土壤源热泵系统设计和安装
- 格式:ppt
- 大小:2.20 MB
- 文档页数:36
土壤源热泵地埋管换热器计算模型汇报人:2023-12-28•土壤源热泵地埋管换热器概述•土壤源热泵地埋管换热器设计计算目录•土壤源热泵地埋管换热器性能分析•土壤源热泵地埋管换热器优化设计•土壤源热泵地埋管换热器工程实例目录01土壤源热泵地埋管换热器概述定义土壤源热泵地埋管换热器是一种利用地下土壤作为热源和热汇的换热器,通过地埋管与地下土壤进行热交换,实现供暖或制冷的目的。
工作原理地埋管通常采用高密度聚乙烯管或无缝钢管,通过在地下钻孔或沟槽埋设,与土壤进行热交换。
在冬季供暖时,地埋管从地下吸收热量,通过热泵系统将热量提取到室内;在夏季制冷时,地埋管将室内的热量传递到地下土壤中。
定义与工作原理农业设施供暖在农业设施中,如温室、养殖场等,土壤源热泵地埋管换热器可以提供稳定的温度环境,促进植物生长和动物养殖。
游泳池和水景供暖在游泳池和水景等水体中,土壤源热泵地埋管换热器可以提供恒定的温度,保持水体的舒适性。
住宅和商业建筑供暖和制冷土壤源热泵地埋管换热器适用于新建和既有建筑供暖和制冷的需求,具有高效、节能、环保等优点。
土壤源热泵地埋管换热器的应用土壤源热泵地埋管换热器的优势与局限性优势土壤源热泵地埋管换热器具有高效、节能、环保、稳定等优点,能够满足不同建筑和设施的供暖和制冷需求。
同时,地埋管换热器不占用室内空间,对建筑布局和美观度影响较小。
局限性土壤源热泵地埋管换热器在设计和安装过程中需要考虑地质条件、气候条件等因素的影响,同时需要合理配置热泵系统和控制系统,以保证系统的稳定性和能效。
此外,地埋管换热器的初投资较高,需要综合考虑其长期运行成本和经济效益。
02土壤源热泵地埋管换热器设计计算土壤比热容表示土壤吸收或释放热量时温度的变化程度,计算时需考虑土壤的成分和密度。
土壤初始温度和边界条件确定土壤初始温度以及土壤与地埋管换热器的边界条件,有助于准确模拟地埋管换热器的传热过程。
土壤导热系数根据土壤类型、含水量、温度等因素计算土壤的导热系数,是地埋管换热器传热计算的重要参数。
地源热泵系统工程技术规范《地源热泵系统工程技术规范》1总则1.0.1 为使地源热泵系统工程设计、施工及验收,做到技术先进、经济合理、安全适用,保证工程质量,制定本规范。
1.0.2 本规范适用于以岩土体、地下水、地表水为低温热源,以水或添加防冻剂的水溶液为传热介质,采用蒸气压缩热泵技术进行供热、空调或加热生活热水的系统工程的设计、施工及验收。
1.0.3 地源热泵系统工程设计、施工及验收除应符合本规范外,尚应符合国家现行有关标准的规定。
2术语2.0.1 地源热泵系统 groud-source heat pump system以岩土体、地下水或地表水为低温热源,由水源热泵机组、地热能交换系统、建筑物内系统组成的供热空调系统。
根据地热能交换系统形式的不同,地源热泵系统分为地埋管地源热泵系统、地下水地源热泵系统和地表水地源热泵系统。
exchanger system传热介质通过竖直或水平地埋管换热器与岩土体进行热交换的地热能交换系统,又称土壤热交换系统。
2.0.7 地埋管换热器ground heat exchanger供传热介质与岩土体换热用的,由埋于地下的密闭循环管组构成的换热器,又称土壤热交换器。
根据管路埋置方式不同,分为水平地埋管换热器和竖直地埋管换热器。
2.0.8 水平地埋管换热器horizontal ground heat exchanger换热管路埋置在水平管沟内的地埋管换热器,又称水平土壤热交换器。
2.0.9 竖直地埋管换热器 vertical ground heat exchanger换热管路埋置在竖直钻孔内的地埋管换热器,又称竖直土壤热交换器。
2.0.10 地下水换热系统ground water system与地下水进行热交换的地热能交换系统,分为直接地下水换热系统和间接地下水换热系统。
2.0.11 直接地下水换热系统由抽水井取出的地下水,经处理后直接流经水源热泵机组热交换后返回地下同一含水层的地下水换热系统。
.地源热泵中央空调方案XXX环境有限公司2009年08月28日目录一、空调系统方案推荐(一)工程概况(二)可用于本项目的空调方案(三)适用本项目的几类空调方案的比较(四)选用建议二、地源热泵推广及选型设计(一)地源热泵空调系统简介(二)同方地源热泵机组组特点(三)空调设备选型设计(四)地埋管换热系统设计选型(五)土壤换热平衡的分析(六)主要设备表、运行费用分析及工程预算三、地源热泵系统设计与安装(一)地源热泵系统设计与安装关键(二)室外地埋管换热系统的主要施工工序及注意问题(三)室外垂直埋管系统的施工工艺附件一:技术支持单位概况附件二:相关设计图纸一、空调系统方案推荐<一>工程概况城市:XXXX项目名称:XXX国际精品城1#楼中央空调工程项目简介:该建筑集商铺、办公、餐厅、会议为一体多功能国际精品城,建筑面积约8760平方米,空调面积约6473平方米,拟采用地源热泵机组进行夏季供冷,冬季供暖。
室内末端拟用风机盘管系统,局部拟用全空气系统实现室内的冷热需求。
<二>可用于本项目的空调方案1. 冷水机组+燃气锅炉制冷机采用电制冷(压缩式)冷水机组(1台离心1台螺杆制冷机组)。
夏季制冷,由电制冷(压缩式)冷水机组提供冷源;冬季由工业场地锅炉房(或热电厂)提供的0.6Mpa蒸汽经换热器交换进行空调采暖。
大楼空调系统采用风机盘管加新风系统或全空气处理空调系统。
两套水换热器:冷凝器、蒸发器;通过冷却塔冷却主机的冷凝器;通过蒸发器为室内末端提供冷冻水。
空调机组只能制冷,冬季采暖需要别的热源。
2. 风冷冷水热泵机组风冷冷水热泵技术是一种消耗少量清洁能源(电),充分利用空气中的冷、热能资源制成冷热水供空调空间使用的空调方式,已经得到了专家、政府和社会各界人士的肯定,风冷热泵作为替代传统空调方式的优选方式之一,已是不争的事实。
空调机组夏季制冷,冬季采暖,冷暖两用型。
3. 地源热泵空调机组地源热泵是一种利用地下浅层地热资源既能供热又能制冷的高效节能环保型空调系统。
地源热泵系统工程技术方案一、项目介绍1、工程概况本工程为。
总用地15322.46㎡。
本项目总建筑面积约为,包括,旧楼。
空调系统需满足建筑物冷、热负荷要求。
2、设计依据2.1 参考资料《建筑给水排水设计规范》GB 50015-2003(2009)《采暖通风与空气调节设计规范》GB 50019-2003《高层民用建筑设计防火规范》GB 50045-95(2005年版)《公共建筑节能设计标准》GB 50189-2005《公共建筑节能设计标准》DB13(J)81-20092.2 设计参数采用负荷指标法估算建筑物的冷、热负荷:夏季冷指标为94.5w/㎡,冷负荷为3130.82kw;冬季热指标为81.7 w/㎡,热负荷为2706.75kw。
二、设计方案描述1、设计思路本项目埋孔面积有限,土壤换热器的数量仅能满足部分建筑物冷热需求,所以空调系统采用地源热泵+户式空调的组合方式,新增建筑的七层以下(含七层)及原有培训楼(旧楼)采用地源热泵系统,新增建筑的八层以上(含八层)采用户式空调。
地源热泵系统采用集中温控系统实现自动控制。
2、热泵主机配置描述本方案配置2台美国美意公司生产的MWH2800CC型地水源热泵机组。
MWH2800CC型地水源热泵机组是以地能即地下水(井水、地埋管或其他地表水)为主要能源辅以电能,通过先进的设备将地下取之不竭但不易利用的低品位再生能源开发利用,使其变为高品位能源。
MWH2800CC型地水源热泵机组的性能参数如下:3、室外地埋孔描述目前普遍采用的有垂直埋管和水平埋管两种基本的配置形式。
水平埋管是在浅层土壤中挖沟渠,将PE管水平的埋置于沟渠中,并填埋的施工工艺。
水平埋管占地面积较垂直埋管大,效率较垂直埋管低。
垂直埋管是在地层中垂直钻孔,然后将地下热交换器(PE管)以一定的方式置于孔中,并在孔中注入填充材料的施工工艺。
地下热交换器型式和结构的选取应根据实际工程以及给定的建筑场地条件来确定。
第三章地源热泵系统的设计及计算一说到设计,人们往往想到的是工程技术人员的计算和绘图,当然这些都属于设计领域里的工作,而寻找解决问题的途径,也是设计任务之一。
设计本身包括寻找解决问题的途径,所以它不限于事先构思,更不排斥实践,而应是思维活动与实践活动的统一。
空调设计的任务及目的,就是把现有能效高的设备组织好、使用好、充分发挥它们的作用。
现代空调系统的不断发展使建筑物内的设施日益增多和复杂,这对改善人们的生活和工作环境有着积极作用,但同时也带来了由于系统设计、工程施工和运行管理不当而造成对自然环境和人体健康有害的因素。
所以反过来力求解决这些问题就成为一种主要的推动力,促使空调技术更进一步向前发展。
目前,建筑节能的重要性越来越引起人们的关注。
从建筑设计方面来看,提高隔热保温性能,采用合理的朝向,增设必要的遮阳等可以减少空调负荷,降低能耗。
对于确定的空调负荷,提高设备的效率和优化运行过程提供相应的硬件软件,都成为降低能耗的关健。
空调系统的设计一般采用工况设计法,是以夏季和冬季室外空气设计参数为依据的典型工况进行计算,并且是按最不利情况考虑,按照设备的额定工况选择指标。
所以,设备选型较大。
空调设备经常处于部分负荷状态下运行,必须要求设备在部分负荷运行时也能高效率运行。
避免负荷变化了,而设备不能作相应调节,出现大马拉小车的现象;或设备也能调节负荷,但调节性能差,耗能指标落后。
因此,设计的任务就是要用先进的自控技术将空调全工况下的性能调整到最佳程度,这就是所谓的过程设计方法。
一、中央空调设计主要参考以下的规范及标准1、通用设计规范1).《采暧通风及空气调节设计规范》(GB50019-2003(2003年版));2).《采暖通风及至气调节制图标准》(GBJ114-88)3).《建筑设计防火规范》(GBJ116-87)4).《高层民用建筑设计防火规范》( GBJ0045-95)5).《民用建筑节能设计标准(采暖居住建筑部分)》(JGJ26-95)2.专用设计规范:1).《宿舍建筑设计规范》(JGJ36-87)2).《住宅设计规范》(GB50096-99)3).《办公建筑设计规范》(JG67-89)4).〈旅馆建筑设计规范〉(JGJ67-89)5).《旅游旅馆建筑热土与空气调节节能设计标准》(GB50189-93)6).《地源热泵系统工程技术规范》(JGJ142-2004)7).《地面辐射供暖技术规范》(GB50366-2005)8).其它专用设计规范3.专用设计标准图集:1).《暖通空调标准图集》2).《暖通空调设计选用手册》(上、下册)3)、其它有关标准二、空调冷、热负荷计算空调负荷是指为保持室内空气设计条件,单位时间内室内空气输入或排出的热量,前者称为热负荷,后者称为冷负荷。
地源热泵方案设计一、地源热泵系统概述地源热泵是一种利用地下土壤、地下水或地表水等作为冷热源,通过热泵机组进行能量交换,为建筑物提供制冷、供暖和生活热水的系统。
与传统的空调和供暖系统相比,地源热泵系统具有以下显著优势:1、高效节能:地源热泵系统的能效比(COP)通常较高,可大大降低能源消耗和运行成本。
2、环保无污染:不使用化石燃料,减少了温室气体排放和对环境的污染。
3、稳定可靠:地下温度相对稳定,使得系统运行更加稳定可靠,不受外界气候条件的影响。
4、使用寿命长:热泵机组和地下换热器的使用寿命较长,维护成本相对较低。
二、工程场地条件评估在进行地源热泵方案设计之前,首先需要对工程场地的条件进行详细评估。
这包括地质结构、土壤类型、地下水位、水文地质条件等。
不同的场地条件会影响地下换热器的设计和安装方式。
1、地质结构:了解地层的分布、厚度和岩石类型,以确定钻孔的可行性和难度。
2、土壤类型:土壤的热导率和比热容会影响热量传递效率,常见的土壤类型如砂土、黏土和壤土等,其热性能有所差异。
3、地下水位:地下水位的高低会影响换热器的安装深度和防水措施。
4、水文地质条件:包括地下水的流动速度、水质等,这对于选择合适的换热器类型和防止地下水污染至关重要。
三、建筑物负荷计算准确计算建筑物的冷热负荷是地源热泵方案设计的基础。
负荷计算需要考虑建筑物的用途、面积、朝向、围护结构的保温性能、室内人员和设备的发热量等因素。
通过专业的负荷计算软件,可以得到建筑物在不同季节和不同时段的制冷和供暖负荷需求。
1、制冷负荷:主要由室内外温差、太阳辐射、人员散热和设备散热等因素引起。
2、供暖负荷:与室外温度、建筑物的保温性能、通风换气次数等有关。
根据负荷计算结果,可以确定热泵机组的容量和地下换热器的规模,以保证系统能够满足建筑物的冷热需求。
四、地源热泵系统类型选择地源热泵系统主要有三种类型:地下水地源热泵系统、地埋管地源热泵系统和地表水地源热泵系统。
中华人民共和国行业标准地源热泵供热空调技术规程Technical specification for ground-source heat pump systemJGJxxx-2005送审稿前言根据建设部建标[2003] 104 号文件“关于印发《2003年度工程建设国家标准制定、修订计划》的通知”的要求,由中国建筑科学研究院为主编单位,会同全国13个单位共同编制本标准。
在标准编制过程中,编制组进行了广泛深入的调查研究,认真总结了当前地源热泵系统应用的实践经验,吸收了发达国家相关标准和先进技术经验,并在广泛征求意见的基础上,通过反复讨论、修改与完善,制定了本规程。
本规程共分8章和2个附录。
主要内容是:总则,术语,工程勘察,地埋管换热系统,地下水换热系统,地表水换热系统,室内系统及整体运转、调试与验收。
本标准中用黑体字标志的条文为强制性条文,必须严格执行。
本规程由建设部负责管理和对强制性条文的解释,中国建筑科学研究院负责具体技术内容的解释。
本规程主编单位:中国建筑科学研究院(地址:北京北三环东路30号;邮编:100013)本规程参编单位:山东建筑工程学院、北京计科地源热泵科技有限公司、际高集团有限公司、北京恒有源科技发展有限公司、清华同方人工环境有限公司、北京市地质勘察技术院、山东富尔达空调设备有限公司、湖北风神净化空调设备工程有限公司、河北工程学院城建学院、克莱门特捷联制冷设备(上海)有限公司、武汉金牛经济发展有限公司、广州从化中宇冷气科技发展有限公司、湖南凌天科技有限公司。
主要起草人:徐伟、邹瑜、刁乃仁、李元普、丛旭日、孙骥、于卫平、冉伟彦、冯晓梅、高翀、胡松涛、王侃宏、王付立、朱剑锋、覃志成、林宣军。
1总则 (3)2术语 (3)3工程勘察 (6)3.1一般规定 (6)3.2 岩土体地质勘察 (6)3.3 水文地质勘察 (7)3.4 地表水水文勘察 (7)4地埋管换热系统 (8)4.1 一般规定 (8)4.2 地埋管管材与传热介质 (8)4.3 地埋管换热系统设计 (8)4.4 地埋管换热系统施工 (10)4.5 地埋管换热系统的检验与验收 (11)5地下水换热系统 (11)5.1 一般规定 (11)5.2 地下水换热系统设计 (12)5.3 地下水换热系统施工 (12)5.4 地下水换热系统检验与验收 (13)6地表水换热系统 (13)6.1 一般规定 (13)6.2 地表水换热系统设计 (13)6.3 地表水换热系统施工 (14)6.4 地表水换热系统检验与验收 (14)7室内系统 (15)7.1 室内系统设计 (15)7.2 室内系统施工、检验与验收 (15)8整体运转、调试与验收 (15)8.1 一般规定 (15)8.2 整体运转、调试与验收 (16)附录A 地埋管外径及壁厚 (17)附录B 垂直地埋管换热器的设计计算 (19)本规程用词说明 (21)1.0.1为使地源热泵供热空调系统工程的设计、施工及验收做到技术先进、经济合理、安全适用和保证工程质量,制定本规程。
土壤源热泵施工工法地源热泵系统特点:1.资源可以再生利用。
2.运行费用低。
3.机房占地面积小,并可设在地下,节省建筑空间。
4.绿色环保,系统利用地球表面的浅层地热资源,没有燃烧,没有排烟及废弃物,清洁环保无任何污染。
5.自动化程度高。
6.一机多用,既可供暖,又可制冷,最大限度的利用了能源。
适用范围:可用于工厂、车站、商场、宾馆、酒店、商务办公、娱乐场所、住宅小区、别墅、蔬菜养花大棚等各类建筑。
小到一、二百平米大到几十万平米,从单供暖、冷暖双供到冷暖及生活热水三供,都可以完美运行。
工艺原理土壤源热泵是利用地下土壤、地下水温度相对稳定的特性,冬季通过消耗少量的高位能量(电能)把土壤储存的低品位热能转移到需要供暖的室内;夏季却将室内的热量转移释放到土壤中,从而达到冬季供暖、夏季制冷的目的。
地源热泵的工作原理参见图。
施工工艺:工艺流程1.竖直管施工工艺:2.水平管施工工艺:施工方法1、测量、放线及钻机就位钻孔测量定位,采用索佳SET210K全站仪进行测量定位及孔口标高,并用木桩做好醒目标示,孔间距5.4m×4.5m。
潜孔钻机就位后,钻杆中心必须与孔位在一条垂线上,钻机找平后四腿支稳,确保钻机水平。
启动空压机,待机上仪表处于正常工况后方可拧动开关送气,管路连接处不得有漏气现象。
2、开孔本工程施工场地内上部覆盖层较厚杂填土,采用Ф180冲击钻头开孔至基岩,下Ф168套管,换用Ф140潜孔冲击器钻进。
钻孔直径为140mm,钻孔深度82m。
3、成孔工艺采用液压潜孔锤钻机,高压空气作为钻进动力和排渣手段。
钻进参数:空气压力13-16MPa;钻机转速75-100rpm;风量15m3/mm;钻头压力15.6KN,压力过大易造成孔斜,导致安装竖直地埋管困难。
增加钻杆前,应在压缩空气关闭后提升动力头至顶端,让其自由落下并且无阻碍,这时方可卸开钻杆丝扣。
钻进中发生不返气现象且空气压力增高时应提钻检查。
孔口粉尘变多时及时增加水泵注水量,尽可能使返出孔口的岩屑为片状或粒状。
地源热泵工程方案一、工程背景地源热泵是利用地下土壤或水体中的储热能量,通过热泵系统将其提取到室内供暖、供热、供冷的一种清洁、高效、节能的采暖形式。
地源热泵是目前国内外比较受欢迎的采暖方式,具有环保、节能、安全的特点。
在城市供热系统改造、新建建筑热水供应系统方面有着广阔的应用前景。
本工程是某新建居民小区的地源热泵工程,涉及到地下管道布置、热泵系统配置、建筑供热系统设计等方面,要充分考虑小区规模、地质条件、气候特点等因素,提供一套完善的地源热泵工程方案。
二、工程范围本工程涉及的范围主要包括:1.地下管道布置:根据小区规划设计,确定地下管道的布置方案,包括主管道的走向、深度、连接方式等。
2.热泵系统配置:根据小区的规模和用能需求,设计合适的热泵系统配置,包括热泵设备选型和安装位置。
3.建筑供热系统设计:根据小区建筑的布局和用能需求,设计合适的供热系统,包括室内换热器、水泵、管道等设备的配置方案。
4.监测与控制系统:设计监测与控制系统,对地源热泵系统进行实时监测和控制,保证其正常运行。
5.环境保护措施:设计地源热泵系统建设过程中的环境保护措施,确保对环境的影响最小。
6.运行维护方案:提供地源热泵系统的运行维护方案,包括定期检查、维修、更换等。
三、工程设计原则1.高效节能:地源热泵系统是一种高效节能的供热方式,工程设计应遵循这一原则,采用节能设备和技术,降低系统运行成本。
2.环保可持续:地源热泵系统具有很好的环保性能,设计应遵循环保原则,减少对环境的影响,提高系统的可持续性。
3.综合利用:地源热泵系统可以供暖、供热、供冷,工程设计应充分考虑对系统的综合利用,提高系统的多功能性。
4.安全可靠:地源热泵系统是一种高温低压的供热方式,工程设计应遵循安全可靠原则,确保系统的运行安全。
5.成本效益:地源热泵系统虽然具有很好的节能性能,但建设成本较高,工程设计应综合考虑系统的成本效益,确保投资回报。
四、地下管道布置根据小区规划设计,确定地下管道的布置方案,主要包括主管道的走向、深度、连接方式等。
土壤源热泵系统优化设计研究【摘要】以潍坊市某办公楼为研究对象,利用能耗模拟软件建立土壤源热泵系统数值模拟平台。
对系统中同一埋管深度、不同钻孔数量的情况进行模拟计算,通过分析比较不同钻孔数量的地埋管出水温度及动态费用年值,得到了该系统的最优钻孔数量。
【关键词】土壤源热泵埋管动态费用年值地源热泵系统具有明显的节能性,但由于大型公共建筑初投资和运行费用相对较大,没有相对优化的设计会造成资源的严重浪费[1]。
利用能耗模拟软件可以有效地解决这一问题。
本文对已有的潍坊一办公建筑做了初步选型并利用Trnsys软件搭建了土壤源热泵系统的仿真平台。
经过分析可知,地下换热器总长度对系统的初投资及运行费用起着关键作用,文章通过初步设计参数选择了多组钻孔数量,并在所搭建的仿真平台上进行模拟,得到动态费用年值最优的钻孔数量。
1 建筑概况及初步设计本工程空调面积为6540平方米,一层层高为4.8米,二、三层层高为5.1米。
针对该项目搭建模拟平台,利用DeST软件对建筑的全年逐时负荷进行模拟,得到该办公建筑最大冷负荷为1070kW,最大热负荷为888kW,经过热响应实验可知该项目的土壤综合导热系数为1.55w/(m·k)。
依照计算负荷与地源热泵系统的设计原则,对该项目进行选型,选择SSD_DH水源热泵螺杆机组1台,制冷量1400kW,制热量1081kW。
系统中钻孔半径为150mm,埋管深度10m,钻孔数为126个,换热器为De32的单U型高强度聚乙烯管。
2 土壤源热泵系统主要部件数学模型2.1 地埋管换热器模型本文采用的地埋管换热器模型为以地热蓄热系统为研究基础的仿真模型——DST(duct storage system)模型[2]。
该蓄热体为以竖直轴对称的柱热源模型,且地埋管被假定为均匀地放置在蓄热体内,管内进行与载热流体的对流换热,管外进行与土壤之间的导热换热。
DST模型将钻孔内外的换热完全作为一个整体计算,计算时需要设定土壤、循环流体、回填材料、U形管的相关热物性参数以及钻孔的尺寸和数量,U形管的布置形式(单或双U管)、连接方式并联串联等。
土壤源热泵地下换热器系统设计流程
1.1土壤源热泵地下换热器系统基本设计流程:
1、工程勘察确定应用条件,依据热响应试验报告,取得土壤初始温度和热物
性参数。
必要时,可以根据换热曲线推算地下水综合渗流速度,大部分项目无需此步骤,因为如果是单纯的恒热流测试,在所谓的岩土导热系数中,已经包含地下水渗流的影响;
2、使用能耗分析软件进行全年动态负荷计算,并对建筑全年8760小时逐时
负荷进行数据统计、整理;
3、冷热源方案设计及系统配置;
4、计算系统能效比;
5、将以上数据,输入专业软件(如EHPD,EED等)进行地埋管换热模拟计算;
6、确定地埋管换热器各年各月的水温变化曲线;
7、进行系统动态模拟,校核地埋管换热器是否满足要求,如果不满足,对
地埋管换热器结构参数进行调整,重新进行步骤3~6;
8、根据模拟计算结果和系统方案,开展施工图设计.。