复变函数论第三版钟玉泉PPT第五章
- 格式:ppt
- 大小:858.50 KB
- 文档页数:28
复变函数钟玉泉讲义大学复变函数课件复变函数第一节解析函数的概念及C.-R.方程1、导数、解析函数定义2.1:设是在区域内确定的单值函数,并且。
如果极限存在,为复数,则称在处可导或可微,极限称为在处的导数,记作,或。
定义2.2:如果在及的某个邻域内处处可导,则称在处解析;如果在区域内处处解析,则我们称在内解析,也称是的解析函数。
解析函数的导(函)数一般记为或。
注解1、语言,如果任给,可以找到一个与有关的正数,使得当,并且时,,则称在处可导。
注解2、解析性与连续性:在一个点的可导的函数必然是这个点的连续函数;反之不一定成立;注解3、解析性与可导性:在一个点的可导性是一个局部概念,而解析性是一个整体概念;注解4、函数在一个点解析,是指在这个点的某个邻域内解析,因此在此点可导;反之,在一个点的可导性不能得到在这个点解析。
解析函数的四则运算:和在区域内解析,那么,,(分母不为零)也在区域内解析,并且有下面的导数的四则运算法则:。
复合求导法则:设在平面上的区域内解析,在平面上的区域内解析,而且当时,,那么复合函数在内解析,并且有求导的例子:(1)、如果(常数),那么;(2)、,;(3)、的任何多项式在整个复平面解析,并且有(4)、在复平面上,任何有理函数,除去使分母为零的点外是解析的,它的导数的求法与是实变量时相同。
2、柯西-黎曼条件可微复变函数的实部与虚部满足下面的定理:定理2.1 设函数在区域内确定,那么在点可微的充要条件是:1、实部和虚部在处可微;2、和满足柯西-黎曼条件(简称方程)证明:(必要性)设在有导数,根据导数的定义,当时其中,。
比较上式的实部与虚部,得因此,由实变二元函数的可微性定义知,,在点可微,并且有因此,柯西-黎曼方程成立。
(充分性)设,在点可微,并且有柯西-黎曼方程成立:设则由可微性的定义,有:令,当()时,有令,则有所以,在点可微的。
定理2.2 设函数在区域内确定,那么在区域内解析的充要条件是:1、实部和虚部在内可微;2、)和在内满足柯西-黎曼条件(简称方程)关于柯西-黎曼条件,有下面的注解:注解1、解析函数的实部与虚部不是完全独立的,它们是方程的一组解,它们是在研究流体力学时得到的;注解2、解析函数的导数形式更简洁:公式可避免利用定义计算带来的困难。
课程编码()课程总学时:54学分:3数学与应用数学专业《复变函数》教学大纲一、课程说明1.课程性质《复变函数》是数学与应用数学专业的一门专业主干课程,是数学分析的后续课程。
本课程的主要内容是讨论单复变量的复值可微函数的性质,其主要研究对象是全纯函数,即复解析函数。
复变函数论又称复分析,是数学分析的推广和发展。
因此它不仅在内容上与数学分析有许多类似Z 处,而只在逻辑结构方面也非常类似。
复变函数论是一门古老而富有生命力的学科。
早在19世纪,Cauchy> Weierstrass及Riem ann等数学巨匠就已经给这门学科奠定了坚实的基础。
复变函数论作为一种强有力的工具,已经被广泛应用于自然科学的众多领域,如理论物理、空气动力学、流体力学、弹性力学以及口动控制学等,冃前也被广泛应用于信号处理、电子工程等领域。
复变函数论作为一门学科,冇其自身的特点,有其特冇的研究方法。
在学习过程中,应注意将所学的知识融汇贯通,并通过与微积分理论的比较加深理解,掌握它H身所固有的理论和方法。
2.课程教学目标与要求(1)通过本课程的教学,使学生学握复变函数论的基本理论和方法,获得独立地分析和解决某些相关理论和实际问题的能力。
为进一步学习其他课程,并为将來从事教学,科研及其他实际工作打好基础。
(2)通过基本概念的止确讲解,基本理论的系统阐述,基本运算能力的严格训练,逐步提髙学生的数学修养。
同时注意扩展学牛的学习思路,使他们了解更多的和现代牛活息息相关的数学应用知识。
(3)作为师范专业,在冇关内容方面注重高等数学对初等数学的提高和指导意义,使学生在今后的工作中有较高的起点。
3.选用教材与参考书目选用教材:《复变函数论》(第三版),钟玉泉,高等教育出版社,2003年。
参考书目:《复变函数》(第二版),余家荣,高等教育出版社,1992年。
《多复变函数》[美]那托西姆汉著,科学出版社。
《解析函数边值问题》路见可著,上海科技出版社。
第五章 解析函数的洛朗展式与孤立奇点§1 解析函数的洛朗展式教学目的与要求: 了解双边幂级数,了解洛朗级数与泰勒级数的关系,掌握解析函数在孤立奇点邻域内的洛朗展式的求法.重点: 解析函数的洛朗展式;解析函数在孤立奇点邻域内的洛朗展式的求法. 难点:解析函数的洛朗展式的证明. 课时:2学时定义5.1 级数101()()()n n n nn C C C z a C C z a z a z a+∞--=-∞-=⋅⋅⋅++⋅⋅⋅+++-+⋅⋅⋅--∑(5.1) 称洛朗()Laurent 级数,n C 称为(4.22)的系数.对于点z ,如果级数01()()()nn nn n C z a C C z a C z a +∞=-∞-=+-+⋅⋅⋅+-+⋅⋅⋅∑ (5.2)收敛于1()f x ,且级数1()()n n n n n C C C z a z a z a+∞--=-∞-=⋅⋅⋅++⋅⋅⋅+--∑ (5.3) 收敛于2()f x ,则称级数(4.22)在点z 收敛,其和函数为1()f x +2()f x 当0n C -=(1,2,)n =⋅⋅⋅时,(5.1)即变为幂级数.类似于幂级数,我们有定理5.1 设()f z 在圆环12:D R z a R <-<12(0)R R ≤<<+∞内解析,则在D 内()()nn n f z C z a +∞=-∞=-∑(5.4)其中11()2()n n f z C dz i z a π+Γ=-⎰ (0,1,)n =±⋅⋅⋅ (5.5) :z a ρΓ-=,且12R R ρ<<,系数n C 被()f z 及D 唯一确定.(5.4)称为()f z 的洛朗展式.证明:对:z H ∀∈作1:1z a ρΓ-=,2:2z a ρΓ-=,(其中12r R ρρ<<<) 且使z D ∈:12z a ρρ<-<,(如图5.1)由柯西积分公式,有()()2112f f z d i z ξξπξ-Γ+Γ==-⎰()212f d i z ξξπξΓ-⎰+()112f d i z ξξπξΓ-⎰图5.1对于第一个积分,只要照抄泰勒定理证明中的相应部分,即得:()212f d i z ξξπξΓ-⎰=()0nn n C z a ∞=-∑ 其中()()1212n n f C d i a ξξπξ+Γ=-⎰()!n f a n = 对于第二个积分()112f d i z ξξπξΓ-⎰: ()()()()()()1f f f z z a a z a z a a ξξξξξξ==----⎛⎫---⎪-⎝⎭当1ξ∈Γ时11az az aρξ-=<--1111n n a a z a z aξξ-∞=-⎛⎫∴=⎪--⎝⎭--∑ (右边级数对于1ξ∈Γ是一致收敛)上式两边乘上()f z a ξ-得:()f z ξξ=-()11n n f a z a z a ξξ-∞=-⎛⎫ ⎪--⎝⎭∑=()()()111n n n f z a a ξξ∞-+=--∑ 右边级数对1ξ∈Γ 仍一致收敛,沿1Γ逐项积分,可得()112f d i z ξξπξΓ-⎰=()11n n z a ∞=-∑()()1112n f d i a ξξπξ+Γ-⎰ 其中n C =()()1112n f d i a ξξπξ-+Γ-⎰113. 3.10P Th ()()112n f d i a ξξπξ-+Γ-⎰ 于是:()()nn n f z C z a +∞=-∞=-∑, 其中n C =()()112n f d i a ξξπξ+Γ-⎰ (n=0,1,± ) 下面证明展式唯一,若在H 内()f z 另有展开式()()'nnn f z C z a +∞=-∞=-∑右边级数在Γ上一致收敛,两边乘上()11m z a +-得:()()1m f z z a +-=()'1nm n n C z a ∞-+=-∞-∑,右边级数在Γ上仍一致收敛,沿Γ逐项积分,可得:()()112m f d i a ξξπξ+Γ-⎰=()'1112n m n n C d i a ξπξ+∞-+Γ=-∞-∑⎰ ∴'n C =n C 即展式是唯一的.注:1)定理中的展式称为洛朗展开式,级数称为洛朗级数. n C 称为洛朗系数.2)泰勒展式是洛朗展式的特例. 例1.求()()()112f z z z =--在(1)1,(2)12,(3)2(4)011z z z z <<<<<∞<-<中的洛朗展开式. 解:()1121f z z z =--- (1)()00111122212nnn n z f z z z z ∞∞==⎛⎫=-=-=⎪-⎛⎫⎝⎭- ⎪⎝⎭∑∑12nn n n n z z ∞∞+==-∑∑=10112n n n z ∞+=⎛⎫- ⎪⎝⎭∑ (1z <).(2) ()1121f z z z =---1112112z z z =--⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭100112n n n n n z z z ∞∞+==⎛⎫=-- ⎪⎝⎭∑∑ 110012n n n n n z z∞∞++==⎛⎫=-- ⎪⎝⎭∑∑. (12z <<)(3) ()1121f z z z =-=--112111z z z z -⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭()1000121121n n n n n n n n z z z z∞∞∞+===⎛⎫=-=- ⎪⎝⎭∑∑∑ . (2z <<∞) (4)()()()0111111211111nn f z z z z z z z ∞==-=-=---------∑. (011z <-<)此例子说明:同一个函数在不同的圆环内的洛朗展式可能不同. 例2 求2sin z z 及sin zz在0z <<+∞内的洛朗展式 解 2s i n z z 3211(1)3!5!(21)!n n z z z z n --=-++⋅⋅⋅++⋅⋅⋅+ sin z z 242(1)13!5!(21)!n nz z z n -=-++⋅⋅⋅++⋅⋅⋅+例3 1ze 在0z <<+∞内的洛朗展式为 解 1z e 211112!!n z z n z=+++⋅⋅⋅++⋅⋅⋅ 作业: 第217页 1 (1) (3), 2(1)(3)§2解析函数的孤立奇点教学目的与要求: 掌握洛朗定理及孤立奇点的分类及判断方法. 重点:孤立奇点的分类及判断方法. 难点:函数在本质奇点的邻域的性质. 课时:2学时 一 . 定义:1.设()f z 在点a 的某去心邻域内解析,但在点a 不解析,则称a 为f 的孤立奇点.例如sin zz,1z e 以0=z 为孤立奇点.0=z 为奇点,但不是孤立奇点,是支点.11sin z以0=z 为奇点(又由1sin0=z ,得1(1, 2...,)π==±±z k k 故0=z 不是孤立奇点) 2.设a 为()f z 的孤立奇点,则()f z 在a 的某去心邻域内,有1()()(),∞∞-===+-∑∑-nnnnn n f z c z a c z a 称()n=1∞-∑-nnc z a 为()f z 在点a 的主要部分,称()∞=-∑nnn z a c 为()f z 在点a 的正则部分,当主要部分为0时,称a 为()f z 的可去奇点;当主要部分为有限项时,设为(1)11(0)()()------+++≠--- m m m m m c c c c z a z a z a称a 为()f z 的m 级极点;当主要部分为无限项时,称a 为本性奇点.二.判定 1.可去奇点定理5.3 设a 为()f z 的孤立奇点,则下列条件等价(1)a 为f 的可去奇点 (2)lim ()()→=≠∞z af z b3()f 在a 的某去心邻域内有界证明:"(1)(2)"⇒设条件1()成立,则在a 的某一去心邻域内,有0()lim ()()∞→==∴=≠∞-∑nnz an f z f z z a c c"(2)(3)":⇒显然成立."(3)(1)"⇒设f 在a 的去心邻域{}:0-<-<k a z a R 内以M 为界考虑()f z 在点z 的主要部分:11()(1,2,): 02()ξξξρρπξ-+-Γ==Γ-=<<⎰- n n f d n a R i c a()112002πρρρπρ--+≤=→→n n n MC M 120--∴===∴ a c c 为可去奇点.例:说明0=z 是sin zz的可去奇点. 法一:324sin 1()1 03!3!5!=-+=-+<<∞ z z z z z z z z法二:0sin lim 1→=≠∞z zz2.极点定理5.4 设a 为()f z 的孤立奇点.则下列条件等价:1()a 为f 的m 级极点2()f 在a 的某去心邻域:{}:0-<-<k a z a R 内可表示为()()()λ=-mz f z z a 其中()λz 在k 内解析,且()0λ≠a1(3).()()=g z f z 从a 为m 级零点(可去奇点作为解析点看) 证明:"(1)(2)"⇒设条件(1)成立,即()f z 在a 的某去心邻域内有:101()()()--=++++-+-- m m c c f z c c z a z a z a(0)-≠m c1110()()()()---+-+-++-+-+=-m m m m mc c z a c z a c z a z a ()()记λ-mz z a(()λz 为幂级数的和函数,故解析)其中()λz 在a 的某邻域内解析,且从()0λ-=≠m a c"(2)(3)"⇒:设条件(2)成立,即f 在a 的某去心邻域{}:0-<-<k a z a R内有()()()λ=-mz f z z a ,其中()λz 满足已知的两个条件.由例知存在:.()ρ'-<≤'⊂K z a R K K ,使得在'K 内()0λ≠z . 故在'K 内1()λz 解析,且1()0()ϕλ=≠a a .即a 为1()f z 的m 级零点. "(3)(1)"⇒设条件(3)成立,即1()(),()ϕ=-m z a z f z 其中()ϕz 在a 的某领域内解析,且()0ϕ≠a ,由33P 的例1.28知:,ρ∃'-<K z a 使在K 内1()0,()ϕϕ≠∴z z 在'K 内解析.由Taylor 定理, 在'K 内有011()()ϕ=+-+ b b z a z∴在{}'-K a 内有0111()()[()]()()ϕ==+-+-- m mf z z b b z a z a z a01()()=++-- m mb b z a z a 0(0)≠b作业: 第218-219页 4(1) (3) (5), 5(1) (3).§3解析函数在无穷远点的性质教学目的与要求:掌握解析函数在无穷远点的性质. 重点: 解析函数在无穷远点的性质. 难点:解析函数在无穷远点的性质. 课时:2学时1. 基本概念1.1 2 3 2.如证令数引理:设()f z 在K :z <1内解析,且(0)0,()f f z =<1则 a )()f z z ≤, b )(0)1f '≤, c )若(0)1f '=,或00z∃≠,使00()f z z =则()()i f z z R e αα=∈.证明:由已知得:12()f z z z c c =++ (1)z <令212(),(0)()(0)f z c c z z z z c z ϕ⎧=++≠⎪=⎨⎪=⎩则()z ϕ在:1K z <内解析.对0,z K ∀∈取r ,使01,z r <<由最大模原理有:0()1()max ()maxz rz rf z z z zrϕϕ==≤=≤. 令1r →得0()1z ϕ≤,特别地,1(0)(0)1f c ϕ'==≤即(b )成立,又若00z ≠,由0()1z ϕ≤,得00()1f z z ≤,即00().f z z ≤以及(0)0f =,故对z K ∀∈,有()f z z ≤,即(a )成立.几何意义:在引理条件下,z 的象都比z 本身,距坐标原点要近.若有00z ≠,0z 的象与0z 本身距原点的距离相等,则变换仅仅是一个旋转.作业: 第219页6, 7, 8 (1) (3).。