t ∴=-+≤≤E 的横坐标为7208054008063-⨯+= E 的纵坐标为40016080(65)33⎛⎫--= ⎪⎝⎭400160(,)33E ∴ (144,0)F 设22EF S k t b =+代入可得2222400160331440k b k b ⎧+=⎪⎨⎪+=⎩ 解得:225720k b =-=40057201443EF S t t =⎛⎫∴-+≤≤ ⎪⎝⎭. (3)(16,0)B ,()48,32C .(80,0)D .400160(,)33E .(144,0)F 设33(48,32)(16,0)BC S k t b C B =+,, 33334832160k b k b +=⎧⎨+=⎩ 解得:33=16k b -=1, ()161648BC S t t ∴<≤=- 设44400160(80,0),(,)33DE S k t b D E =+, 444440016033800k b k b ⎧+=⎪⎨⎪+=⎩ 解得:441,80k b ==-40083008DE S t t ⎛⎫∴<≤ ⎪⎝=⎭- 当S=30时 1630,46BC S t t =-==. 8030,50CD S t t =-+==. 80=30,110DE S t t =-=. 5720=30,138EF S t t -+== ∴t 为46 .50.110.138时.两人相距30米.。
一次函数知识点一、一次函数概念:形如y=kx+b (k≠0, k, b为常数)的函数。
注意:(1)k≠0,且x的指数为1;(2)当b=0时,y=kx,y叫x的正比例函数。
二、一次函数图象:一次函数的图象是一条直线,(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-,0)(2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。
(3)图象的位置:增减性k>0时,y随x增大而增大k<0时,y随x增大而减小三、用待定系数法确定正比例函数、一次函数解析式方法:依据两个独立的条件确定k,b的值,即可求解出一次函数y=kx+b(k≠0)的解析式。
☆已知是直线或一次函数可以设y=kx+b(k≠0);☆若点在直线上,则可以将点的坐标代入解析式构建方程。
四、一次函数的特殊性质已知一次函数y=k1x+ b1及一次函数y=k2x+b2存在以下关系:当k1=k2 b1≠b2时,两直线平行当k1·k2=-1时,两直线垂直当k1≠k2 b1=b2时,两直线交于y轴上同一点当k1=k2 b1=b2时,两直线重合例①求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.五、直线y =kx+b(k ≠0)与坐标轴的交点与x 轴的交点--令y=0,则kx+b=0,解这个一元一次方程解即为直线交点横坐标,纵坐标为0与y 轴的交点--令x=0,则y=b,即直线与y 轴交点坐标为(0,b ) 六、平移方法:直线y=kx+b 与y 轴交点为(0,b ),直线平移则直线上的点(0,b )也会同样的平移,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。
按“上加下减,左加右减”进行(注:上、下在表达式尾部加减,左右在x 上加减)向左平移n 个单位 y=k (x+n )+b向右平移n 个单位 y=k (x-n )+b向上平移n 个单位 y =kx+b+n向下平移n 个单位 y =kx+b-n七、一次函数对称性若直线与直线关于(1)x 轴对称,则直线l 的解析式为(2)y 轴对称,则直线l 的解析式为(3)原点对称,则直线l 的解析式为一次函数基本题型题型一、点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;题型二、一次函数与正比例函数的识别l y kx b =+y kx b =--y kx b =-+y kx b =-1.下列关系式中,y 是关于x 的一次函数的有①x y 2=②2--=x y ③xy 2=④2x y =⑤x y =2⑥3x-2y=5⑦(x-2)2+y=x 2 2.已知函数y=(2-m)x+2m-3.求当m 为何值时,(1)此函数为正比例函数(2)此函数为一次函数3.①当k_____________时,()2323y k x x =-++-是一次函数;②当m_____________时,()21345m y m x x +=-+-是一次函数;③当m_____________时,()21445m y m x x +=-+-是一次函数;题型三、函数图像及其性质1.已知正比例函数y=kx(k ≠0)的图象过第二、四象限,则( )A .y 随x 的增大而减小B .y 随x 的增大而增大C .当x<0时,y 随x 的增大而增大,当x>0时,y 随x 的增大而减小D .不论x 如何变化,y 不变2.两个一次函数1y =mx +n ,2y =nx +m ,它们在同一坐标系中的图象可能是图中的( )3.已知一次函数 y = kx + b ,y 随着x 的增大而减小且kb<0,则在直角坐标系内它的大致图象是( )A B C D4.对于函数y =5x+6,y 的值随x 值的减小而___________。
一次函数的图像与性质【命题趋势】在中考中.主要以选择题、填空题和解答题形式出现.主要考查一次函数的图像与性质.确定一次函数的解析式.一次函数与方程(组)、不等式的关系。
一次函数与二次函数、反比例函数综合也是中考重点之一。
【中考考查重点】一、结合具体情景体会一次函数的意义.能根据已知条件确定一次函数的表达式;二、利用待定系数法确定一次函数的表达式;三、根据一次函数画出图像.探索并理解k>0和k<0时.图像的变化情况;四、体会一次函数与二元一次方程的关系考点一:一次函数及其图像性质概念一般地.形如y=kx+b(k,b为常数.k≠0)的函数.叫做一次函数.当b=0十.即y=kx.这时称y是x的正比例函数(一次函数的特殊形式)增减性k>0k<0从左向右看图像呈上升趋势.y随x的增大而增大从左向右看图像呈下降趋势.y随x的增大而较少图像(草图)b>0b=0b<0b<0b=0 b<0经过象限一、二、三一、三一、三、四一、二、四二、四二、三、四与y轴的交点位置b>0.交点在y轴正半轴上;b=0,交点在原点;b<0.交点在y轴负半轴上【提分要点】:1.若两直线平行.则;2.若两直线垂直.则1.(2021春•大安市期末)一次函数y=2x﹣1图象经过象限()A.一、二、三B.一、二、四C.二、三、四D.一、三、四【答案】D【解答】解:∵一次函数y=2x﹣1.k=2>0.b=﹣1<0.∴该函数图象经过一、三、四象限.故选:D.2.(2021秋•肃州区期末)对于一次函数y=x+6.下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0.6)【答案】D【解答】解:A、∵一次函数y=x+6中k=1>0.∴函数值随自变量增大而增大.故A 选项正确;B、∵一次函数y=x+6与x、y轴的交点坐标分别为(﹣6.0).(0.6).∴此函数与x轴所成角度的正切值==1.∴函数图象与x轴正方向成45°角.故B选项正确;C、∵一次函数y=x+6中k=1>0.b=6>0.∴函数图象经过一、二、三象限.故C选项正确;D、∵令y=0.则x=﹣6.∴一次函数y=x+6与x轴的交点坐标分别为(﹣6.0).故D选项错误.故选:D.3.(2021秋•东港市期中)点A(﹣1.y1)和点B(﹣4.y2)都在直线y=﹣2x上.则y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.y1≥y2【答案】B【解答】解:∵k=﹣2<0.∴y随x的增大而减小.又∵点A(﹣1.y1)和点B(﹣4.y2)都在直线y=﹣2x上.且﹣1>﹣4.∴y1<y2.故选:B4.(2021秋•三水区期末)若一次函数y=kx+b的图象经过第一、二、四象限.则一次函数y=bx+k的图象大致是()A.B.C.D.【答案】D【解答】解:一次函数y=kx+b过一、二、四象限.则函数值y随x的增大而减小.因而k<0;图象与y轴的正半轴相交则b>0.因而一次函数y=bx﹣k的一次项系数b>0.y随x的增大而增大.经过一三象限.常数项k<0.则函数与y轴负半轴相交.因而一定经过一三四象限.故选:D.考点二:一次函数解析式的确定方法待定系数法步骤1.设:一般式y=kx+b(k≠0)(题干中未给解析式需设)2.代:找出一次函数图像上的两个点.并且将点坐标代入函数解析式.得到二元一次方程组;3.求:解方程(组)求出k、b的值;4.写:将k、b的值代入.直接写出一次函数解析式5.(2021秋•尤溪县期中)已知一次函数y=x+b过点(﹣1.﹣2).那么这个函数的表达式为()A.y=x﹣1B.y=x+1C.y=x﹣2D.y=x+2【答案】A【解答】解:把(﹣1.﹣2)代入y=x+b得:﹣2=﹣1+b.解得:b=﹣1.则一次函数解析式为y=x﹣1.故选:A.6.(2021春•海珠区期末)已知一次函数y=mx﹣4m.当1≤x≤3时.2≤y≤6.则m的值为()A.3B.2C.﹣2D.2或﹣2【答案】C【解答】解:当m>0时.一次函数y随x增大而增大.∴当x=1时.y=2且当x=3时.y=6.令x=1.y=2.解得m=.不符题意.令x=3.y=6.解得m=﹣6.不符题意.当m<0时.一次函数y随x增大而减小.∴当x=1时.y=6且当x=3时.y=2.令x=1.y=6.解得m=﹣2.令x=3.y=2.解得m=﹣2.符合题意.∴故选:C.7.(2021秋•萧山区月考)已知y与x﹣2成正比例.且当x=1时.y=1.则y与x之间的函数关系式为.【答案】y=﹣x+2【解答】解:设y=k(x﹣2)(k≠0).将x=1时y=1代入.得1=k(1﹣2).解得k=﹣1.所以y=﹣x+2;故答案为:y=﹣x+2.8.(2021春•古丈县期末)某个一次函数的图象与直线y=x+6平行.并且经过点(﹣2.﹣4).则这个一次函数的解析式为()A.y=﹣x﹣5B.y=x+3C.y=x﹣3D.y=﹣2x﹣8【答案】C【解答】解:由一次函数的图象与直线y=x+6平行.设直线解析式为y=x+b.把(﹣2.﹣4)代入得:﹣4=﹣1+b.即b=﹣3.则这个一次函数解析式为y=x﹣3.故选:C.考点三:一次函数图像的平移平移前平移方式(m>0)平移后简记y=kx+b 向左平移m个单位长度y=k(x+m)+bx左加右减向右平移m个单位长度y=k(x-m)+b向上平移m个单位长度y=kx+b+m等号右端整体上加下减向下平移m个单位长度y=kx+b-m9.(2021秋•金安区校级期中)将直线y=2x向右平移1个单位.再向上平移1个单位后.所得直线的表达式为()A.y=2x﹣1B.y=2x C.y=2x+4D.y=2x﹣2【答案】A【解答】解:将直线y=2x向右平移1个单位.再向上平移1个单位后.所得直线的解析式为y=2(x﹣1)+1.即y=2x﹣1.故选:A.10.(2021春•米易县期末)一次函数y=2x﹣4的图象由正比例函数y=2x的图象()A.向左平移4个单位长度得到B.向右平移4个单位长度得到C.向上平移4个单位长度得到D.向下平移4个单位长度得到【答案】D【解答】解:将正比例函数y=2x的图象向下平移4个单位即可得到y=2x﹣4的图象.故选:D.11.(2021秋•长丰县月考)已知点A(2.4)沿水平方向向左平移3个单位长度得到点A'.若点A'在直线y=x+b上.则b的值为()A.1B.3C.5D.﹣1【答案】C【解答】解:∵点A(2.4)沿水平方向向左平移3个单位长度得到点A'.∴点A'的坐标为(﹣1.4).又∵点A'在直线y=x+b上.∴4=﹣1+b.∴b=5.故选:C考点四:一次函数与方程(组)、不等式与一元一次方程的关系方程ax+b=0(a≠0)的解是一次函数y=ax+b(a≠0)的函数值为0时自变量的取值.还是直线y=ax+b(a≠0)与x轴交点的横坐标与二元一次方程组的关系方程组的解时直线的交点坐标与一元一次不等式的关系1.从“数”来看(1)kx+b>0的解集是y=kx+b中.y>0时x的取值范围(2)kx+b><0的解集是y=kx+b中.y<0时x的取值范围2.从“形”上看(1)kx+b>0的解集是y=kx+b函数图像位于x上方部分对应的点的横坐标(2)kx+b<0的解集是y=kx+b函数图像位于x下方部分对应的点的横坐标12.(2021秋•乐平市期中)一次函数y=kx+b的图象如图所示.则关于x的方程kx+b =0的解为()A.x=0B.x=3C.x=﹣2D.x=﹣3【答案】B【解答】解:∵直线与x轴交点坐标为(3.0).∴kx+b=0的解为x=3.故选:B.13.(2021秋•安徽期中)已知一次函数y=ax﹣1与y=mx+4的图象交于点A(3.1).则关于x的方程ax﹣1=mx+4的解是()A.x=﹣1B.x=1C.x=3D.x=4【答案】C【解答】解:∵一次函数y=ax﹣1与y=mx+4的图象交于点A(3.1).∴ax﹣1=mx+4的解是x=3.故选:C.14.(2021春•沧县期末)如图.直线y=x+5和直线y=ax+b相交于点P(20.25).根据图象可知.方程x+5=ax+b的解是()A.x=20B.x=5C.x=25D.x=15【答案】A【解答】解:∵直线y=x+5和直线y=ax+b相交于点P(20.25).∴方程x+5=ax+b的解为x=20.故选:A.15.(2020秋•建湖县期末)如图.一次函数y=kx+b(k≠0)的图象经过点A(﹣1.﹣2)和点B(﹣2.0).一次函数y=2x的图象过点A.则不等式2x<kx+b≤0的解集为()A.x≤﹣2B.﹣2≤x<﹣1C.﹣2<x≤﹣1D.﹣1<x≤0【答案】B【解答】解:∵由图象可知:正比例函数y=2x和一次函数y=kx+b的图象的交点是A(﹣1.﹣2).∴不等式2x<kx+b的解集是x<﹣1.∵一次函数y=kx+b的图象与x轴的交点坐标是B(﹣2.0).∴不等式kx+b≤0的解集是x≥﹣2.∴不等式2x<kx+b<0的解集是﹣2≤x<﹣1.故选:B.16.(2021秋•兴宁区校级月考)如图.直线y=kx+b交x轴于点A(﹣2.0).直线y=mx+n交x轴于点B(5.0).这两条直线相交于点C(2.c).则关于x的不等式组的解集为()A.x<5B.1<x<5C.﹣2<x<5D.x<﹣2【答案】D【解答】解:y=kx+b<0.则x<﹣2.y=mx+n>0.则x<5.关于x的不等式组的解集为:x<﹣2.故选:D.17.(2020秋•西林县期末)如图所示是函数y=kx+b与y=mx+n的图象.则方程组的解是()A.B.C.D.【答案】C【解答】解:∵函数y=kx+b与y=mx+n的图象交于点(3.4).∴方程组的解是.故选:C.1.(2021春•扎兰屯市期末)将直线y=﹣2x﹣2向右平移1个单位长度.可得直线的表达式为()A.y=2x B.y=﹣2x﹣4C.y=﹣2x D.y=﹣2x+4【答案】C【解答】解:由“左加右减”的原则可知.把直线y=﹣2x﹣2向右平移1个单位长度.可得直线的解析式为:y=﹣2(x﹣1)﹣2.即y=﹣2x.故选:C.2.(2021春•玉田县期末)下列有关一次函数y=﹣6x﹣5的说法中.正确的是()A.y的值随着x值的增大而增大B.函数图象与y轴的交点坐标为(0.5)C.当x>0时.y>﹣5D.函数图象经过第二、三、四象限【答案】D【解答】解:∵y=﹣6x﹣5.﹣6<0.﹣5<0.∴y随x的增大而减小.故选项A不符合题意;当x=0时.y=﹣6×0﹣5=﹣5.即函数图象与y轴的交点坐标为(0.﹣5).故选项B不符合题意;当x>0时.y<﹣5.故选项C不符合题意;函数图象经过第二、三、四象限.故选项D符合题意;故选:D.3.(2021春•红寺堡区期末)点P1(x1.y1).点P2(x2.y2)是一次函数y=﹣4x+3图象上的两个点.且x1<x2.则y1与y2的大小关系是()A.y1>y2B.y1>y2>0C.y1<y2D.y1=y2【答案】A【解答】解:∵k=﹣4<0.∴y随x的增大而减小.又∵x1<x2.∴y1>y2.故选:A.4.(2021秋•运城期中)在平面直角坐标系中.一次函数y=kx+3(k≠0)的图象经过点A(2.﹣1).则这个一次函数的表达式是()A.y=﹣2x+3B.y=x+3C.y=2x+3D.y=x+3【答案】A【解答】解:∵一次函数y=kx+3(k≠0)的图象经过点A(2.﹣1).∴2k+3=﹣1解得k=﹣2.∴一次函数的表达式是y=﹣2x+3.故选:A.5.(2021秋•南海区期中)如图.一次函数y=kx+b的图象经过点(2.0)、(0.1).则下列结论正确的是()A.k=1B.关于x的方程kx+b=0的解是x=2C.b=2D.关于x的方程kx+b=0的解是x=1【答案】B【解答】解:A.∵一次函数y=kx+b的图象经过点(2.0)、(0.1).∴.解得:.故选项A不符合题意;B.由图象得:关于x的方程kx+b=0的解为x=2正确.故选项B符合题意;C.由图象得:当x=0时.y=1.即b=1.故选项C不符合题意;D.由图象得:y=0.即kx+b=0时.x=2.∴关于x的方程kx+b=0的解是x=2.故选项D不符合题意;故选:B.6.(2021秋•滕州市期中)直线y=ax+b(a≠0)过点A(0.2).B(1.0).则关于x的方程ax+b=0的解为()A.x=0B.x=2C.x=1D.x=3【答案】C【解答】解:方程ax+b=0的解.即为函数y=ax+b图象与x轴交点的横坐标.∵直线y=ax+b过B(1.0).∴方程ax+b=0的解是x=1.故选:C.7.(2021秋•龙凤区期末)一次函数y=mx﹣n(m.n为常数)的图象如图所示.则不等式mx﹣n≥0的解集是()A.x≥2B.x≤2C.x≥3D.x≤3【答案】D【解答】解:由图象知:不等式mx﹣n≥0的解集是x≤3.故选:D.8.(2020秋•开化县期末)如图.直线y=2x+n与y=mx+3m(m≠0)的交点的横坐标为﹣1.则关于x的不等式2x+n<mx+3m<0的整数解为()A.﹣1B.﹣2C.﹣3D.﹣3.5【答案】B【解答】解:∵直线y=2x+n与y=mx+3m(m≠0)的交点的横坐标为﹣1.∴关于x的不等式2x+n<mx+3m的解集为x<﹣1.∵y=x+3=0时.x=﹣3.∴mx+3m<0的解集是x>﹣3.∴2x+n<mx+3m<0的解集是﹣3<x<﹣1.所以不等式2x+n<mx+3m<0的整数解为﹣2.故选:B.9.(2021春•单县期末)已知方程组的解为.则直线y=﹣x+2与直线y =2x﹣7的交点在平面直角坐标系中位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解答】解:∵方程组的解为.∴直线y=﹣x+2与直线y=2x﹣7的交点坐标为(3.﹣1).∵x=3>0.y=﹣1<0.∴交点在第四象限.故选:D.10.(2021春•武陵区期末)对于实数a.b.我们定义符号max{a.b}的意义为:当a≥b 时.max{a.b}=a;当a<b时.max{a.b}=b;如:max{4.﹣2}=4.max{3.3}=3.若关于x 的函数为y=max(2x﹣1.﹣x+2}.则该函数的最小值是()A.2B.1C.0D.﹣1【答案】B【解答】解:当2x﹣1≥﹣x+2时.解得:x≥1.此时y=2x﹣1.∵2>0.∴y随x的增大而增大.当x=1时.y最小为1;当2x﹣1<﹣x+2时.解得:x<1.此时y=﹣x+2.∵﹣1<0.∴y随x的增大而减小.综上.当x=1时.y最小为1.故选:B.11.(2020秋•成安县期末)如图.若直线y=kx+b与x轴交于点A(﹣4.0).与y轴正半轴交于B.且△OAB的面积为4.则该直线的解析式为()A.B.y=2x+2C.y=4x+4D.【答案】A【解答】解:∵A(﹣4.0).∴OA=4.∵×4×OB=4.解得OB=2.∴B(0.2).把A(﹣4.0).B(0.2)代入y=kx+b.∴.解得.∴直线解析式为y=x+2.故选:A.12.(2021春•饶平县校级期末)已知2y﹣3与3x+1成正比例.则y与x的函数解析式可能是()A.y=3x+1B.C.D.y=3x+2【答案】C【解答】解:∵2y﹣3与3x+1成正比例.则2y﹣3=k(3x+1).当k=1时.2y﹣3=3x+1.即y=x+2.故选:C.13.(2021秋•榆林期末)已知直线l1交x轴于点(﹣3.0).交y轴于点(0.6).直线l2与直线l1关于x轴对称.将直线l1向下平移8个单位得到直线l3.则直线l2与直线l3的交点坐标为()A.(﹣1.﹣4)B.(﹣2.﹣4)C.(﹣2.﹣1)D.(﹣1.﹣1)【答案】A【解答】解:设直线l1为y=kx+b.∵直线l1交x轴于点(﹣3.0).交y轴于点(0.6).∴.解得.∴b=﹣4.∴直线l1为y=2x+6.将直线l1向下平移8个单位得到直线l3:y=2x+6﹣8=2x﹣2.∵直线l2与直线l1关于x轴对称.∴直线l2交x轴于点(﹣3.0).交y轴于点(0.﹣6).∴直线l2为y=﹣2x﹣6.解得.∴直线l2与直线l3的交点坐标为(﹣1.﹣4).故选:A.1.(2021•长沙)下列函数图象中.表示直线y=2x+1的是()A.B.C.D.【答案】B【解答】解:∵k=2>0.b=1>0.∴直线经过一、二、三象限.故选:B.2.(2021•嘉峪关)将直线y=5x向下平移2个单位长度.所得直线的表达式为()A.y=5x﹣2B.y=5x+2C.y=5(x+2)D.y=5(x﹣2)【答案】A【解答】解:将直线y=5x向下平移2个单位长度.所得的函数解析式为y=5x﹣2.故选:A.3.(2021•陕西)在平面直角坐标系中.将直线y=﹣2x向上平移3个单位.平移后的直线经过点(﹣1.m).则m的值为()A.﹣1B.1C.﹣5D.5【答案】D【解答】解:将直线y=﹣2x向上平移3个单位.得到直线y=﹣2x+3.把点(﹣1.m)代入.得m=﹣2×(﹣1)+3=5.故选:D.4.(2021•抚顺)如图.直线y=2x与y=kx+b相交于点P(m.2).则关于x的方程kx+b =2的解是()A.x=B.x=1C.x=2D.x=4【答案】B【解答】解:∵直线y=2x与y=kx+b相交于点P(m.2).∴2=2m.∴m=1.∴P(1.2).∴当x=1时.y=kx+b=2.∴关于x的方程kx+b=2的解是x=1.故选:B.5.(2020•牡丹江)两个一次函数y=ax+b和y=bx+a.它们在同一个直角坐标系的图象可能是()A.B.C.D.【答案】B【解答】解:当a>0.b>0时.一次函数y=ax+b和y=bx+a的图象都经过第一、二、三象限.当a>0.b<0时.一次函数y=ax+b的图象经过第一、三、四象限.函数y=bx+a的图象经过第一、二、四象限.当a<0.b>0时.一次函数y=ax+b的图象经过第一、二、四象限.函数y=bx+a的图象经过第一、三、四象限.当a<0.b<0时.一次函数y=ax+b和y=bx+a的图象都经过第二、三、四象限.由上可得.两个一次函数y=ax+b和y=bx+a.它们在同一个直角坐标系的图象可能是B中的图象.故选:B.6.(2021•乐山)如图.已知直线l1:y=﹣2x+4与坐标轴分别交于A、B两点.那么过原点O且将△AOB的面积平分的直线l2的解析式为()A.y=x B.y=x C.y=x D.y=2x【答案】D【解答】解:如图.当y=0.﹣2x+4=0.解得x=2.则A(2.0);当x=0.y=4.则B(0.4).∴AB的中点坐标为(1.2).∵直线l2把△AOB面积平分∴直线l2过AB的中点.设直线l2的解析式为y=kx.把(1.2)代入得2=k.解得k=2.∴l2的解析式为y=2x.故选:D.7.(2021•娄底)如图.直线y=x+b和y=kx+4与x轴分别相交于点A(﹣4.0).点B(2.0).则解集为()A.﹣4<x<2B.x<﹣4C.x>2D.x<﹣4或x>2【答案】A【解答】解:∵当x>﹣4时.y=x+b>0.当x<2时.y=kx+4>0.∴解集为﹣4<x<2.故选:A.8.(2019•苏州)若一次函数y=kx+b(k.b为常数.且k≠0)的图象经过点A(0.﹣1).B (1.1).则不等式kx+b>1的解集为()A.x<0B.x>0C.x<1D.x>1【答案】D【解答】解:如图所示:不等式kx+b>1的解为:x>1.故选:D.9.(2021•德阳)关于x.y的方程组的解为.若点P(a.b)总在直线y=x上方.那么k的取值范围是()A.k>1B.k>﹣1C.k<1D.k<﹣1【答案】B【解答】解:解方程组可得..∵点P(a.b)总在直线y=x上方.∴b>a.∴>﹣k﹣1.解得k>﹣1.故选:B.10.(2021•呼和浩特)在平面直角坐标系中.点A(3.0).B(0.4).以AB为一边在第一象限作正方形ABCD.则对角线BD所在直线的解析式为()A.y=﹣x+4B.y=﹣x+4C.y=﹣x+4D.y=4【答案】A【解答】解:过D点作DH⊥x轴于H.如图.∵点A(3.0).B(0.4).∴OA=3.OB=4.∵四边形ABCD为正方形.∴AB=AD.∠BAD=90°.∵∠OBA+∠OAB=90°.∠OAB+∠DAH=90°.∴∠ABO=∠DAH.在△ABO和△DAH中..∴△ABO≌△DAH(AAS).∴AH=OB=4.DH=OA=3.∴D(7.3).设直线BD的解析式为y=kx+b.把D(7.3).B(0.4)代入得.解得.∴直线BD的解析式为y=﹣x+4.故选:A.11.(2019•江西)如图.在平面直角坐标系中.点A.B的坐标分别为(﹣.0).(.1).连接AB.以AB为边向上作等边三角形ABC.(1)求点C的坐标;(2)求线段BC所在直线的解析式.【答案】(1)(.2)(2)y=x+.【解答】解:(1)如图.过点B作BH⊥x轴.∵点A坐标为(﹣.0).点B坐标为(.1).∴|AB|==2.∵BH=1.∴sin∠BAH==.∴∠BAH=30°.∵△ABC为等边三角形.∴AB=AC=2.∴∠CAB+∠BAH=90°.∴点C的纵坐标为2.∴点C的坐标为(.2).(2)由(1)知点C的坐标为(.2).点B的坐标为(.1).设直线BC的解析式为:y=kx+b.则.解得.故直线BC的函数解析式为y=x+.1.(2021•庐阳区校级一模)一次函数y=﹣2x﹣3的图象和性质.叙述正确的是()A.y随x的增大而增大B.与y轴交于点(0.﹣2)C.函数图象不经过第一象限D.与x轴交于点(﹣3.0)【答案】C【解答】解:∵一次函数y=﹣2x﹣3.∴该函数y随x的增大而减小.故选项A错误;与y轴交于点(0.﹣3).故选项B错误;该函数图象经过第二、三、四象限.不经过第一象限.故选项C正确;与x轴交于点(﹣.0).故选项D错误;故选:C.2.(2021•陕西模拟)平面直角坐标系中.直线y=﹣2x+m沿x轴向右平移4个单位后恰好经过(1.2).则m=()A.﹣1B.2C.﹣4D.﹣3【答案】C【解答】解:直线y=﹣2x+m沿x轴向右平移4个单位后得到y=﹣2(x﹣4)+m.∵经过(1.2).∴2=﹣2(1﹣4)+m.解得m=﹣4.故选:C.3.(2021•商河县校级模拟)若一次函数y=kx+b的图象经过一、二、四象限.则一次函数y=﹣bx+k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解答】解:一次函数y=kx+b过一、二、四象限.则函数值y随x的增大而减小.因而k<0;图象与y轴的正半轴相交则b>0.因此一次函数y=﹣bx+k的一次项系数﹣b<0.y随x的增大而减小.经过二四象限.常数项k<0.则函数与y轴负半轴相交.因此一定经过二三四象限.因此函数不经过第一象限.故选:A.4.(2021•萧山区一模)已知y﹣3与x+5成正比例.且当x=﹣2时.y<0.则y关于x的函数图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限【答案】D【解答】解:∵y﹣3与x+5成正比例.∴设y﹣3=k(x+5).整理得:y=kx+5k+3.当x=﹣2时.y<0.即﹣2k+5k+3<0.整理得3k+3<0.解得:k<﹣1.∵k<﹣1.∴5k+3<﹣2.∴y=kx+5k+3的图象经过第二、三、四象限.故选:D.5.(2021•陕西模拟)一次函数y=kx+b的图象经过点A(2.3).每当x增加1个单位时.y 增加3个单位.则此函数表达式是()A.y=x+3B.y=2x﹣3C.y=3x﹣3D.y=4x﹣4【答案】C【解答】解;由题意可知一次函数y=kx+b的图象也经过点(3.6).∴.解得∴此函数表达式是y=3x﹣3.故选:C.6.(2021•蕉岭县模拟)在平面直角坐标系中.一次函数y=mx+b(m.b均为常数)与正比例函数y=nx(n为常数)的图象如图所示.则关于x的方程mx=nx﹣b的解为()A.x=3B.x=﹣3C.x=1D.x=﹣1【答案】A【解答】解:∵两条直线的交点坐标为(3.﹣1).∴关于x的方程mx=nx﹣b的解为x=3.故选:A.7.(2021•奉化区校级模拟)八个边长为1的正方形如图摆放在平面直角坐标系中.经过原点的一条直线l将这八个正方形分成面积相等的两部分.则该直线l的解析式为()A.y=﹣x B.y=﹣x C.y=﹣x D.y=﹣x【答案】D【解答】解:设直线l和八个正方形的最上面交点为A.过A作AB⊥OB于B.B过A 作AC⊥OC于C.∵正方形的边长为1.∴OB=3.∵经过原点的一条直线l将这八个正方形分成面积相等的两部分.∴S△AOB=4+1=5.∴OB•AB=5.∴AB=.∴OC=.由此可知直线l经过(﹣.3).设直线方程为y=kx.则3=﹣k.k=﹣.∴直线l解析式为y=﹣x.故选:D.8.(2021•遵义一模)如图.直线y=kx+b(k<0)与直线y=x都经过点A(3.2).当kx+b>x时.x的取值范围是()A.x<2B.x>2C.x<3D.x>3【答案】C【解答】解:由图象可知.当x<3时.直线y=kx+b在直线y=x上方.所以当kx+b>x时.x的取值范围是x<3.故选:C.9.(2021•饶平县校级模拟)如图.函数y=ax+b和y=﹣x的图象交于点P.则根据图象可得.关于x.y的二元一次方程组中的解是()A.B.C.D.【答案】C【解答】解:当y=1时.﹣x=1.解得x=﹣3.则点P的坐标为(﹣3.1).所以关于x.y的二元一次方程组中的解为.故选:C.10.(2021•杭州模拟)已知直线l:y=kx+b经过点A(﹣1.a)和点B(1.a﹣4).若将直线l向上平移2个单位后经过原点.则直线的表达式为()A.y=2x+2B.y=2x﹣2C.y=﹣2x+2D.y=﹣2x﹣2【答案】D【解答】解:将直线l向上平移2个单位后经过原点.则点A(﹣1.a)和点B(1.a﹣4)平移后对应的点的坐标为(﹣1.a+2)和(1.a﹣2).∵将直线l向上平移2个单位后经过原点.∴点(﹣1.a+2)和点(1.a﹣2)关于原点对称.∴a+2+a﹣2=0.∴a=0.∴A(﹣1.0).B(1.﹣4).把A、B的坐标代入y=kx+b得..解得.∴直线AB的解析式为y=﹣2x﹣2.故选:D.11.(2021•南山区校级二模)我国古代很早就对二元一次方程组进行了研究.古著《九章算术》记载用算筹表示二元一次方程组.发展到现代就是用矩阵式=来表示二元一次方程组.而该方程组的解就是对应两直线(不平行)a1x+b1y=c1与a2x+b2y=c2的交点坐标P(x.y)据此.则矩阵式=所对应两直线交点坐标是.【答案】(﹣1.2)【解答】解:依题意.得.解得.∴矩阵式=所对应两直线交点坐标是(﹣1.2).故答案为:(﹣1.2).12.(2021•杭州模拟)已知直线y=kx+b经过点A(5.0).B(1.4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C.求点C的坐标;(3)根据图象.写出关于x的不等式2x﹣4>kx+b的解集.【答案】(1)y=﹣x+5 (2)C(3.2)(3)x>3【解答】解:(1)∵直线y=kx+b经过点A(5.0).B(1.4).∴.解得.∴直线AB的解析式为:y=﹣x+5;(2)∵若直线y=2x﹣4与直线AB相交于点C.∴.解得.∴点C(3.2);(3)根据图象可得x>3.。
一次函数复习知识点练习1:一次函数的意义1、已知y =(k -1)x +k 2-1是正比例函数,则k = ;2、当k_____________时,()2323y k x x =-++-是一次函数;3、当m_____________时,()21345m y m x x +=-+-是一次函数;4、当m_____________时,()21445m y m x x +=-+-是一次函数。
知识点2:求一次函数的解析式常见题型归类第一种情况:不已知函数类型(不可用待定系数法),通过寻找题目中隐含的自变量和函数变量之间的数量关系,建立函数解析式。
(见前面函数解析式的确定)第二种情况:已知函数是一次函数(直接或间接),采用待定系数法。
(已知是一次函数或已知解析式形式y kx b =+或已知函数图象是直线都是直接或间接已知了一次函数) 一、定义型 例1 已知.函数y= -(m-2)x+(m-4)是一次函数,求其解析式二. 平移型 例2. 把直线 向下平移2个单位得到的图象解析式为___________. 三. 两点型 (即已知两点的坐标)3 已知某个一次函数的图象与x 轴、y 轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式. 四、开放型 不直接已知函数类型,但可通过探索知其类型,再用待定系数法求解析式例4 已知函数的图象过点A (1,4),B (2,2)两点,请写出满足上述条件的两个不同的函数解析式,并简要说明解答过程.五、点斜型 (即已知一点和自变量的系数)例 5 . 已知一次函数 的图象过点(2,-1),求这个函数的解析式. 解:一次函数 的图象过点(2,-1)即k=1故这个一次函数的解析式为 y=x-3变式问法:已知一次函数 ,当 时,求这个函数的解析式.六. 斜截型(已知图象在y 轴上的截距和斜率)例6. 已知直线 与直线 平行,且在y 轴上的截距为2,求直线的解析式.26y x =-+3y kx =-y kx b=+2y x=-y kx b=+21y x =+解:∵直线 与直线 平行又∵直线 在y 轴上的截距为2,故直线的解析式为 变式问法:已知直线 与直线 平行,且与y 轴的交点为(0,2),求直线的解析式. 七、 图象型例7 已知某个一次函数的图象如图所示,求该函数的解析式. 解:设一次函数解析式为由图可知一次函数 的图象过点(1,0)、(0,2)故这个一次函数的解析式为 习题练习1、已知A (0,0),B (3,2)两点,经过A 、B 两点的图象的解析式为(A 、y=3xB 、y= 32xC 、y= 23x D 、y= 13x+12、如下图,直线AB 对应的函数表达式是( )A 、3y x 32=-+ B 、3y x 32=+ C 、2y x 33=-+ D 、2y x 33=+3、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为________________;4、如图,已知直线3y kx =-经过点M ,求此直线与x 轴,y 轴的交点坐标.y 2y x=-2k ∴=-2b ∴=22y x =-+y kx b=+k+b=00+b=2⎧∴⎨⎩有22k b =-⎧∴⎨=⎩22y x =-+y kx b=+y kx b=+2y x=-y kx b=+y kx b=+5、(2011浙江杭州,7,3)一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是6、(2011湖南常德,16,3分)设min{x,y}表示x,y两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x 的函数y=min{2x,x+2},y可以表示为()A.()()2222x xyx x<⎧⎪=⎨+≥⎪⎩B.()()2222x xyx x+<⎧⎪=⎨≥⎪⎩C. y =2xD. y=x+27、(2011 浙江湖州,19,6) 已知:一次函数y kx b=+的图象经过M(0,2),(1,3)两点.(l) 求k、b的值;(2) 若一次函数y kx b=+的图象与x轴的交点为A(a,0),求a的值.8、(2011湖南郴州市,20,6分)求与直线y x=平行,并且经过点P(1,2)的一次函数解析式.9、(2011四川自贡,8,3分)已知直线l经过点A(1,0)且与直线y x=垂直,则直线l的解析式为()A.1y x=-+ B. 1y x=-- C. 1y x=+ D. 1y x=-10、(2011福建福州,19,12分)如图,在平面直角坐标系中,A 、B 均在边长为1的正方形网格格点上. (1)求线段AB 所在直线的函数解析式,并写出当02y ≤≤时,自变量x 的取值范围;(2)将线段AB 绕点B 逆时针旋转90o,得到线段BC ,请画出线段BC .若直线BC 的函数解析式为y kx b =+,则y 随x 的增大而(填“增大”或“减小”).知识点3、一次函数的图象一次函数b kx y +=的图象是一条直线,与x 轴的交点为)0,(kb-,与y 轴的交点为),0(b 正比例函数kx y =的图象也是一条直线,它过点)0,0(,),1(k 习题练习1、一次函数y=kx+b 的图象如图所示,当y <0时,x 的取值范围是( )A 、x >0B 、x <0C 、x >2D 、x <22、正比例函数y=kx (k ≠0)的函数值y 随x 的增大而增大,则一次函数y=x+k 的图象大致是( )A 、B 、C 、D 、3、如图,直线(0)y kx b k =+<与x 轴交于点(30),,关于x 的不等式0kx b +>的解集是( ) A .3x <B .3x >C .0x >D .0x <4、直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c的不等式k 1x +b <k 2x +c 的解集为( )A、x >1 B 、x <1 C 、x >-2 D 、x <-2上第5题图5、(2011内蒙古呼和浩特市,12,3分)已知关于x 的一次函数y mx n =+的图象如图所示,则||n m -可化简为_________________.6、(2011山东枣庄,10,3分)如图所示,函数xy =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是()第6题 第7题 第8题A .x <-1B .—1<x <2C .x >2D . x <-1或x >27、(2011贵州毕节,16,5分)已知一次函数3+=kx y 的图象如图所示,则不等式03<+kx 的解集是 。
一次函数考点归纳及例题详解 【考点归纳】考点1:一次函数的概念.相关知识:一次函数是形如y kx b =+(k 、b 为常数,且0k ≠)的函数,特别的当0=b 时函数为)0(≠=k kx y ,叫正比例函数. 【例题】1.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 2.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.3.已知一次函数kx k y )1(-=+3,则k = .4.函数n m x m y n +--=+12)2(,当m= ,n= 时为正比例函数;当m= ,n 时为一次函数.考点2:一次函数图象与系数相关知识:一次函数)0(≠+=k b kx y 的图象是一条直线,图象位置由k 、b 确定,0>k 直线要经过一、三象限,0<k 直线必经过二、四象限,0>b 直线与y 轴的交点在正半轴上,0<b 直线与y 轴的交点在负半轴上.【例题】1. 直线y=x -1的图像经过象限是( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限 2. 一次函数y=6x+1的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限3. 一次函数y = -3 x + 2的图象不经过第 象限.4. 一次函数2y x =+的图象大致是( )5. 关于x 的一次函数y=kx+k 2+1的图像可能是( )6.已知一次函数y =x +b 的图像经过一、二、三象限,则b 的值可以是( ). A.-2 B.-1 C.0 D.27.若一次函数m x m y 23)12(-+-=的图像经过 一、二、四象限,则m 的取值范围是 .8. 已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是( )A.m >0,n <2B. m >0,n >2C. m <0,n <2D. m <0,n >29.已知关于x 的一次函数y mx n =+的图象如图所示,则2||n m m --可化简为__ __.10. 如果一次函数y=4x +b 的图像经过第一、三、四象限,那么b 的取值范围是_ _。
初二数学下册:【一次函数】性质,6大考点+例题解析,抓紧记!考纲要求:1.理解一次函数的概念,会利用待定系数法确定一次函数的表达式.2.会画一次函数的图象,掌握一次函数的基本性质,平移的方法.3.体会一次函数与一元一次方程不等式的关系。
4.一次函数的与三角形面积的问题.命题趋势:一次函数是中考的重点,主要考查一次函数的定义、图像、性质及其实际应用,有时与方程、不等式相结合.题型有选择题、填空题、解答题.中考数学一次函数知识梳理:一、一次函数和正比例函数的定义一般地,如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.特别地,当b=0时,一次函数y=kx+b就成为y=kx(k是常数,k≠0),这时y叫做x的正比例函数.二、一次函数的图像与性质1.一次函数的图像(1)一次函数y=kx+b(k≠0)的图象是经过点(0,b)和(-b/k,0)的一条直线.(2)正比例函数y=kx(k≠0)的图像是经过点(0,0)和(1,k)的一条直线.(3)因为一次函数的图象是一条直线,由两点确定一条直线可知画一次函数图象时,只要取两个点即可.2.一次函数图象的性质一次函数y=kx+b的图象可由正比例函数y=kx的图象平移得到,b>0,上移b个单位;b<0,下移|b|个单位.三、利用待定系数法求一次函数的解析式四、一次函数与方程、方程组及不等式的关系1.y=kx+b与kx +b=0直线y=kx+b与x轴交点的横坐标是方程kx+b=0的解,方程kx+b=0的解是直线y=kx+b与x轴交点的横坐标.2.一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解;以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点.3.一次函数的平移y=kx+b遵循左加右减原则如果向左平移a个单位,可得y=k(x+a)+b如果向上平移a个单位,可得y=kx+b+a 通过以上对一次函数的整体了解和综合的学习,快速掌握一次函数,就从下面的六大考点出发,每个考点的精髓和解题的技巧唐老师都在例题的下方给大家进行了总结,记得一定要牢记。
2012中考数学精选例题解析:一次函数(1)
知识考点:
掌握二次函数的图像和性质以及抛物线的平移规律;会确定抛物线的顶点坐标、对称轴及最值等。
精典例题:
【例1】二次函数c bx ax y ++=2
的图像如图所示,那么
abc 、ac b 42
-、b a +2、c b a +-24这四个代数式中,值为
正的有( )
A 、4个
B 、3个
C 、2个
D 、1个 解析:∵a
b
x 2=
<1 ∴b a +2>0 答案:A
评注:由抛物线开口方向判定a 的符号,由对称轴的位置判定b 的符号,由抛物线与y 轴交点位置判定c 的符号。
由抛物线与x 轴的交点个数判定ac b 42
-的符号,若x 轴标出了1和-1,则结合函数值可判定b a +2、c b a ++、c b a +-的符号。
【例2】已知0=++c b a ,a ≠0,把抛物线c bx ax y ++=2
向下平移1个单位,再向左平移5个单位所得到的新抛物线的顶点是(-2,0),求原抛物线的解析式。
分析:①由0=++c b a 可知:原抛物线的图像经过点(1,0);②新抛物线向右平移5个单位,再向上平移1个单位即得原抛物线。
解:可设新抛物线的解析式为2
)2(+=x a y ,则原抛物线的解析式为
1)52(2+-+=x a y ,又易知原抛物线过点(1,0)
∴1)521(02
+-+=a ,解得4
1-
=a
y
x
例1图
-1
1
O
∴原抛物线的解析式为:1)3(4
1
2+--
=x y 评注:解这类题的关键是深刻理解平移前后两抛物线间的关系,以及所对应的解析式间的联系,并注意逆向思维的应用。
另外,还可关注抛物线的顶点发生了怎样的移动,常见的几种变动方式有:①开口反向(或旋转1800
),此时顶点坐标不变,只是a 反号;②两抛物线关于x 轴对称,此时顶点关于x 轴对称,a 反号;③两抛物线关于y 轴对称,此时顶点关于y 轴对称; 探索与创新:
【问题】已知,抛物线2
2
)1(t t x a y +--=(a 、t 是常数且不等于零)的顶点是A ,
如图所示,抛物线122
+-=x x y 的顶点是B 。
(1)判断点A 是否在抛物线122
+-=x x y 上,为什么?
(2)如果抛物线2
2)1(t t x a y +--=经过点B ,①求a 的值;②这条抛物线与x 轴的两个交点和它的顶点A 能否构成直角三角形?若能,求出它的值;若不能,请说明理由。
解析:(1)抛物线2
2
)1(t t x a y +--=的顶点A (1+t ,
2t ),而1+=t x 当时,2
22)
11()1(12-+=-=+-=x x x x y =2
t ,所以点A 在抛物线122
+-=x x y 上。
(2)①顶点B (1,0),0)11(2
2=+--t t a ,∵0≠t ,∴1-=a ;②设抛物线
22)1(t t x a y +--=与x 轴的另一交点为C ,∴B (1,0),C (12+t ,0),由抛物线的
对称性可知,△ABC 为等腰直角三角形,过A 作AD ⊥x 轴于D ,则AD =BD 。
当点C 在点B
的左边时,)1(12+-=t t ,解得1-=t 或0=t (舍);当点C 在点B 的右边时,
1)1(2
-+=t t ,解得1=t 或0=t (舍)。
故1±=t 。
评注:若抛物线的顶点与x 轴两交点构成的三角形是直角三角形时,它必是等腰直角三角形,常用其“斜边上的中线(高)等于斜边的一半”这一关系求解有关问题。
跟踪训练: 一、选择题:
y
x
问题图
O
B
1、二次函数c bx ax y ++=2
的图像如图所示,OA =OC ,则下列结论: ①abc <0; ②2
4b ac <;
③1-=-b ac ; ④02<+b a ; ⑤a
c OB OA -
=⋅; ⑥024<+-c b a 。
其中正确的有( )
A 、2个
B 、3个
C 、4个
D 、5个
2、二次函数c bx x y ++=2
的图像向右平移3个单位,再向下平移2个单位,得到函数图像的解析式为122
+-=x x y ,则b 与c 分别等于( ) A 、6、4 B 、-8、14
C 、4、6
D 、-8、-14
3、如图,已知△ABC 中,BC =8,BC 边上的高4=h ,D 为BC 上
一点,EF ∥BC 交AB 于E ,交AC 于F (EF 不过A 、B ),设E 到BC 的距离为x ,△DEF 的
面积为y ,那么y 关于x 的函数图像大致是( )
x y
2
4
42
O
x
y
24
42
O
x y
2
4
42
O
x y
3题图
24
42
O
A B C D
4、若抛物线2
ax y =与四条直线1=x ,2=x ,1=y ,2=y 围成的正方形有公共点,则
a 的取值范围是( )
A 、
41≤a ≤1 B 、21≤a ≤2 C 、21≤a ≤1 D 、4
1
≤a ≤2 5、如图,一次函数b kx y +=与二次函数c bx ax y ++=2
的大致图像是( )
第1题图
y
x
-2
1C
B
A
O 第3题图
F
E
D C
B
A
x
y
3题图 O
x
y
3题图
O
x
y
3题图
O
x
y
O
A B C D 二、填空题:
1、若抛物线232)1(2
-++-=m mx x m y 的最低点在x 轴上,则m 的值为 。
2、二次函数542
+-=mx x y ,当2-<x 时,y 随x 的增大而减小;当2->x 时,y 随x 的增大而增大。
则当1-=x 时,y 的值是 。
3、已知二次函数的图像过点(0,3),图像向左平移2个单位后的对称轴是y 轴,向下平移1个单位后与x 轴只有一个交点,则此二次函数的解析式为 。
4、已知抛物线n mx x m y +--=4)2(2
2
的对称轴是2=x ,且它的最高点在直线
12
1
+=
x y 上,则它的顶点为 ,n = 。
三、解答题:
1、已知函数m x m x y +--=)2(2
的图像过点(-1,15),设其图像与x 轴交于点A 、B ,点C 在图像上,且1=∆ABC S ,求点C 的坐标。
2、某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程。
下面的二次函数图象(部分)刻画了该公司年初以来累积利润S (万元)与销售时间
t (月)之间的关系(即前t 个月的利润总和S 与t 之间的关系)。
根据图象提供的信息,
解答下列问题:
(1)由已知图象上的三点坐标,求累积利润S (万元)与时间t (月)之间的函数关系式;
(2)求截止到几月末公司累积利润可达到30万元; (3)求第8个月公司所获利润是多少万元?
t S
3 4 5
6 -1 -2 -3
月
O 4 32 1 1 2 O
O
第2题图
(月)(万元)
x
y
O
D
C
B
A
3、抛物线2
x y =,2
2
1x y -=和直线a x =(a >0)分别交于A 、B 两点,已知∠AOB =900。
(1)求过原点O ,把△AOB 面积两等分的直线解析式; (2)为使直线b x y +=
2与线段AB 相交,那么b 值应是怎样的范围才适合?
4、如图,抛物线t ax ax y ++=42
与x 轴的一个交点为A (-1,0)。
(1)求抛物线与x 轴的另一个交点B 的坐标;
(2)D 是抛物线与y 轴的交点,C 是抛物线上的一点,且以AB 为一底的梯形ABCD 的面积为9,求此抛物线的解析式;
(3)E 是第二象限内到x 轴、y 轴的距离的比为5∶2的点,如果点E 在(2)中的抛物线上,且它与点A 在此抛物线对称轴的同侧。
问:在抛物线的对称轴上是否存在点P ,使△APE 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由。
参考答案
一、选择题:BCDDC 二、填空题:
1、2;
2、-7;
3、1)2(2
1
2+-=x y ;4、(2,2),2-=n ; 三、解答题:
1、C (23+
,1)或(23-,1)、(3,-1)
2、(1)t t S 22
12
-=
;(2)10月;(3)5.5万元 3、(1)x y 4
2
=
;(2)-3≤b ≤0 4、(1)B (-3,0);(2)342
++=x x y 或342
---=x x y ;
(3)在抛物线的对称轴上存在点P (-2,2
1
),使△APE 的周长最小。