交通灯控制系统
- 格式:doc
- 大小:1.43 MB
- 文档页数:17
基于plc智能交通灯控制系统设计毕业论文目录一、内容概述 (2)1.1 研究背景与意义 (3)1.2 国内外研究现状与发展趋势 (4)1.3 论文研究内容与方法 (5)二、智能交通灯控制系统概述 (7)2.1 智能交通灯控制系统的定义与功能 (8)2.2 智能交通灯控制系统的组成与工作原理 (9)2.3 智能交通灯控制系统的应用领域 (11)三、PLC在智能交通灯控制系统中的应用 (13)3.1 PLC的特点与优势 (14)3.2 PLC在智能交通灯控制系统中的实现方式 (15)3.3 PLC控制系统的设计原则与步骤 (17)四、智能交通灯控制系统的硬件设计 (18)4.1 硬件系统总体设计 (19)4.2 传感器模块设计 (21)4.3 执行器模块设计 (23)4.4 电源模块设计 (25)五、智能交通灯控制系统的软件设计 (27)5.1 软件系统总体设计 (28)5.2 控制算法设计 (29)5.3 数据处理与通信接口设计 (31)六、智能交通灯控制系统的系统集成与测试 (32)6.1 系统集成方案 (33)6.2 系统测试方法与步骤 (35)6.3 系统测试结果与分析 (36)七、结论与展望 (38)7.1 论文研究成果总结 (39)7.2 存在问题与不足分析 (40)7.3 未来发展趋势与展望 (41)一、内容概述随着城市交通问题的日益凸显,智能交通灯控制系统成为提高交通管理效率、缓解交通压力的关键技术之一。
本论文旨在设计一种基于的智能交通灯控制系统,以提高交通流量、优化交通运行、减少交通拥堵和事故风险。
本论文首先介绍了研究背景、目的与意义,阐述了在智能交通灯控制系统中的应用现状及发展趋势。
接着,对交通灯控制系统的基本原理和组成部分进行了详细阐述,为后续设计奠定基础。
在此基础上,论文重点阐述了基于的智能交通灯控制系统的设计思路与实现方法。
设计内容包括:系统总体架构设计、硬件选型与配置、软件编程与实现、系统调试与优化等。
CPLD实现交通灯控制系统一.预期功能分别成东西走向和南北走向的主干道和支干道,其交通信号灯,分别实现一下状态:S0:支干道没有车辆行驶,支干道绿灯,支干道红灯S1:支干道有车辆行驶,支干道绿灯,支干道红灯S2:主干道黄灯,支干道绿灯S3:主干道红灯,支干道绿灯S4:主干道红灯,支干道黄灯状态亮灯停留时间S0 G2,R2 50秒S1 G2,R2 45秒S2 Y1,G2 5秒S3 R1,G2 25秒S4 R1,Y2 5秒二.原理框图根据设计要求和系统所具有的功能,并参考相关的文献资料,经行方案设计,可以画出如下图所示的交通信号灯控制器的系统框图。
1kHZ根据以上设计思路,可以得到如下的顶层文件原理图顶层文件的实体图:三.单元模块设计与仿真时钟分频模块系统的动态扫描需要1HZ的脉冲,而系统时钟计时模块需要1HZ的脉冲。
分频模块主要为系统提供所需的时钟计时脉冲。
该模块将1kHZ的脉冲信号进行分频,产生1S的方波,作为系统时钟计时信号。
其实体模块如下:将END TIME改为5SCLK采用系统的1KHZ的时钟脉冲仿真波形如下:可以看到能够得到1s的时钟脉冲交通灯控制及计时模块控制模块根据外部输入信号和计时模块产生的输出信号,产生系统的状态机,控制其他部分协调工作。
计时模块用来设定主干道和支干道计时器的初值,并为扫描显示译码模块提供倒计时时间。
控制及计时模块采用状态机进行设计,可以定义出5种状态,分别为S0:主干道绿灯,支干道红灯且没有车辆行驶;S1:主干道绿灯,支干道红灯或支干道有车辆驶入;S2:主干道黄灯,支干道红灯;S3:主干道红灯,支干道绿灯;S4:主干道红灯,支干道黄灯。
利用CASE语句定义状态的转换方式及时间的变换方式,达到主干道绿灯亮45秒,支干道绿灯亮25秒,黄灯亮5秒的设计要求。
其实体模块如下:CAR为支干道车辆检测开关在支干道有车的情况下,模块可以进行减计时CLK1S为1S的时钟脉冲TIME1H、TIME1L、TIME2H、TIME2L分别为主干道时钟高位、主干道时钟低位、支干道时钟高位、支干道时钟低位LED为LED灯发光情况,分别为主干道绿灯、主干道黄灯、主干道红灯、支干道绿灯、主干道黄灯、主干道红灯Count的总的系统时间,用来改变系统的状态仿真波形如下:通过仿真可以看到:当主干道绿灯,支干道红灯时,主干道倒计时高位置数0100,低位置数0101;支干道高位置数0101,低位置数0000;当主干道黄灯,支干道红灯时,主干道黄灯倒计时置数0101;支干道继续刚才的减计数;当主干道红灯,支干道绿灯时,主干道倒计时高位置数0011,低位置数0000;支干道高位置数0010,低位置数0101;当主干道红灯,支干道黄灯时,支干道黄灯倒计时置数0101;主干道继续刚才的减计数。
基于PLC的十字路口智能交通灯控制系统的设计城市道路交错分布,交通灯是城市交通的重要指挥系统。
交通信号灯作为管制交通流量、提高道路通行能力的有效手段,对减少交通事故有明显效果。
可编程控制器PLC作为工业用的计算机,在工业自动化中的地位极为重要。
其具有小型化、价格低、可靠性高等特点,在各个行业也得到了广泛应用。
本文基于PLC的十字路口智能交通灯控制系统,构成十字路口带倒计时显示交通信号灯的电气控制以及该系统软、硬件设计方法。
实验证明该系统实现简单、经济,能够有效地疏导交通,提高交通路口的通行能力。
1、设计系统简介系统上电后,交通指挥信号控制系统由两个按钮控制。
启动按钮按下,交通指挥系统开始按常规正常控制功能工作,按照如图1所示的工作时序周而复始、循环往复工作。
南北绿灯亮25s闪3s,黄灯亮2s后南北红灯亮30s。
东西方向与南北方向相同。
正常运行时,南北向及东西向均有两位数码管倒计时显示牌同时显示相应的指示灯剩余时间值。
系统主要实现十字路口交通灯数码显示控制和显示时间智能调节两大功能。
图1十字路口交通灯正常工作时序2、硬件系统设计2.1、元器件选用FX系列PLC拥有无以企及的速度、高级的功能逻辑选件以及定位控制等特点。
FX2N 系列是三菱PLC的FX家族中最先进的系列,具有高速处理及可扩展大量满足单个需要的特殊功能模块等特点;FX2N是从16路到256路输入/输出的多种应用的选择方案。
这里选用的是FX2N-80MR-D基本单元,带40点输入/40点继电器输出,选用额定电压12V、额定电流25mA(每段)高亮的共阴极两位25.4cm七段数码管;供电直接使用DC12V/25mA电源供电。
选用直径200mm的圆形LED点阵,左边红、绿、黄灯额定电压DC12V,额定电流4.2A,额定功率50W,直接采用DC12V/4.2A电源供电。
各控制信号说明如表1所示。
SB2按下时,接点断开,停止工作。
按下SB3时,七段数码管显示“00”。
交通信号灯控制系统设计实验报告设计目的:本设计旨在创建一个交通信号灯控制系统,该系统可以掌控红、绿、黄三种交通信号灯的工作,使其形成一种规律的交替、循环、节奏,使车辆和行人得以安全通行。
设计原理:在实际的交通灯系统中,通过交通灯控制器控制交通灯的工作。
一般采用计时器或微电脑控制器来完成,其中微电脑控制器可以方便地集成多种控制模式,并且灵活易于升级。
在本设计中,我们采用了基于Atmega16微控制器的交通信号灯控制系统。
该系统通过定时器中断、串口通信等技术来实现。
由于控制的是三个信号灯的交替,流程如下:绿灯亮:红灯和黄灯熄灭绿灯由亮到灭的时间为10秒黄灯亮:红灯和绿灯熄灭黄灯由亮到灭的时间为3秒红灯亮:绿灯和黄灯熄灭红灯由亮到灭的时间为7秒重复以上过程硬件设计:整个系统硬件设计包含ATmega16控制器、射频芯片、电源模块和4个灯组件。
ATmega16控制器采用DIP封装,作为主要的控制模块。
由于需要串口通信和遥控器控制,因此添加了RF24L01射频芯片。
该射频芯片可以很方便地实现无线通信和小型无线网络。
4个灯组件采用红、绿、黄三色LED灯与对应300Ω电阻并连。
电源模块采用5V稳压电源芯片和电容滤波,确保整个系统稳定可靠。
软件设计:通过ATmega16控制器来实现交通信号灯控制系统的功能。
控制器开始执行时进行初始化,然后进入主循环。
在主循环中,首先进行红灯亮的操作,接着在计时时间到达后执行黄灯亮的过程,然后执行绿灯亮的过程,再到计时时间到的时候执行红灯亮的过程。
每个灯持续时间的计时采用了定时器的方式实现,在亮灯过程中,每秒钟进行一次计数,到达相应的计数值后,切换到下一步灯的操作。
在RF24L01射频芯片的支持下,可以使用无线遥控器来对交通信号灯的控制进行远程控制。
在系统初始化完成后,通过串口通信对RF24L01进行初始化,然后进入控制循环。
在这个控制循环中,接收到遥控器的指令后,进行相应的控制操作,如开、关灯等。
基于plc的交通灯控制系统设计毕业论文目录一、内容概括 (2)1.1 研究背景和意义 (2)1.1.1 交通灯控制系统的重要性 (3)1.1.2 PLC在交通灯控制系统中的应用 (4)1.2 研究目的和任务 (6)1.2.1 论文研究目的 (7)1.2.2 论文研究任务 (8)二、交通灯控制系统概述 (8)2.1 交通灯控制系统的定义 (10)2.2 交通灯控制系统的组成 (10)2.2.1 硬件设备 (11)2.2.2 软件系统 (12)2.3 交通灯控制系统的分类 (13)2.3.1 传统交通灯控制系统 (15)2.3.2 基于PLC的交通灯控制系统 (16)三、PLC技术基础 (17)四、基于PLC的交通灯控制系统设计 (19)4.1 设计原则和设计要求 (20)4.1.1 设计原则 (21)4.1.2 设计要求 (22)4.2 系统架构设计 (23)4.2.1 总体架构设计 (26)4.2.2 控制器设计 (27)4.2.3 传感器设计 (28)4.3 系统功能实现 (29)4.3.1 交通灯控制功能实现 (30)4.3.2 系统监控功能实现 (32)4.3.3 故障诊断与报警功能实现 (33)五、系统测试与性能分析 (35)一、内容概括本文主要针对基于PLC的交通灯控制系统进行了深入研究和设计。
对交通灯控制系统的基本原理和功能进行了详细阐述,包括红绿灯的切换、行人过街按钮的响应以及故障检测与报警等功能。
对PLC 在交通灯控制系统中的应用进行了分析,重点介绍了PLC的硬件组成、编程语言以及编程方法等方面的内容。
在此基础上,设计了一套完整的基于PLC的交通灯控制系统,并通过实际应用验证了其可行性和稳定性。
对整个系统进行了总结和展望,为今后类似项目的开展提供了有益的参考。
1.1 研究背景和意义随着城市化进程的加快,智能交通系统在现代城市建设中扮演着越来越重要的角色。
交通灯作为道路交通管理的重要组成部分,其控制系统的先进性和稳定性直接关系到道路通行效率和交通安全。
EDA课程设计报告设计题目:交通灯信号控制器专业年级:姓名:学号:指导教师:2012.5.30摘要-----------------------------------------------------1 关键词--------------------------------------------------1 一交通灯控制系统简介------------------------------------2 1.1 交通灯的发展----------------------------------------2 1.2 交通灯控制系统的目的--------------------------------2 二交通灯控制系统的设计----------------------------------2 2.1 设计要求--------------------------------------------3 2.2 设计思路--------------------------------------------3 2.2.1 设计流程----------------------------------------4 2.2.2 状态机变化图------------------------------------5 三详细设计----------------------------------------------6 3.1 红黄绿灯控制模块------------------------------------6 3.2 倒计时传输、控制模块---------------------------------6 3.3 倒计时45秒模块-------------------------------------7 3.4倒计时25秒模块--------------------------------------8 3.5倒计时5秒模块---------------------------------------8 3.6 总体连线图------------------------------------------9 四心得体会---------------------------------------------10 参考文献-----------------------------------------------10 附录---------------------------------------------------11随着电子设计技术、ISP(在系统可编程)技术,PLD(可编程逻辑器件),与EDA(电子设计自动化)紧密结合,它代表了数字系统设计领域的最高水平,给数字电路的设计带来了革命性的变化。
基于单片机的交通灯控制系统需要包含以下组成部分:1.硬件设备组成:单片机、LED 灯、显示屏等硬件设备。
2.设计思路描述:交通灯控制系统的设计思路是基于定时器的,利用计数器和定时器来控制红绿灯的转换,同时通过按键检测实现手动控制。
3.程序设计:程序需要完成按键检测、信号灯控制和定时器计数等功能。
具体实现可以分为以下几步:(1) 根据硬件设备的引脚对应关系,定义各个引脚的控制方式和状态。
(2) 在程序中定义计时器和定时器,用于计时和设置红绿灯状态。
例如,计时器每隔一定时间就会触发定时器,设置红绿灯的状态,并且根据状态判断相应的亮灯和熄灯。
(3) 通过按键检测来实现手动控制,当检测到按键按下时,立即切换灯的状态,当再次按下时,又立即切换回之前的状态。
4.实现代码:下面是一个该系统的简单代码示例,供参考:#include <reg52.h>#define uint unsigned int#define uchar unsigned charsbit KEY1 = P3^0;//按键定义sbit RED = P2^2;//红灯定义sbit YELLOW = P2^1;//黄灯定义sbit GREEN = P2^0;//绿灯定义/*函数声明*/void initTimer0();void delay1ms(uint count);/*主函数*/int main(){initTimer0();/*初始化计时器*/while(1){if(KEY1 ==0){/*按键按下*/delay1ms(5);/*消抖*/if(KEY1 ==0){/*仍然按下*//*绿灯亮10s*/GREEN =1;delay1ms(10000);GREEN =0;/*黄灯亮3s*/YELLOW =1;delay1ms(3000);YELLOW =0;/*红灯亮7s*/RED =1;delay1ms(7000);RED =0;/*黄灯亮2s*/YELLOW =1;delay1ms(2000);YELLOW =0;}}}return0;}/*函数定义*/void initTimer0(){TMOD &=0xF0;TMOD |=0x01;TH0 =0xFC;TL0 =0x18;EA =1;ET0 =1;TR0 =1;}/*1ms延时函数*/void delay1ms(uint count){uint i,j;for(i=0;i<count;i++){for(j=0;j<125;j++){}}}/*计时器中断函数*/void timer0() interrupt 1{TH0 =0xFC;TL0 =0x18;}以上是一个简单的基于单片机的交通灯控制系统设计与实现示例。
十字交叉路口信号灯控制机械工程学院 机自Z1101班 张金良 1110310715交通灯控制系统的控制要求如下:1.信号灯受一个起动开关控制,当起动开关接通时,信号系统开始工作,且先南北红灯亮,东西绿灯亮。
当起动开关断开时,所有信号灯都熄灭。
2.南北绿灯和东西绿灯不能同时亮,如果同时亮时应关闭信号灯系统,并报警。
3.南北红灯亮维持25S 。
在南北红灯亮的同时东西绿灯也亮,并维持20S 。
到20S 时,东西绿灯闪烁,闪烁3S 后熄灭。
在东西绿灯熄灭时,东西黄灯亮,并维持2S 。
到2S 时,东西黄灯熄,东西红灯亮。
同时,南北红灯熄灭,南北绿灯亮。
4.东西红灯亮维持30S 。
南北绿灯亮维持25S 。
然后闪烁3S ,熄灭。
同时南北黄灯亮,维持2S 后熄灭,这时南北红灯亮,东西绿灯亮。
5.周而复始。
红黄绿红黄绿红黄绿红黄绿东南西北一、系统方案分析利用多定时器产生时间切换点,实现对被控对象的顺序控制。
利用特殊位存储器SM0.5提供的周期为1S,占空比为50%的时钟脉冲实现闪烁控制。
二、十字路口交通灯状态分析表三、十字路口交通灯时序图四、控制系统流程五、硬件系统选型、I/O地址分配及硬件接线图1.硬件选择选用CPU226 AC/DC/RELAY (交流供电/直流输入/继电器输/24输入/16输出)。
2.PLC的I/O地址分配3.PLC的硬件接线图六、系统梯形图七、系统分析说明当开关SB1合上时,I0.0触点接通,T37、Q0.0线圈、Q0.5线圈得电,东西绿灯亮、南北红灯亮;T37通电20S后动作,T37的动合触点闭合,T38得电,T37动断触点断开,Q0.0变为由SM0.5驱动,东西绿灯闪烁;T38通电3S后动作,T38动断触点断开,Q0.0失电,东西绿灯灭,T38的动合触点闭合,Q0.1、T39得电,东西黄灯亮;T39得电2S后动作,T39动断触点断开,Q0.1、Q0.5失电,东西黄灯灭,南北红灯灭,39动合触点闭合,Q0.3、T40得电,南北绿灯亮;T40通电25S后动作,T40动断触点断开,Q0.3变为SM0.5驱动,南北绿灯闪烁,T40动开触点闭合,T41得电;T41得电3S后动作,T41常闭触点断开,Q0.3失电,南北绿灯灭,T41常开触点闭合,Q0.4、T42得电,南北黄灯亮;T42通电2后动作,T42常闭触点断开,Q0.4、T37失电,南北黄灯灭;T37失电后,T38、T39、T40、T41、T42失电,T42动断触点闭合。
智能交通灯PLC控制系统的设计一、本文概述随着城市化的快速发展,交通拥堵和交通事故的问题日益严重,智能交通系统因此应运而生。
作为智能交通系统的重要组成部分,智能交通灯控制系统在提高道路通行效率、保障交通安全方面发挥着至关重要的作用。
本文将对基于PLC(可编程逻辑控制器)的智能交通灯控制系统设计进行深入探讨,旨在通过技术创新提高交通管理效率,优化城市交通环境。
本文将首先介绍智能交通灯PLC控制系统的基本概念和原理,阐述其相较于传统交通灯控制系统的优势。
接着,将详细论述系统的设计过程,包括硬件选型、软件编程、系统架构搭建等关键环节。
还将探讨该系统的实际应用效果,分析其对交通流量、交通安全等方面的影响。
通过本文的研究,期望能够为智能交通灯PLC控制系统的设计提供有益的参考和借鉴,推动城市交通管理向更加智能化、高效化的方向发展。
也希望本文的研究能够为相关领域的技术创新和应用提供有益的启示和思路。
二、PLC基础知识介绍可编程逻辑控制器(Programmable Logic Controller,简称PLC)是一种专为工业环境设计的数字运算电子系统,用于实现逻辑控制、顺序控制、定时、计数和算术运算等操作的指令,并通过数字或模拟的输入/输出控制各种类型的机械设备或生产过程。
自20世纪60年代诞生以来,PLC以其高可靠性、强大的功能、灵活的配置和易于编程的特点,在工业控制领域得到了广泛应用。
PLC的基本结构主要包括中央处理器(CPU)、存储器、输入/输出(I/O)接口、电源以及通信接口等部分。
其中,CPU是PLC的核心,负责执行用户程序、处理数据、控制I/O接口等任务;存储器用于存储系统程序、用户程序及工作数据;I/O接口用于与外部的输入/输出设备连接,实现与外部世界的交互;电源为PLC提供稳定的工作电压;通信接口则用于PLC与其他设备或系统的数据交换和通信。
PLC的编程语言主要有梯形图(Ladder Diagram)、指令表(Instruction List)、功能块图(Function Block Diagram)等,这些语言直观、易学,方便工程师进行编程和调试。
十字路口交通灯控制模拟系统摘要本文主要介绍了组态软件的基本操作方法和基于组态王与PLC的交通灯控制系统设计方案。
工业现场的环境往往比较恶劣,而且现场与操作室往往相隔甚远,但我们通常又需要对整个系统进行集中监控与管理。
组态软件是一种面向工业自动化的通用数据采集和监控软件,即SCADA软件,亦称人机界面或HMI/MMI软对工业自动化系统进行监视、控制、管理和集成等一系列的功能。
同时也为用户实现这些功能的组态过程提供了丰富和易于使用的手段和工具。
组态王软件是由北京亚控科技发展有限公司开发的工业级软件,也是首个应用于我国航空、航天领域的国产组态软件,具有开发简单、扩展性好、可靠性高等优点。
关键字:组态王应用、PLC、交通灯、监控Crossroads traffic light control simulation systemABSTRCTThis paper mainly introduces the basic operation of the Kingview software method and based on Kingview and PLC of traffic light control system design scheme. Industrial on-site environmental tend to be bad, the site and operating room are often very far apart, but we usually need to make the whole system centralized monitoring and management.The Kingview software is a kind of industrial automation of a general data collection and monitoring software, namely SCADA software, also called the man-machine interface or HMI/MMI software, commonly known as "configuration software". As a general purpose monitoring software ,The Kingview software can provide for industrial automation system a series of function, such as monitoring, control, management and integration and so on. At the same time also for the user to achieve these functions of configuration process provides a rich and easy to use means and tools.The Kingview software is from Beijing and control technology development, development of industrial grade software, is first applied to domestic aviation, spaceflight of domestic configuration software, has the development is simple, good expansibility and high reliability etc.KEY WORDS:PLC、the apply of KingView;、traffic light、monitoring交通灯系统需要进行应该进行严格的监控以保证陆空车辆能正常运行,确保交通安全。
优秀论文审核通过未经允许切勿外传毕业设计(论文)课题: 模拟交通灯控制系统一、任务设计并制作一个城市交道口交通灯控制糸统二、要求1交通灯控制规则如下:(1)每个街口有左拐、右拐、直行及行人四种指示灯。
每个灯有红、绿两种颜色。
自行车与汽车共用左拐、右拐和直行灯。
(2)共有四种通行方式:① 车辆南北直行、各路右拐,南北向行人通行。
南北向通行时间为1分钟,各路右拐比直行滞后10秒钟开放。
② 南北向左拐、各路右拐,行人禁行。
通行时间为1分钟。
③ 东西向直行、各路右拐,东西向行人通行。
东西向通行时间为1分钟,各路右拐比直行滞后10秒钟开放。
④ 东西向左拐、各路右拐。
行人禁行。
通行时间为1分钟。
○5在通行结束前10秒钟,绿灯闪烁直至结束。
(3)不必自制电源。
2, 发挥部分(1)有倒计时时间显示。
(2)若交道口出现紧急情况,交警可将糸统设置成手动:全路口车辆禁行、行人通行。
紧急情况结束后再转成自动状态。
(3)当有119、120等特种车辆通过时,糸统自动转为特种车放行,其它车辆禁止状态。
特种车辆通过15秒钟后,糸统自动恢复,用模型车演示。
(4)其它自选措施。
摘要1:本设计以单片机为核心,采用主从双MCU结构,以双色LED发光管箭头作为直行和左右拐弯指示,以LED数码管作为倒计时指示,以双色LED点阵作为行人通行的指示,以数字编码无线传输模式实现特种车辆检测,完成了题目要求的所有功能。
在此基础上,我们增设了高分辨率(320×240)大屏幕LCD实时显示系统各种状态,同时显示日期和时间;增设了行人通行还配以形象的动画和温馨的语音提示;增设了可根据交通拥挤情况分别设置主干道和次干道的通行时间,并对系统机械结构进行了优化设计,整体性好,人性化强、可靠性高。
关目录摘要 2引言 (5)第1章方案设计与论证 (5)1.1 总体方案设计与比较 (5)第2章系统硬件设计 (7)2.1单片机概述 (7)2.2总体设计 (11)2.3 各功能模块硬件设计及实现 (12)2.3.1 交通灯四种通行模式及行车方向指示 (12)2.2.2 行人通行指示及其实现 (16)2.3.3 特种车检测及其实现 (18)2.3.4 键盘与状态显示及其实现 (19)2.3.5语音提示及其实现 (20)2.3.5主次干道单独时间设置功能 (21)2.3.6紧急情况处理功能及其实现 (21)2.3.7倒计时计数功能及其实现 (21)2.3.8日历及时间显示功能及其实现 (22)第3章系统软件设计 (22)3.1 软件总体流程图 (22)3.2 软件主要子程序流程 (23)3.2.1 紧急状态子程序 (23)3.2.2设置状态子程序 (24)3.2.3 键盘模块程序流程 (24)第4章系统调试与测试结果分析 (25)4.1 系统操作说明 (25)4.2 调试 (26)4.3 指标测试 (27)4.3.1 测试仪器 (27)4.3.2 各模块测试 (27)第5章设计总结 (28)第6章参考文献 (29)附录一:系统控制电路原理图 (30)附录二:LED点阵显示原理图 (30)附录三:系统PCB图 (31)附录四: (33)引言随着社会和城市交通的快速发展, 近几年机动车辆数字急剧增加,道路超负荷承载道路现象严重,致使交通事故逐年增加。
十字路口交通信号灯PLC控制系统设计与调试1. 引言随着城市交通的不断发展,道路交通系统的安全与效率已经成为城市交通不可避免的发展趋势。
十字路口交通信号灯的控制是道路交通系统的重要组成部分之一,而PLC控制系统作为现代控制系统的代表,在十字路口交通信号灯的控制中也扮演了重要的角色。
本文将介绍十字路口交通信号灯PLC控制系统的设计与调试。
2. PLC控制系统的原理PLC(可编程逻辑控制器)指的是一种基于工业电子技术和计算机技术的数字化集成控制系统,广泛应用于工业领域的自动化控制。
PLC控制系统是由硬件和软件两部分组成的,硬件是指PLC主机及其周边设备组成的控制系统,软件是指编程软件和程序员编写程序所需的编程语言。
PLC控制系统可以通过输入输出口完成控制任务,并且可以根据事先编写好的程序自动执行相关控制动作。
使用PLC控制系统的优点是可靠性高、稳定性强、控制精度高等等。
3. 十字路口交通信号灯PLC控制系统的设计与实现在十字路口,交通信号灯的控制是道路交通系统中最基本的控制之一。
十字路口交通信号灯PLC控制系统的组成主要包括PLC主机、输入输出模块、中央处理器、交通信号灯设备等。
交通信号灯设备包括红、绿、黄三种信号灯和各个方向的车辆检测器、人行道检测器等。
在设计PLC控制系统时,需要根据实际情况进行具体的设计。
在这里,设计的主要目标是实现十字路口各种状态下的交通信号灯控制。
根据常见的十字路口交通信号灯的控制策略,PLC控制器需要设计并实现以下几种控制模式:•车辆检测模式:此时PLC控制器需要检测当车辆经过检测区域时,根据信号灯的状态确定交通灯的控制策略,如当某路口不存在其他车辆时,直行或左转的车辆可以获得通行权。
•时间控制模式:此时PLC控制器需要根据预设时间表,控制交通信号灯的切换,以达到交通的稳定有效。
•手工控制模式:此时PLC控制器需要实现手动控制交通信号灯的状态切换。
实现上述功能需要进行详细设计。
基于PLC控制的交通灯系统设计一、本文概述随着城市化进程的加速和科技的不断进步,交通拥堵和交通安全问题日益突出,对交通管理提出了更高的要求。
在这样的背景下,基于PLC(可编程逻辑控制器)控制的交通灯系统设计成为了解决这一问题的有效手段。
本文旨在探讨基于PLC控制的交通灯系统的设计方案,包括系统的硬件组成、软件编程、控制逻辑以及实际应用效果等方面。
通过深入研究和实践,本文旨在为读者提供一个全面、系统的交通灯系统设计思路,以期在缓解交通压力、提高交通效率、保障交通安全等方面发挥积极作用。
本文将首先介绍交通灯系统的基本概念和作用,然后重点阐述PLC在交通灯系统中的应用优势。
接着,将详细介绍基于PLC的交通灯系统设计方案,包括硬件选型、软件编程、控制逻辑设置等关键步骤。
在此基础上,本文将通过实际案例分析,探讨该设计方案的实施效果及存在的问题,并提出相应的改进措施。
将对基于PLC控制的交通灯系统的发展前景进行展望,以期为未来交通管理领域的技术创新提供参考和借鉴。
二、PLC基础知识PLC,即可编程逻辑控制器(Programmable Logic Controller),是一种专为工业环境设计,用于数字运算操作的电子系统。
它采用了可编程的存储器,用于在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。
PLC的基本结构包括中央处理器(CPU)、存储器、输入输出接口、电源和编程器等部分。
其中,CPU是PLC的核心,负责执行用户程序,完成各种控制功能;存储器用于存储系统程序、用户程序和数据;输入输出接口则负责实现PLC与外部设备的连接,完成数据的输入和输出;电源则为PLC提供稳定的工作电压;编程器则是用户用来编写、修改和调试用户程序的工具。
PLC的主要特点包括可靠性高、抗干扰能力强、编程简单、易于实现、适应性强、灵活性好、体积小、能耗低、维护方便等。
第5章交通灯控制系统本章以制作交通灯控制系统为目的,首先从最简单的定时电铃入手,逐步掌握按钮人行横道设计方法,最终完成十字路口交通灯控制系统设计,使学生逐步掌握PLC循环指令,数据转换指令和实时时钟指令,提高读者应用PLC按要求完成设计任务的能力。
教学导航教知识重点(1)PLC编程设计中时间设定的方法。
(2)PLC循环指令,数据转换指令和实时时钟指令。
(3)交通灯控制系统中触摸屏的设计方案和参数设置。
知识难点PLC循环指令,数据转换指令和实时时钟指令。
推荐教学方法本章的知识链接部分用讲授法和引导文法;初步训练部分使用案例教学法;强化训练、拓展训练部分使用项目教学法。
学推荐学习方法循序渐进的完成定时电铃、按钮人行横道和十字路口交通灯设计,在完成任务过程中逐步掌握S7-200新的编程指令和编程方法。
必须掌握的理论知识PLC循环指令,数据转换指令和实时时钟指令。
必须掌握的技能(1)PLC编程设计中时间设定的方法。
(2)触摸屏的设计方案和参数设置方法。
5.1 交通灯控制系统介绍随着社会经济的发展,城市交通问题越来越引起人们的关注。
人、车、路三者关系的协调,已成为交通管理部门需要解决的重要问题之一。
城市交通控制系统主要用于城市交通数据监测、交通信号灯控制与交通疏导的计算机综合管理系统,它是现代城市交通监控指挥系统中最重要的组成部分。
交通信号灯控制模型是一个较为典型的实训模型。
实际的交通信号灯控制基本方法是:根据事先测定好的路口的车流量,将两个方向红绿灯的延时时间预先设定好,指挥车辆根据红绿灯的延时时间通行和停止。
而在交通信号灯模型中,直接给出两个方向灯的延时时间,主要考查的是读者对交通信号灯时序的理解和通过编程解决问题的能力。
在实际应用中,交通灯控制系统的类型多种多样,常见的有按钮人行道控制系统、十字路口交通灯控制系统、具有通行时间显示的十字路口交通灯控制系统等。
图5-1 交通灯控制系统5.2 知识链接5.2.1 循环指令在控制系统中经常遇到需要重复执行若干次同样的任务情况,这时可以使用循环指令。
1选题背景今天,红绿灯安装在各个道口上,已经成为疏导交通车辆最常见和最有效的手段。
信号灯的出现,使交通得以有效管制,对于疏导交通流量、提高道路通行能力,减少交通事故有明显效果。
在交通中管理引入单片机交通灯控制代替交管人员在交叉路口服务,有助于提高交通运输的安全性、提高交通管理的服务质量。
并在一定程度上尽可能的降低由道路拥挤造成的经济损失,同时也减小了工作人员的劳动强度。
关键词:AT89C51;7448,LED2方案论证2.1设计任务设计基于单片机的智能交通红绿灯控制系统,要求能通过按键或遥控器设置系统参数,系统运行时,“倒计时等信息”能通过数码管或点阵发光管显示,设计时应考虑交通红绿灯控制的易操作性及智能性。
以单片机的最小系统为基础设计硬件,用汇编语言、或C语言设计软件。
通过本设计可以培养学生分析问题和解决问题的能力,掌握Mcs51单片机的硬件与软件设计方法,从而将学到的理论知识应用于实践中,为将来走向社会奠定良好的基础。
东西(A)、南北(B)两干道交于一个十字路口,各干道有一组红、黄、绿三个指示灯,指挥车辆和行人安全通行。
红灯亮禁止通行,绿灯亮允许通行,黄灯亮时车辆及行人小心通过。
红灯的设计时间为45秒,绿灯为40秒,黄灯为5秒。
2.2 方案介绍方案1设计思想:采用分模块设计的思想,程序设计实现的基本思想是一个计数器,选择一个单片机,其内部为一个计数,是十六进制计数器,模块化后,通过设置或程序清除来实现状态的转换,由于每一个模块的计数多不是相同,这里的各模块是以预置数和计数器计数共同来实现的,所以要考虑增加一个置数模块,其主要功能细分为,对不同的状态输入要产生相应状态的下一个状态的预置数,如图中A道和B道,分别为次干道的置数选择和主干道的置数选择。
方案2 设计思想:由两个传感器监视南北方向即A道与东西方向即B道的车辆来往情况,设开关K=1为有车通过,K=0为没有车通过。
则有以下四种情况:Ka=1时:Kb=0,表示A有车B没有车,则仅通行B道:Kb=1,表示A有车B有车,则优先通行A道;Ka=0时:Kb=0表示A没有车B也没有车,同样优先通行A道;Kb=1表示A没有车B有车,则仅通行B道。
方案比较:方案1用了模块设计,而方案2采用逻辑设计,相比之下1有较强的可读性和较强的可修改性,而2则在设计上显得较简单,设计纯朴,便于测试,它的优势则在于提供了一条较为便捷的解决方案。
2首先将许多逻辑关系简化到极点,而后将其一起集成用较少的芯片去完成所需功能。
我们最终的设计应该尽量使用模块化设计。
对工程设计人员来说,将来的产品无论从修改还是升级考虑对有好处,但另外我们又需将设计简单化,因此我觉得在设计初期尽可能的简单化设计,而一旦设计的各项测试通过了,在有可能的条件下将设计模块化,所以本设计以第一方案为主进行。
我们最终的设计应该尽量使用模块化设计。
对工程设计人员来说,将来的产品无论从修改还是升级考虑对有好处,但另外我们又需将设计简单化,因此我觉得在设计初期尽可能的简单化设计,而一旦设计的各项测试通过了,在有可能的条件下将设计模块化,所以本设计以第一方案为主进行。
3 交通灯系统硬件设计3.1 单片机概述单片机是由运算器、控制器、存储器、输入设备以及输出设备共五个基本部分组成的。
单片机是把包括运算器、控制器、少量的存储器、最基本的输入输出口电路、串行口电路、中断和定时电路等都集成在一个尺寸有限的芯片上。
通常,单片机由单个集成电路芯片构成,内部包含有计算机的基本功能部件:中央处理器、存储器和I/O接口电路等。
因此,单片机只需要和适当的软件及外部设备相结合,便可成为一个单片机控制系统。
3.2 系统构成电路板一块,AT89S51单片机一片,7448芯片2片,七段数码管八个。
发光二极管20个(8个绿的,8个红的,4个黄的用于交通控制),100欧姆电阻20个,2个按键,2个开关,51K欧姆电阻2个,5V 稳定电源1个,3个电容2个单刀单掷开关等。
系统结构框图:图3-1 系统结构框图系统工作流程:(1)程序初始,通过两个传感器来判断南北与东西方向车辆通行情况。
(2) 情况判定后由AT89S51单片机p1口及部分p2口输出二进制信号控制红绿黄灯亮的情况。
(3) 确定那些灯亮后,由对应的七段数码管来进行到计时显示。
由p0口输出来控制七段数码管的显示,而p2口的高四位则用来控制数码管显示时的个位和十位(4)系统是否需要紧急工作状态,而此任务由外部中断来实现。
(5)LED采用5V的直流电来驱动,低电平。
3.3芯片选择与介绍3.3.1 AT89S51芯片选用的AT89S51与同系列的AT89C51在功能上有明显的提高,最突出是的可以实现在线的编程。
用于实现系统的总的控制。
其主要功能列举如下:1) 为一般控制应用的 8 位单片机2) 晶片内部具有时钟振荡器(传统最高工作频率可至 33MHz)3) 内部程式存储器(ROM)为 4KB4) 内部数据存储器(RAM)为 128B5) 外部程序存储器可扩充至 64KB6) 外部数据存储器可扩充至 64KB7) 32条双向输入输出线,且每条均可以单独做 I/O 的控制8) 6 个中断向量源9) 2 组独立的 16 位定时器10) 1 个全双工串行通信端口11) 8751 及 8752 单芯片具有数据保密的功能12) 单芯片提供位逻辑运算指令图3-1 AT89C51芯片3.3.2 7448芯片介绍7448七段显示译码器输出高电平有效,用以驱动共阴极显示器。
该集成显示译码器设有多个辅助控制端,以增强器件的功能,可将单片机输出的四位二进制数转换成10进制数与七段数码管显示对应,用于显示0—9的数字。
图3-2 7448芯片其中LT 为测试输入。
3.3.3 红绿LED信号显示灯及七段数码显示管LED 灯的显示原理:通过同名管脚上所加电平的高低来控制发光二极管是否点亮。
如下图:图3-3红绿LED信号显示灯而七段数码管的显示不同的字形如 SP,g,f,e,d,c,b,a 管角上加上OFEH所以SP上为0伏,不亮其余为TTL高电平,全亮则显示为8。
采用共阴极连接:表3-4 七段数码管的显示显示数值 a b c d e f g dop 驱动代码(16进制)0 1 1 1 1 1 1 1 1 0FCH1 0 0 0 0 0 1 1 0 60H2 1 1 0 1 1 0 1 0 0DAH3 1 1 1 1 0 0 1 0 0F2H4 0 1 1 0 0 1 1 0 66H5 1 0 1 1 0 1 1 0 0B6H6 1 0 1 1 1 1 1 0 0BEH7 1 1 1 0 0 0 0 0 0E0H8 1 1 1 1 1 1 1 0 0FEH9 1 1 1 1 0 1 1 0 0F6H3.3.4交通灯控制线路图图3-5 原理图4 交通灯软件设计4.1 程序设计流程图程序设计框图图4-1 程序设计框图4.2延时的设定延时方法可以有两种一种是利用AT89S51内部定时器的溢出中断来确定1秒的时间,另一种是采用软件延时的方法.实现1ms秒的方法:我们采用在主程序中设定一个初值为0的软件计数器和使T1定时1毫秒相应程序代码:D1MS: MOV R7,#250 ;1MS延时程序DJNZ R7,$RET4.3子程序的实现A道通车情况:START1: MOV TEMP, #25LOOP1: ACALL DELAYDEC TEMPMOV A,TEMPMOV P0, TEMPJNB P1.6,START3JNB P1.7,START11CJNE A,#0, NEXT1LJMP START2NEXT1: LJMP LOOP1 START11: MOV TEMP, #65 MOV P1, #0F3HLOOP11: ACALL DELAYDEC TEMPMOV A,TEMPMOV P0, TEMPJNB P1.6,START33JNB P1.7,START1CJNE A,#0, NEXT11LJMP START11NEXT11: LJMP LOOP11 START2: MOV P1, #0F5H MOV TEMN,#05LOOP2: ACALL DELAY1DEC TEMNMOV A,TEMNCJNE A, #0,NEXT2LJMP START3NEXT2: LJMP LOOP2B道通车情况:START3: MOV TEMP, #25 MOV P1,#0DEHLOOP3: ACALL DELAYDEC TEMPMOV P0, TEMPJNB P1.6,START1JNB P1.7,START33CJNE A, #0,NEXT3LJMP START4NEXT3: LJMP LOOP3 START33: MOV TEMP, #65 MOV P1,#0DEHLOOP33: ACALL DELAY DEC TEMPMOV A,TEMPMOV P0, TEMPJNB P1.6,START11JNB P1.7,START3CJNE A, #0,NEXT33 LJMP START4NEXT33: LJMP LOOP33 START4: MOV P1, #0EEH MOV TEMN,#05LOOP4: ACALL DELAY1中断情况即紧急情况:ORG 0000HTEMP EQU 24HTEMN EQU 25HLJMP MAINORG 0003HLJMP T0_INTORG 0013HLJMP TI_INTT0_INT: MOV A, P1 PUSH ACCMOV P1, #0FFHMOV P1, #0F3HJNB P3.2,$POP ACCMOV P1, ACCRETITI_INT: MOV A, P1 PUSH ACCMOV P1, #0FFHMOV P1, #0DEHMOV P0,#00HJNB P3.3,$POP ACCMOV P1, ARETI5.1仿真图根据对称性选用部分对称元件仿真,图5-1 仿真图5.2.1 编写程序代码程序代码分为几个模块:中断模块,循环模块,延时模块。
原程序实现:ORG 0000HTEMP EQU 24HTEMN EQU 25HLJMP MAINORG 0003HLJMP T0_INTORG 0013HLJMP TI_INTT0_INT: MOV A, P1PUSH ACCMOV P1, #0FFHMOV P1, #0F3HMOV P0, #00HJNB P3.2,$POP ACCMOV P1, ACCRETITI_INT: MOV A, P1PUSH ACCMOV P1, #0FFHMOV P1, #0DEHMOV P0,#00HJNB P3.3,$POP ACCMOV P1, ARETIMAIN: SETB EASETB EX0SETB EX1CLR F0START1: MOV TEMP, #25 MOV P1, #0F3HLOOP1: ACALL DELAYDEC TEMPMOV A,TEMPMOV P0, TEMPJNB P1.6,START3JNB P1.7,START11CJNE A,#0, NEXT1LJMP START2NEXT1: LJMP LOOP1 START11: MOV TEMP, #65 MOV P1, #0F3HLOOP11: ACALL DELAYDEC TEMPMOV A,TEMPMOV P0, TEMPJNB P1.6,START33JNB P1.7,START1CJNE A,#0, NEXT11LJMP START11NEXT11: LJMP LOOP11 START2: MOV P1, #0F5H MOV TEMN,#05LOOP2: ACALL DELAY1DEC TEMNMOV A,TEMNCJNE A, #0,NEXT2LJMP START3NEXT2: LJMP LOOP2 START3: MOV TEMP, #25 MOV P1,#0DEHLOOP3: ACALL DELAYDEC TEMPMOV A,TEMPMOV P0, TEMPJNB P1.6,START1JNB P1.7,START33CJNE A, #0,NEXT3LJMP START4NEXT3: LJMP LOOP3 START33: MOV TEMP, #65 MOV P1,#0DEHLOOP33: ACALL DELAY DEC TEMPMOV A,TEMPMOV P0, TEMPJNB P1.6,START11JNB P1.7,START3CJNE A, #0,NEXT33 LJMP START4NEXT33: LJMP LOOP33 START4: MOV P1, #0EEH MOV TEMN,#05LOOP4: ACALL DELAY1 DEC TEMNMOV A, TEMNCJNE A,#0,NEXT4LJMP START1NEXT4: LJMP LOOP4 RETIDELAY: MOV A,TEMPMOV B, #10DIV ABMOV R5, AMOV R6, BMOV R0, #10L0: MOV R1, #250L1:MOV A,R5MOV P0, AACALL DIMSSETB P2.4MOV A,R6MOV P0,R6CLR P2.5ACALL DIMSSETB P2.5DEC R1DJNZ R1,L1DEC R0DJNZ R0,L0RETIDELAY1: MOV A,TEMN MOV B, #10DIV ABMOV R5, AMOV R6, BMOV R2, #10L2: MOV R3, #250 L3:MOV A,R5MOV P0, ACLR P2.4ACALL DIMSSETB P2.4MOV A,R6MOV P0,R6CLR P2.5ACALL DIMSSETB P2.5DEC R3DJNZ R3,L3DEC R2DJNZ R2,L2RETIMOV A,TEMPMOV B, #10DIV ABMOV R5, AMOV R6, BMOV R0, #10Y0: MOV R1, #250Y1:MOV A,R5MOV P2, ACLR P2.6ACALL DIMSSETB P2.6MOV A,R6MOV P2,R6CLR P2.7ACALL DIMSSETB P2.7DEC R1DJNZ R1,Y1DEC R0DJNZ R0,Y0RETIDIMS: MOV R7,#250DJNZ R7,$RETEND5.2.2 按照系统硬件连线图连接好系统并调试1) 调试程序⑴打开仿真软件,新建文件;⑵选择芯片;⑶新建文档,把编写好代码写入文档并保存了ASM文件;⑷把保存的文档加载到Source Group;⑸编译程序;⑹设置转换成16进制;⑺运行程序的结果;2) 把编写好的16进制文件(jtd.hex) 输入单片机AT89S51仿真器和对其进行初始化。