当前位置:文档之家› SE理论 简述一般系统论、控制论和信息论对系统工程方法论的启示

SE理论 简述一般系统论、控制论和信息论对系统工程方法论的启示

SE理论

问题回答

简述一般系统论、控制论和信息论对系统

工程方法论的启示

?一般系统论、控制论和信息论为老三论

一般系统论

?贝塔朗菲《系统论》是研究复杂系统一般规律(演化--隐喻)的学科。?基本观点:

整体性

开放性及目的性(有效性、适应性、寻的性)

动态相关性(动态性取决于相关性)

等级层次性

有序性(结构或空间;发展或时间)

一般系统论

?整体性

?①要素和系统不可分割,“合则两存”、“分则两亡”

?②系统的整体功能不等于各组成部分的功能之和?一是“整体大于部分之和”

?二是“整体小于部分之和”

?③系统整体具有不同于各组成部分的新功能

一般系统论

?系统的开放性及目的性

?所谓开放系统是系统与环境处于相互作用之中,系统与环境不断进行物质、能量和信息的交换。

?开放系统具有稳态,并不以初始条件为转移,可以显示出异因同果律

?系统的目的性(有效性、适应性、寻的性)是存在的,不是完全由因果律决定的,表现在开放系统可以保持自身的稳定结构和有序状态,或增加其既有秩序。?把系统的开放性、有序性、结构稳定性和目的性联系起来,是贝塔

朗菲一般系统论的核心和重要成果。

一般系统论

?系统的动态相关性

?动态性:任何系统都是处在不断变化之中,系统状态是时间的函数

?动态性取决于相关性

?性关性:系统的各要素之间、要素与系统整体之间、系统与环境之间的有机关联性

?动态相关性实质是揭示要素、系统和环境三者之间的关系及其对系统状态的影响

一般系统论

?系统的层次等级性

?系统是有结构的,而结构是有层次、等级之分的

?系统的有序性

?其一,系统结构的有序性。结构合理,系统的有序程度高。(空间有序性)?其二,系统发展的有序性。系统从低级结构向高级结构转变。(时间有序性)?时空有序性

一般系统论

?启示

?思辨原则代替实验原则

?整体论代替还原论

?目的论代替因果论

?整体性、历时性和最优化原则

控制论

?1947年,美国人维纳(Norbert Wiener)——控制论

?20世纪40-50年代,经典控制理论;60年代,现代控制理论;70年代以后,大系统控制理论

?控制系统的构成(施控器、受控器和控制作用的传递者)

?系统的稳定性(第一类稳定性、第二类稳定性)

?稳定机制及控制方式(正反馈、负反馈)

控制论

?启示

?黑箱—灰箱—白箱法

?功能模拟法

?形式化、数量化、最优化方法

控制论

?黑箱—灰箱—白箱法

?黑箱法:采用不打开系统“活体”,仅从系统的整体联系出发,通过系统的输入和输出关系的研究,去认识和把握系统的功能特性,探索其结构和机理的研究方法。

?灰箱法:对系统有部分的认识,但不够完全,它比黑箱法更容易解决问题

?黑箱永远有,白箱永不白

控制论

?功能模拟法

?以功能和行为的相似性为基础,用模型模仿原型的功能和行为的一种方法。

?特点:以功能和行为相似性为基础;具有生物目的行为的机器

?形式化、数量化、最优化方法

?控制论的提出促使人们对系统采用形式化加以抽象,进行数量化加以定量描述,并寻求系统的最优化

信息论

?申农和维纳的信息论以信息为主要研究对象,以信息的运动规律和应用方法为主要研究内容,以计算机、光导纤维等为主要研究工具,以扩展人类的信息功能为主要研究目标。

?信息论

?信息概念及特点、通信问题、信息量

信息论

?信息

?申农将信息定义为“两次不定性之差”“不定性减少的量”

?维纳认为:信息不是物质也不是能量,在信息与物质、能量之间划了一条界限;信息是控制系统进行调节活动时,与外界相互作用、相互交换的内容;信息是系统的组织性的量度。

信息论

?信息概念的特点

?信息源于运动,无运动则无信息

?信息可以被感知、处理和利用

?信息具有知识秉性、共享性

?依赖于物质而存在并在物质上传递、存储,又不同与物质,可以脱离产生者而被传递

?信息的使用价值具有相对性

?信息具有时效性

?信息不守恒,可以放大、缩小、湮灭

信息论

?通信问题模型

?构成:

信源(发信者)发出信息

信息通道传送信息

信宿(收信者)获取信息

?信息量

?信息量就是用来度量信息大小的量

信息论

?启示

?信息论研究运用了类比方法和统计方法

?信息论运用了科学抽象和类比方法,将消息、信号、情报等不同领域中的具体概念,进行类比,抽象出了信息概念和信息论模型

?针对信息的随机性特点,运用了统计数学(概率论与随机过程)解决了信息量问题,并扩展了信息概念,充实了语义信息、有效信息、主观信息、相对信息、模糊信息等方面的内容

?信息方法

?运用信息的观点,把系统看作是借助于信息的获取、传送、加工、处理而实现其有目的性的运动的一种研究方法

贝塔朗菲的一般系统论

贝塔朗菲的一般系统论 相关搜索: 心理学, 奥地利, system, 系统论, 格式塔 一般系统论的历史背景系统的存在是客观事实,但人类对系统的认识却经历了漫长的岁月,对简单系统研究得较多,而对复杂系统则研究得较少。 直到20世纪30年代前后才逐渐形成一般系统论。一般系统论来源于生物学中的机体论,是在研究复杂的生命系统中诞生的。 1925年英国数理逻辑学家和哲学家阿弗烈·诺夫·怀海德在《科学与近代世界》一文中提出用机体论代替机械决定论,认为只有把生命体看成是一个有机整体,才能解释复杂的生命现象。系统思维最早出现在1921年建立的格式塔心理学,还在工业心理学研究中1958年Parry J.B.提出了系统心理学(system psychology)的词汇与概念。 1925年美国学者A.J.洛特卡发表的《物理生物学原理》和1927年德国学者W.克勒发表的《论调节问题》中先后提出了一般系统论的思想。 1924~1928年奥地利理论生物学家L.von贝塔朗菲多次发表文章表达一般系统论的思想,提出生物学中有机体的概念,强调必须把有机体当作一个整体或系统来研究,才能发现不同层次上的组织原理。他在1932年发表的《理论生物学》和1934年发表的《现代发展理论》中提出用数学模型来研究生物学的方法和机体系统论的概念,把协调、有序、目的性等概念用于研究有机体,形成研究生命体的三个基本观点,即系统观点、动态观点和层次观点。 1937年贝塔朗菲在芝加哥大学的一次哲学讨论会上第一次提出一般系统论的概念。但由于当时生物学界的压力,没有正式发表。1945年他发表《关于一般系统论》的文章,但不久毁于战火,没有引起人们的注意。1947~1948年贝塔朗菲在美国讲学和参加专题讨论会时进一步阐明了一般系统论的思想,指出不论系统的具体种类、组成部分的性质和它们之间的关系如何,存在着适用于综合系统或子系统的一般模式、原则和规律,并于1954年发起成立一般系统论学会(后改名为一般系统论研究会),促进一般系统论的发展,出版《行为科学》杂志和《一般系统年鉴》。虽然一般系统论几乎是与控制论、信息论同时出现的,但直到60~70年代才受到人们的重视。 1968年贝塔朗菲的专著《一般系统论──基础、发展和应用》,总结了一般系统论的概念、方法和应用。1972年他发表《一般系统论的历史和现状》,试图重新定义一般系统论。贝塔朗菲认为,把一般系统论局限于技术方面当作一种数学理论来看是不适宜的,因为有许多系统问题不能用现代数学概念表达。 一般系统论这一术语有更广泛的内容,包括极广泛的研究领域,其中有三个主要的方面。 ①关于系统的科学:又称数学系统论。这是用精确的数学语言来描述系统,研究适用于一切系统的根本学说。②系统技术:又称系统工程。这是用系统思想和系统方法来研究工程系统、生命系统、经济系统和社会系统等复杂系统。③系统哲学:它研究一般系统论的科学方法论的性质,并把它上升到哲学方法论的地位。贝塔朗菲企图把一般系统论扩展到系统科学的范畴,几乎把系统科学的三个层次都包括进去了。但是现代一般系统论的主要研究内容尚局限于系统思想、系统同构、开放系统和系统哲学等方面。而系统工程专门研究复杂系统的组织管理的技术,成为一门独立的学科,并不包括在一般系统论的研究范围内。

关于系统控制论的总结

最牛的系统论总结--系统论的数学模型 系统论的数学模型 系统论(Systemism)包括基本要素和高级要素(每个要素是一个系统(systems)). 基本要素: 系统(System)、结构(Structure)、事件(Event)、资源(Resource); 事件(Event)包括三个要素: 动作(Action)、过程(Procedure)、成本(Cost)。 系统论(Systemism)包括以下高级要素: 标准(Standard)、权力(Power); 标准(Standard)包括三个要素: 值(Value)、关系(Relation)和功能(Function)。 所有的要素都是在系统论(Systemism)中,而不是直接存在于世界(the World)或者能量(the Energy)之中。当然系统论(Systemism)是世界(the World)的一部分。系统论(Systemism)会使用这些要素(子系统)为你解释世界(the World)和能量(the Energy)。 ?.系统(System). 系统(System)是系统论(Systemism)中最基本的东西。。一个系统(System)指向世界(the World)中的一个对象(Object)。该对象(Object)可以被系统 论(Systemism)中的某些系统(System)利用某些标准(Standards)加以消 费(Consume )。 ?.系统名称(Name of System). 系统论(Systemism)使用一个名称(Name)标记一个系统(System)。这样当使用某个名称(Name)时我们指向某个系统(System),而该系统(System) 指向世界(the World)中的一个对象(Object)。名称(Name)将系统论(Systemism)中的系统(System)和世界(the World)的对象(Object)连接起来。[以下不再标出已出现名称的英文] 比如,世界当然是世界中最大的对象。一个系统论中的系统指向它并有一个保 留名称"系统论中的世界(the World in Systemism)" 以避免混淆;能量是世 界的基础,它的保留名称是"系统论中的能量(the Energy in Systemism)"; 系统论是世界的一部分,所以一个名称为"系统论中的系统论(Systemism in Systemism)"指向它。因为系统论已经存在与自身中,所以这个名称只是一个占位符,它直接指向系统论自身。 系统论使用系统将世界中的真实对象映射进来,同时使用一个名称来标记系统论中的系统。 我们看一个图来解释系统论的"对象-系统-名称映射"以及系统论的各种要素关 系:[Systemism graph]: ?.系统等式(System's equation).

系统论,控制论,信息论

一般系统论 亚里斯多德早就说过“整体大于部分之和”。因此对系统的研究可以说从古代就已经开始了。作为现代系统论的基本思想最初产生于本世纪20年代初由奥地利生物学家贝朗塔菲提出的,只不过它一开始被作为"机体生物学",这是生物学中的有机论概念,强调生命现象是不能用机械论观点来揭示其规律的,而只能把它看作一个整体或系统来加以考察。1968年,贝朗塔菲发表了一般系统论的代表著作《一般系统理论――基础发展与应用》。现在系统思想形成了一股重要的思潮,日益发挥重大而深远的影响。 一、系统 1、系统的含义及其分类 系统论的内涵和外延理论界现在说法不一。人们现在把系统论作为介于哲学和具体科学之间的横断科学来对待。它被用作比具体学科更一般化的科学理论加以研究,但又不同于哲学。现代系统论具有可否证性、抽象性、数理性特点。贝塔朗菲把一般系统概念定义为"系统是处于一定相互关系中的与环境发生关系的各组成成分的总体"。或: 系统——由两个或两个以上的要素组成的具有整体功能和综合行为的统一集合体 钱学森把极其复杂的研究对象称为系统。 系统的属性: ⑴系统的整体性:即非加和性。系统不是各部分的简单组合,而有统一性,各组成部分或各层次的充分协调和连接,提高系统的有序性和整体的运行效果。例如:①钢筋混凝土结构的强度就大于钢筋、水泥、沙石的强度之和。②拿破仑说数量小时较多数法国人不敌少数马克留木人,数量大时较少法国人可以战胜较多数马克留木人③没有凡高弟弟凡高就出不了成果;没有赫歇尔妹妹则赫歇尔不能成为伟大的天文学家;没有阿贝尔的老师就没有阿贝尔;没有孟母就没有孟子;没有伽罗华之母就没有伽罗华④人们常说"三个臭皮匠等于一个诸葛亮"⑤反面例子如上网、吸毒、赌博等。⑥"三个和尚没水吃",其原因是他们的能量消耗在内耗上。 ⑵系统的相关性:系统中相互关联的部分或部件形成"部件集","集"中各部分的特性和行为相互制约和相互影响,这种相关性确定了系统的性质和形态。 ⑶系统的功能性和目标性:大多数系统的活动或行为可以完成一定的功能,但不一定所有系统都有目的,例如太阳系或某些生物系统。人造系统或复合系统都是根据系统的目的来设定其功能的,这类系统也是系统工程研究的主要对象。例如,经营管理系统要按最佳经济效益来优化配置各种资源;军事系统为保全自己,消灭敌人,就要利用运筹学和现代科学技术组织作战,研制武器。 ⑷系统的层次性和相对性(有序性):由于系统的结构、功能和层次的动态演变有某种方向性,因而使系统具有有序性的特点。一般系统论的一个重要成果是把生物和生命现象的有序性和目的性同系统的结构稳定性联系起来,也就是说,有序能使系统趋于稳定,有目的才能使系统走向期望的稳定系统结构。行政系统分为科、处、局、部、委…;军事系统分为排、连、营、团、师、军…运作,都是系统表现出的层次性。 ⑸系统的复杂性和随机性:物质和运动是密不可分的,各种物质的特性、形态、结构、功能及其规律性,都是通过运动表现出来的,要认识物质首先要研究物质的运动,系统的动态性使其具有生命周期。开放系统与外界环境有物质、能量和信息的交换,系统内部结构也可以随时间变化。一般来讲,系统的发展是一个有方向性的动态过程。 ⑹系统的适应性:一个系统和包围该系统的环境之间通常都有物质、能量和信息的交换,外界环境的变化会引起系统特性的改变,相应地引起系统内各部分相互关系和功能的变化。为

控制论与信息论

信息论和控制论都是信息科学的重要组成部分。信息论是一门用数理统计方法来研究信息的度量、传递和变换规律的科学。它主要是研究通讯和控制系统中普遍存在着信息传递的共同规律以及研究最佳解决信息的获限、度量、变换、储存和传递等问题的基础理论。它是运用概率论与数理统计的方法研究信息、信息熵、通信系统、数据传输、密码学、数据压缩等问题的应用数学学科。 信息论是美贝尔电话研究所的数学家香农在前人研究的基础上完成的。他为解决通讯技术中的信息编码问题,把发射信息和接收信息作为一个整体的通讯过程来研究,提出通讯系统的一般模型;同时建立了信息量的统计公式,奠定了信息论的理论基础。1948年香农发表的《通讯的数学理论》一文,成为信息论诞生的标志。在信息论的发展中,还有许多科学家对它做出了卓越的贡献。像法国物理学家L.布里渊(L.Brillouin)1956年发表《科学与信息论》专著,从热力学和生命等许多方面探讨信息论,把热力学熵与信息熵直接联系起来,使热力学中争论了一个世纪之久的“麦克斯韦尔妖”的佯谬问题得到了满意的解释。英国神经生理学家(W.B.Ashby)1964年发表的《系统与信息》等文章,还把信息论推广应用芋生物学和神经生理学领域,也成为信息论的重要著作。这些科学家们的研究,以及后来从经济、管理和社会的各个部门对信息论的研究,使信息论远远地超越

了通讯的范围。 信息论有狭义和广义之分。狭义信息论即申农早期的研究成果,它以编码理论为中心,主要研究信息系统模型、信息的度量、信息容量、编码理论及噪声理论等。广义信息论又称信息科学,主要研究以计算机处理为中心的信息处理的基本理论,包括评议、文字的处理、图像识别、学习理论及其各种应用。广义信息论包括了狭义信息论的内容,但其研究范围却比通讯领域广泛得多,是狭义信息论在各个领域的应用和推广,因此,它的规律也更一般化,适用于各个领域,所以它是一门横断学科。信息论被广泛应用在编码学密码学与密码分析学数据传输数据压缩检测理论估计理论等领域. 控制论是研究各类系统的调节和控制规律的科学。自从1948 年诺伯特?维纳发表了著名的《控制论——关于在动物和机中控制和通讯的科学》一书以来,控制论的思想和方法已经渗透到了几乎有的自然科学和社会科学领域。维纳把控控制论制论看作是一门研究机器、生命社会中控制和通讯的一般规律的科学,是研究动态系统在变的环境条件下如何保持平衡状态或稳定状态的科学。他特意创造“Cybernetics”这个英语新词来命名这门科学。“控制论”一同最初来源希腊文“mberuhhtz”,原意为“操舵术”,就是掌舵的方法和技术的思。在柏拉图(古希腊哲学家)的著作中,经常用它来

贝塔朗菲的一般系统论

贝塔朗菲的一般系统论 一般系统论的历史背景系统的存在是客观事实,但人类对系统的认识却经历了漫长的岁月,对简单系统研究得较多,而对复杂系统则研究得较少。 直到20世纪30年代前后才逐渐形成一般系统论。一般系统论来源于生物学中的机体论,是在研究复杂的生命系统中诞生的。 1925年英国数理逻辑学家和哲学家阿弗烈·诺夫·怀海德在《科学与近代世界》一文中提出用机体论代替机械决定论,认为只有把生命体看成是一个有机整体,才能解释复杂的生命现象。系统思维最早出现在1921年建立的格式塔心理学,还在工业心理学研究中1958年Parry J.B.提出了系统心理学(system psychology)的词汇与概念。 1925年美国学者A.J.洛特卡发表的《物理生物学原理》和1927年德国学者W.克勒发表的《论调节问题》中先后提出了一般系统论的思想。 1924~1928年奥地利理论生物学家L.von贝塔朗菲多次发表文章表达一般系统论的思想,提出生物学中有机体的概念,强调必须把有机体当作一个整体或系统来研究,才能发现不同层次上的组织原理。他在1932年发表的《理论生物学》和1934年发表的《现代发展理论》中提出用数学模型来研究生物学的方法和机体系统论的概念,把协调、有序、目的性等概念用于研究有机体,形成研究生命体的三个基本观点,即系统观点、动态观点和层次观点。 1937年贝塔朗菲在芝加哥大学的一次哲学讨论会上第一次提出一般系统论的概念。但由于当时生物学界的压力,没有正式发表。1945年他发表《关于一般系统论》的文章,但不久毁于战火,没有引起人们的注意。1947~1948年贝塔朗菲在美国讲学和参加专题讨论会时进一步阐明了一般系统论的思想,指出不论系统的具体种类、组成部分的性质和它们之间的关系如何,存在着适用于综合系统或子系统的一般模式、原则和规律,并于1954年发起成立一般系统论学会(后改名为一般系统论研究会),促进一般系统论的发展,出版《行为科学》杂志和《一般系统年鉴》。虽然一般系统论几乎是与控制论、信息论同时出现的,但直到60~70年代才受到人们的重视。 1968年贝塔朗菲的专著《一般系统论──基础、发展和应用》,总结了一般系统论的概念、方法和应用。1972年他发表《一般系统论的历史和现状》,试图重新定义一般系统论。贝塔朗菲认为,把一般系统论局限于技术方面当作一种数学理论来看是不适宜的,因为有许多系统问题不能用现代数学概念表达。 一般系统论这一术语有更广泛的内容,包括极广泛的研究领域,其中有三个主要的方面。 ①关于系统的科学:又称数学系统论。这是用精确的数学语言来描述系统,研究适用于一切系统的根本学说。②系统技术:又称系统工程。这是用系统思想和系统方法来研究工程系统、生命系统、经济系统和社会系统等复杂系统。③系统哲学:它研究一般系统论的科学方法论的性质,并把它上升到哲学方法论的地位。贝塔朗菲企图把一般系统论扩展到系统科学的范畴,几乎把系统科学的三个层次都包括进去了。但是现代一般系统论的主要研究内容尚局限于系统思想、系统同构、开放系统和系统哲学等方面。而系统工程专门研究复杂系统的组织管理的技术,成为一门独立的学科,并不包括在一般系统论的研究范围内。

信息论,系统论,控制论0001

信息论,系统论,控制论 系统论、信息论、控制论等横断科学介绍 1、系统分析系统分析是管理信息系统的一个主要和关键阶段,负责这个阶段的关键人物是系统分析员,完成这个阶段任务的关键问题是开发人员与用户之间的沟通。 系统分析从系统需求入手,从用户观点出发建立系统用户模型。用户模型从概念上全方位表达系统需求及系统与用户的相互关系。系统分析在用户模型的基础上,建立适应性强的独立于系统实现环境的逻辑结构。 分析阶段独立于系统实现环境,可以保证建立起来的系统结构具有相对的稳定性,便于系统维护、移植或扩充。 在系统分析阶段,系统的逻辑结构应从以下三方面全面反映系统的功能与性能: 完整描述系统中所处理的全部信息; 完全描述系统状态变化所需处理或功能; 3)表示。详细描述系统的对外接口与界面。 2.系统工程 用定量和定性相结合的系统思想和方法处理大型复杂系统的问题,无论是系统的设计或组织建立,还是系统的经营管理,都可以统一的看成是一类工程实践,统称为系统工程。 第二次世界大战以后。为适应社会化大生产和复杂的科学技术体系的需要.逐步把自然科学与社会科学中的某些理论和策略、方法联系起来.应用现代数学和电子计算机等工具.解决复杂系统的组织、管理相控制问题,以达到最优设计、最优控制和最优管理的目标。系统工程是一门高度综合性的管理工程技术,涉及自然科学棚社会科学的多门学科。构成系统工程的基本要素是:人、物、财、

目标、机器设备、信息等六大因素。各个因京之间是互相联系、互相制约的关系。 系统工程大体上可分为系统开发、系统制造和系统运用三个阶段,每个阶段又可划分为若干小阶段或步骤。系统工程的基本方法是:系统分析、系统设计相系统的综合评价。具体地说,就是用数学模型和逻辑模型来描述系统,通过模拟反映系统的运行、求得系统的最优组合方案和最优的运行方案。 70 年代以来,系统工程已广泛地应用于交通运输、通讯、企业生产经营等部门,在体育领域亦有应用价值和广阔的前景。 它的基本特点是:把研究对象作为整体看待,要求对任一对象的研究都必须从它的组成、结构、功能、相互联系方式、历史的发展和外部环境等方面进行综合的考察.做到分析与综合的统一。最常用的系统工程方法,是系统工程创始人之 霍尔创立的,称为三维结构图:①时间维。对一个具体工程,从规划起一直到更新为止.全部程序可分为规划、拟定 方案、研制、生产、安装、运转和更新七个阶段。②逻辑维。 对一个大型项目可分为明确目的、指标设计、系统方案组合、系统分析、最优化、作出决定和制定方案七个步骤。③知识维。系统工程需使用各种专业知识,霍尔把这些知识分成工程、医药、建筑、商业、法津、管理、社会科学和艺术等,把这些专业知识称为知识维。 3.系统科学 系统科学是以系统思想为中心的一类新型的科学群。它包括系统论、信息论、控制论、耗散结构论、协同论以及运筹学、系统工程、信息传播技术、控制管理技术等等许多学科在内,是20 世纪中叶以来发展最快的一大类综合性科学。 什么是“老三论”、“新三论” 系统论、控制论和信息论是本世纪四十年代先后创立并获得迅猛发展的三门系统理论的分支学科。虽然它们仅有半个世纪,但在系统科学领域中已是资深望重的元老,合称“老三论”。

系统论概论

系统论概论(System Theory) 系统论是研究系统的一般模式,结构和规律的学问,它研究各种系统的共同特征,用数学方法定量地描述其功能,寻求并确立适用于一切系统的原理、原则和数学模型,是具有逻辑和数学性质的一门新兴的科学。 系统思想源远流长,但作为一门科学的系统论,人们公认是美籍奥地利人、理论生物学家L.V.贝塔朗菲(L.Von.Bertalanffy)创立的。他在1952年发表“抗体系统论”,提出了系统论的思想。1973年提出了一般系统论原理,奠定了这门科学的理论基础。但是他的论文《关于一般系统论》,到1945年才分开发表,他的理论到1948年在美国再次讲授“一般系统论”时,才得到学术界的重视。确立这门科学学术地位的是1968年贝塔朗菲发表的专著:《一般系统理论——基础、发展和应用》(《General System Theory; Foundations, Development, Applications》),该书被公认为是这门学科的代表作。 系统一词,来源于古希腊语,是由部分构成整体的意思。今天人们从各种角度上研究系统,对系统下的定义不下几十种。如说“系统是诸元素及其顺常行为的给定集合”,“系统是有组织的和被组织化的全体”,“系统是有联系的物质和过程的集合”,“系统是许多要素保持有机的秩序,向同一目的行动的东西”,等等。一般系统论则试图给一个能描示各种系统共同特征的一般的系统定义,通常把系统定义为:由若干要素以一定结构形式联结构成的具有某种功能的有机整体。在这个定义中包括了系统、要素、结构、功能四个概念,表明了要素与要素、要素与系统、系统与环境三方面的关系。 系统论认为,整体性、联系性,层次结构性、动态平衡性、时序性等是所有系统的共同的基本特征。这些,既是系统所具有的基本思想观点,而且它也是系统方法的基本原则,表现了系统论不仅是反映客观规律的科学理论,具有科学方法论的含义,这正是系统论这门科学的特点。贝塔朗菲对此曾作过说明,英语System Approach直译为系统方法,也可译成系统论,因为它既可代表概念、观点、模型,又可表示数学方法。他说,我们故意用Approach 这样一个不太严格的词,正好表明这门学科的性质特点。 系统论的核心思想是系统的整体观念。贝塔朗菲强调,任何系统都是一个有机的整体,它不是各个部分的机械组合或简单相加,系统的整体工功能是各要素在孤立状态下所没有的新性质。他用亚里斯多德的“整体大于部分之和”的名言来说明系统的整体性,反对那种认为要素性能好,整体性能一定好,以局部说明整体的机械论的观点。同时认为,系统中各要素不是孤立地存在着,每个要素在系统中都处于一定的位臵上,起着特定的作用。要素之间相互关联,构成了一个不可分割的整体。要素是整体中的要素,如果将要素从系统整体中割离出来,它将失去要素的作用。正象人手在人体中它是劳动的器官,一旦将手从人体中砍下来,那时它将不再是劳动的器官了一样。 系统论的基本思想方法,就是把所研究和处理的对象,当作一个系统,分析系统的结构和功能,研究系统、要素、环境三者的相互关系和变动的规律性,并优化系统观点看问题,世界上任何事物都可以看成是一个系统,系统是普遍存在的。大至渺茫的宇宙,小至微观的原子,一粒种子、一群蜜蜂、一台机器、一个工厂、一个学会团体、……都是系统,整个世界就是系统的集合。 系统是多种多样的,可以根据不同的原则和情况来划分系统的类型。按人类干预的情况可划分自然系统、人工系统;按学科领域就可分成自然系统、社会系统和思维系统;按范围划妥则有宏观系统、微观系统;按与环境的关系划分就有开放系统、封闭系统、孤立系统;按

系统论

系统论 宇宙自然人类,一切都在一个统一的运转的系统之中!一切伟大的进步都必须以系统论做为出发点及归属处! 系统思想源远流长,但作为一门科学的系统论,人们公认是美籍奥地利人、理论生物学家L.V.贝塔朗菲(L.Von.Bertalanffy)创立的。他在1952年发表“抗体系统论”,提出了系统论的思想。1937年提出了一般系统论原理,奠定了这门科学的理论基础。但是他的论文《关于一般系统论》,到1945年才公开发表,他的理论到1948年在美国再次讲授“一般系统论”时,才得到学术界的重视。确立这门科学学术地位的是1968年贝塔朗菲发表的专著:《一般系统理论基础、发展和应用》(《GeneralSystemTheory;Foundations,Development, Applications》),该书被公认为是这门学科的代表作。 系统一词,来源于古希腊语,是由部分构成整体的意思。今天人们从各种角度上研究系统,对系统下的定义不下几十种。如说“系统是诸元素及其顺常行为的给定集合”,“系统是有组织的和被组织化的全体”,“系统是有联系的物质和过程的集合”,“系统是许多要素保持有机的秩序,向同一目的行动的东西”,等等。一般系统论则试图给一个能描示各种系统共同特征的一般的系统定义,通常把系统定义为:由若干要素以一定结构形式联结构成的具有某种功能的有机整体。在这个定义中包括了系统、要素、结构、功能四个概念,表明了要素与要素、要素与系统、系统与环境三方面的关系。 系统论内容 系统论认为,整体性、关联性,等级结构性、动态平衡性、时序性等是所有系统的共同的基本特征。这些,既是系统所具有的基本思想观点,而且它也是系统方法的基本原则,表现了系统论不仅是反映客观规律的科学理论,具有科学方法论的含义,这正是系统论这门科学的特点。,贝塔朗菲对此曾作过说明,英语SystemApproach直译为系统方法,也可译成系统论,因为它既可代表概念、观点、模型,又可表示数学方法。他说,我们故意用Approach这样一个不太严格的词,正好表明这门学科的性质特点。 核心思想 系统论的核心思想是系统的整体观念。贝塔朗菲强调,任何系统都是一个有机的整体,它不是各个部分的机械组合或简单相加,系统的整体功能是各要素在孤立状态下所没有的性质。他用亚里斯多德的“整体大于部分之和”的名言来说明系统的整体性,反对那种认为要素性能好,整体性

系统论、信息论,控制论

系统论,信息论,控制论 第一章系统论产生的历史概况 第一节现代系统论的产生 一、什么是系统论 系统论是研究客观现实系统共同的特征、本质、原理和规律的科学。它所概括的思想、理论、方法,普遍地适用于物理、生物、技术和社会系统。系统论最明显的特征是具有新科学思想和方法论的意义,它主张从整体出发去研究系统与系统、系统与要素以及系统与环境之间的普遍联系。它从揭示系统的整体规律上,为解决现代科学技术、社会和经济等方面的复杂问题,提供了新的理论武器。系统论的思想渊源是辩证法,它强调从事物普通联系和发展变化中研究事物。现代系统论不仅从哲学角度提出了有关系统的基本思想而且通过科学的、精确的数学方法,定量地描述系统机制及其发展变化过程。所以,系统论的原理及方法具有普通的适用性。 二、系统论思想的产生过程 一般系统论创始人是美籍奥地利生物学家贝塔朗菲(L.V.Bertalanffy,1901--1972),系统论作为一门科学,产生于本世纪20--30年代。贝塔朗菲创立系统论是有—个历史过程的,他是生物学家,他的系统论思想的形成与当时的生物学界的学术争论以及他本人亲自参加这场讨论有关。 在生物学史上,一直存在着机械论与活力论之争。机械论在生物学中表现为一种简化论和机械决定论,他们用分析方法把生物简化为物理的和化学的问题,纯粹用物理的、机械的和化学的原因来说明一切生命的生理现象和心理过程,即一种原因产生一种结果,反之亦然。法国18世纪唯物论学者拉·梅特立是机械论最典型的代表人物之一。他的主要著作《人是机器》就是把人这种高级生物看成是一架机器,人就是出各种零件组成的机器。活力论则认为在生物体内部存在着一种特殊的“活力”,它支配着整个生命过程,活力论者断言:“在有机界与无机界之间隔着一道不可逾越的鸿沟;因为有机界是由一种支配着生物体内全部物理化学过程的、有一定目的的超物质的(超自然的)力量所产生的”。德国的杜里舒是新活力论的代表,他分别用半个和两个完整的海胆做实验,结果都能生产出一个正常的海胆来。因此他证明:不同的原因可以产生出同一结果来。他认为这种异因同果律是与物理学定律相矛盾的。杜里舒的实验结果对机械决定论是一个沉重打击。生物学上这场争论在30世纪20-30年代达到了激化的程度。贝塔朗菲的一般系统论思想就是在这样的历史背景下孕育形成的。作为生物学中的机械论在这场争论中有自己的独立见解,他认为生物学中的机械论与活力论都不可取,他不同意双方的观点。 1924—1928年贝塔朗菲多次发表文章,强调要把有机体当作一个整体或系统来考虑,并且认为科学的主要目标就在于发现种种不同层次上的组织原理。他表述了系统论的思想,提出了生物学中的机械论概念。1932年贝塔朗菲发表了《理论生物学》一书,较完整地提出来

系统论、控制论和信息论

系统论、控制论和信息论简介 现代科学技术的发展在高度分化的基础上,有着高度综合的特点,一方面向深度发展,科学研究的对象越来越专一,科学分类越来越精细,新领域、新科学、新专业不断产生;另一方面,各科学之间又相互渗透、相互交叉和相互移植而使得科学技术日趋整体化和综合化。系统论、控制论和信息论就是科学技术整体化,综合化的产物,这是二十世纪自然科学取得的重大成就之一,它是具有综合特性的横向科学,它沟通了自然科学和社会的联系,改变了科学发展的图景和人们的思维方式,并以其特有的新颖的思路,为科学研究提供了崭新的方法,扩大了人们研究问题的广度和深度,实现了人类认识史上由定性到定量认识物质之间各种关系的新飞跃,极大地提高了人类认识世界、改造世界的能力。 因为系统论、控制论、信息论在科学体系结构中的横向科学的特殊地位,就决定了它在丰富和发展辩证唯物主义哲学方面、在促进科学技术的发展方面、在解决一切复杂的科学、技术、经济和社会问题等方面,有着其他科学不可替代的重要作用。 系统论、控制论和信息论是三门科学,是现代科学前沿的新兴“软”科学群,它们各有不同的出发点和内容,但它们是在同一历史背景下,从不同侧面研究同一个问题而产生的,其手段也有很多共同之处。与其他基础科学不同,研究的对象既不是客观世界中哪一种结构,也不是物质的某种运动形态,而是从横向综合的角度,研究物质运动的规律,从而揭示世界各种互不相同的事物在某些方面的内在联系和本质特性,三者各成体系,但都应用系统、控制、信息的基本概念、基本思想,互相交叉、互相借鉴,协同发展。 系统论是把要研究和处理的对象看成由一些相互联系、相互作用的若干因素组成的系统,研究系统就是寻求利用信息实现最优系统的途径。显然任何系统都离不开信息,因此研究系统就必须研究反映系统与环境、系统与子系统之间的联系的不可缺少的要素信息。一个系统信息量的大小,反映系统的组织化、复杂化度的高低。而系统的运行又离不开控制,对系统的控制同样离不开信息。 信息论研究如何认识信息、控制论和系统论研究如何利用信息。 控制论揭示了事物联系的反馈原理,用以实现对系统的有效控制。 一、系统论

维纳和控制论 香农和信息论

维纳和控制论 控制论是关于自我控制系统的理论,它以“反馈”概念为依据,其定义是通过关于一个系统以往运行情况的信息,来控制这个系统的未来行为。控制论由维纳提出,说起维纳,不禁就想起了严父教育下的神童。维纳的父亲自学成才,随后在大学教书,维纳在相当于小学后辍学由其父亲亲自教育,并且在复学后可以与比他大的年级的学生一比高下。维纳在18岁获得哈佛大学哲学博士生学位。在获得博士后学位后他参军一年,随后在麻省理工学院教书,维纳在麻省理工学院以其“维纳步行”而闻名,“维纳步行”是指维纳经常在走路的时候思考问题,不语、低头,所以他经常走路时不看路只看墙上的标识,他经常走着走着,想着想着就突然不打招呼的走进一个教授的办公室,与其讲论自己的所思,一次在一个大的阶梯教室里,正在举行一个讲座,正在进行时只见维纳低着头一言不发的从讲台上穿过去然后又围着教室转了一圈才走出去,很明显他只是跟着墙上的标识走,并且已经陷入了自己的沉思中,而整个阶梯教室的师生都一言不发的看着维纳走了出去。麻省理工学院至今仍然传送者维纳的趣事。 控制论是在维纳在二战期间研究高射炮炮火准确性时逐渐形成的,因为其主要涉及数学方面所以对其理论不明白,但是控制论在传播学方面的贡献明显是巨大的。 1、反馈是一种特殊类型的传播信息流通,因为被传递的信息描绘了系统自身在从前某一时 间的运行状况。 2、控制论包含着一种时间中的动力学的、行进中的行为观。 3、控制论假定,一个系统的控制主要在于这个系统内部。一个系统自身的行为结果提供了 新的信息,系统就凭借这个新的信息修正他自己随后的行为。因此,这个系统从他自身中学习。关于环境变化的信息只有当这些变化必须适应于反馈的时候,才能影响这个系统。 与控制论相配套的是系统论。系统论是全面的,它强调一个整体中的各个部分之间的相互关系。 香农和信息论 香农1916年生于密歇根州,从小对数学与科学产生了浓厚了兴趣,他在密歇根大学获电子工程和数学学士学位,在麻省理工学院获电子工程和数学的硕士学位和博士学位。香农在数学方面的才能在其读书时就已经显露出来,他在获得普林斯顿大学的博士后学位之前就应经在贝尔实验室工作了一年。 香农的职业生涯也受到二战的影响,因为二战的原因他在贝尔实验室主要从事密码学研究以及高射炮炮火的准确性研究,在贝尔实验室的工作中,香农和其同事实际上已经将信息论中的一小部分的到了验证与实验,香农在这个过程中逐渐形成了信息论的理论思想,但是他并不急于发表他的发现,在接下来的几年,香农继续研究他的信息论甚至沉迷于他的信息论,在香农发表了其学术后,香农的同事们很是震惊也很是佩服,之后就是整个研究界的震惊并且一股信息论的研究浪潮也随之掀起。信息论很快就应用于除数学电子以外的其他领域,其中就包括传播学领域,其实香农认为自己的研究不应该被这么多领域所应用,因为他觉得这样会带来危险,但是学者们并不这样认为。 香农的单向传播行为的模式有助于奠定传播学的学术领域,它为传播行为中的主要组成部分提供了一个单一的、易于理解的明确说明。这些主要组成部分是:信源、讯息、信道、接收器。因此,对于传播行为的传播研究可以确定出信源变量(诸如可信度)、讯息变量(就像使用恐吓呼吁)、信道变量(诸如大众媒体与人际信道)和接受者变量(如受众个体的可说服性)。传播研究中的因变量对效果进行测度,诸如接受者一方的认识变化,态度变化(说

一般系统论的主要内容及其应用

一般系统论的主要内容及其应用 一般系统论的主要内容及其应用 研究系统思想和系统方法的哲学理论﹐又称系统观。辩证唯物主义认为﹐物质世界是由无数相互联系﹑相互依赖﹑相互制约﹑相互作用的事物和过程所形成的统一整体﹐这就是系统普遍存在性的哲学基础。系统思想和系统方法又为辩证唯物主义的发展提供了素材。也有人将系统思想和一般系统论称为系统论﹐与控制论和信息论一起俗称三论。 研究复杂系统的一般规律的学科﹐又称普通系统论。现代科学可按所研究的对象系统的具体形式划分成各门学科﹐如物理学﹑化学﹑生物学﹑经济学和社会学等﹔也可按研究方法划分成两大类别﹐即简单系统理论和复杂系统理论。一般系统论是研究复杂系统理论的学科﹐着重研究复杂系统的潜在的一般规律。历史背景系统的存在是客观事实﹐但人类对系统的认识却经历了漫长的岁月﹐对简单系统研究得较多﹐而对复杂系统则研究得较少。直到20世纪30年代前后才逐渐形成一般系统论。一般系统论来源于生物学中的机体论﹐是在研究复杂的生命系统中诞生的。1925年英国数理逻辑学家和哲学家N.怀特海在《科学与近代世界》一文中

提出用机体论代替机械决定论﹐认为只有把生命体看成是一个有机整体﹐才能解释复杂的生命现象。1925年美国学者A.J.洛特卡发表的《物理生物学原理》和1927年德国学者W.克勒发表的《论调节问题》中先后提出了一般系统论的思想。1924~1928年奥地利理论生物学家贝塔朗菲﹐L.von多次发表文章表达一般系统论的思想﹐提出生物学中有机体的概念﹐强调必须把有机体当作一个整体或系统来研究﹐才能发现不同层次上的组织原理。他在1932年发表的《理论生物学》和1934年发表的《现代发展理论》中提出用数学模型来研究生物学的方法和机体系统论的概念﹐把协调﹑有序﹑目的性等概念用于研究有机体﹐形成研究生命体的三个基本观点﹐即系统观点﹑动态观点和层次观点。1937年贝塔朗菲在芝加哥大学的一次哲学讨论会上第一次提出一般系统论的概念。但由于当时生物学界的压力﹐没有正式发表。1945年他发表《关于一般系统论》的文章﹐但不久毁于战火﹐没有引起人们的注意。1947~1948年贝塔朗菲在美国讲学和参加专题讨论会时进一步阐明了一般系统论的思想﹐指出不论系统的具体种类﹑组成部分的性质和它们之间的关系如何﹐存在着适用于综合系统或子系统的一般模式﹑原则和规律﹐并于1954年发起成立一般系统论学会(后改名为一般系统论研究会)﹐促进一般系统论的发展﹐出版《行为科学》杂志和《一般系统年鉴》。虽然一般系统论几

系统论和系统原理

系统论和系统原理

系统论和系统原理 一、系统论概述 这里所说的系统论,是有关系统的全部理论和方法。目前学术界公认,系统论是本世纪40年代由美籍奥地利理论生物学家冯·贝塔朗菲首先明确提出,后经许多科学家发展形成的,它包括贝塔朗菲提出的一般系统论,维纳提出的控制论,申农提出的信息论,普里高津提出的耗散结构理论,哈肯提出的协同理论等等,也包括在科学及工程领域得到广泛应用的系统分析技术。 (一)系统的概念及其特征 系统,是指由若干相互联系、相互作用的部分组成,在一定环境中具有特定功能的有机整体。组成系统的各个部分,被称为要素、单元或子系统。由于系统可以划分为不同层次的要素,所以,要素具有相对性。 我们可以从不同角度对系统进行分类。按照自然界从低级到高级的层次,可分为无机系统,生物机体系统,社会系统;按照系统的要素及其形成与人类实践的关系,可以分为自然系统和人造系统;按照系统与环境的联系,可分为封闭系统和开放系统。此外,按系统状态与时间的关系,可分为静态系统和动态系统;按系统要素的客观实在性,可分为实体系统和概念系统;按系统功能、目标的多寡,可分为单目标单功能系统和多目标多功能系统;按系统的规模、复杂程度,可分为小系统、大系统、超大系统及简单系统和复杂系统,等等。 系统的一般特征包括集合性、相关性、层次性、环境制约性、整体性、动态性,对于人造系统,还有目的性的特征。 1、集合性。系统总是由若干元素组成的。单独一个元素不能称为系统。在系统中各元素具有相对独立性,具有可识别的界限或标识。例如,人体是由呼吸器官、消化器官、血液循环器官、运动器官、神经器官等部分组成;企业是由若干车间、班组、科室所组成,等等。识别系统,必须分析系统的构成元素。 2、相关性。在系统内各元素不是孤立存在的,而是存在这样那样的联系。所谓系统的联系,是指系统内各部分之间发生的物质、能量、信息的传递和交流。结果是某一部分的变化会导致另外部分的变化,这就是所谓相关性。例如,企业的销售部门工作不力,会导致正常的采购商品积压;经理的高昂斗志会鼓舞其下属努力工作等等。 3、层次性。世界上绝大多数系统都有复杂的层次结构,例如,联想集团公司由联想电脑、神州数码、联想控股等三家法人企业组成;联想电脑公司又由许多部门组成,每个部门由若干员工组成。不同层次具有不同功能:员工层次完成局部工作;部门可以生产部件或提供诸如采购、会计、人事等某一方面的职能;企业则提供相对完整的商品或配套服务。 4、整体性和系统功能。系统不是若干元素的机械堆砌,而是存在有机联系的整体。系统整体的性质和功能不等于构成系统各部分的性质或功能的加总,人们形象地用1加1不等于2表示,

系统论的基本原理

《系统论的基本原理》 (一)系统整体性原理 系统整体性原理指的是,系统是由若干要素组成的具有一定新功能的有机整体,各个作为系统子单元的要素一旦组成系统整体,就具有独立要素所不具有的性质和功能,形成了新的系统的质的规定性,从而表现出整体的性质和功能不等于各个要素的性质和功能的简单加和。 从相互作用是最根本原因来看,系统中要素之间是由于相互作用联系起来的。系统之中的相互作用,是大量线性相互作用,这就使得系统具有了整体。对于线性相互作用,线性相互作用的各方实际上是可以逐步分开来讨论的,部分可以在不影响整体性质的情况下从整体之中分离出来,整体的相互作用可以看作各个部分的相互作用的简单迭加,也就是线性迭加。而对于非线性相互作用,整体的相互作用不再等于部分相互作用的简单迭加,部分不可能在不对整体造成影响的情况下从整体之中分离出来,各个部分处于有机的复杂的联系之中,每一个部分都是相互影响,相互制约的。这样就有了每一个部分都影响着整体,反过来整体又制约着部分。近代科学信奉原子论的分析观点,恰恰与近代科学信奉线性律,以追求运动方程的线性解为自己的崇高目标相一致。而当数学家最先证明实际上线性系统的测度几乎为零,即系统几乎都是非线性系统,这就已经告诉人们,我们的世界在本质上是一个非线性的世界,现实的系统几乎都是非线性系统。而从整体与部分的关系看来,这恰恰是说,系统具有整体性是必然的,普遍的和一般的。 系统的整体性,常常又被说成系统整体大于部分。古人已经天才地猜测到整体不同于部分,整体大于部分。所谓的整体大于部分,作为一个关于整体与部分关系的最一般哲学命题,其实质是说系统的整体具有系统中部分所不具有的性质,系统整体不同于系统的部分的简单加和即机械和。系统整体的性质不可能完全归结为系统要素的性质来解释。一般系统论的创立者贝塔朗菲就曾指出:“整体大于部分之和”,这句话多少有点神秘,其实它的含义不过是组合特征不能用孤立部分的特征来解释。系统是由要素组成的,整体是由部分组成的,要素一旦组合成系统,部分一旦组合成整体,就会反过来制约要素,制约部分。所谓的“整体大于部分”,也是这种情况的概括。系统具有整体性,但是不能归结为整体论。按照原子论传统,高层次现象归结为低层次实体来解释,事物整体行为归结以部分来加以解释,相应地,事物的质就归结为量来进行解释。片面地强调分析,体现的正是这样的原子论传统。从原子论出发,进行研究时要把对象整体分解为部分,整体就仅仅在对于部分的研究之中来加以理解,从而整体也就等同于部分了。换言之,部分也就取代了整体。事实上,这种理解也就把世界仅仅分解为了肢零破碎的部分,如果说还有整体的话,那么整体就等同于部分的简单加和。这正是原子论的分析观。传统的整体论,虽然正确地看到了原子论观点的局限性,而试图从整体上来把握事物,这无疑有其合理性。但是,由于时代科学水平的限制,这样的整体往往成为一种没有具体内容的整体。从而也就只是没有内容的整体性,或者也可以是暖味不清的整体性。一方面,这样的整体论,往往成为伪科学或非科学的避难所,在一定的意义上近代科学中的种种生命力论,活力论正是这样的整体论。另一方面,这种整体论,实际上又在很大程度上不再鼓励对于对象进行科学研究,整体就是整体,除此之外再也无话可说,从而实际上往往在科学的名义下就取消了科学。 二)系统层次性原理 系统的层次性原理指的是,由于组成系统的诸要素的种种差异包括结合方式上的差异,从而使系统组织在地位与作用,结构与功能上表现出等级秩序性,形成了具有质的差异的系统等级,层次概念就反映这种有质的差异的不同的系统等级或系统中的高级差异性。 系统的层次性犹如套箱。系统是由要素组成的。但是,一方面,这一系统又只是上一级系统的子系统——要素,而这一级系统又只是更大系统的要素。另一方面,这一系统的要素却又是由低一层的要素组成的,

系统论

系统论和系统原理 一、系统论概述 这里所说的系统论,是有关系统的全部理论和方法。目前学术界公认,系统论是本世纪40年代由美籍奥地利理论生物学家冯·贝塔朗菲首先明确提出,后经许多科学家发展形成的,它包括贝塔朗菲提出的一般系统论,维纳提出的控制论,申农提出的信息论,普里高津提出的耗散结构理论,哈肯提出的协同理论等等,也包括在科学及工程领域得到广泛应用的系统分析技术。 (一)系统的概念及其特征 系统,是指由若干相互联系、相互作用的部分组成,在一定环境中具有特定功能的有机整体。组成系统的各个部分,被称为要素、单元或子系统。由于系统可以划分为不同层次的要素,所以,要素具有相对性。 我们可以从不同角度对系统进行分类。按照自然界从低级到高级的层次,可分为无机系统,生物机体系统,社会系统;按照系统的要素及其形成与人类实践的关系,可以分为自然系统和人造系统;按照系统与环境的联系,可分为封闭系统和开放系统。此外,按系统状态与时间的关系,可分为静态系统和动态系统;按系统要素的客观实在性,可分为实体系统和概念系统;按系统功能、目标的多寡,可分为单目标单功能系统和多目标多功能系统;按系统的规模、复杂程度,可分为小系统、大系统、超大系统及简单系统和复杂系统,等等。 系统的一般特征包括集合性、相关性、层次性、环境制约性、整体性、动态性,对于人造系统,还有目的性的特征。 1、集合性。系统总是由若干元素组成的。单独一个元素不能称为系统。在系统中各元素具有相对独立性,具有可识别的界限或标识。例如,人体是由呼吸器官、消化器官、血液循环器官、运动器官、神经器官等部分组成;企业是由若干车间、班组、科室所组成,等等。识别系统,必须分析系统的构成元素。 2、相关性。在系统内各元素不是孤立存在的,而是存在这样那样的联系。所谓系统的联系,是指系统内各部分之间发生的物质、能量、信息的传递和交流。结果是某一部分的变化会导致另外部分的变化,这就是所谓相关性。例如,企业的销售部门工作不力,会导致正常的采购商品积压;经理的高昂斗志会鼓舞其下属努力工作等等。

相关主题
文本预览
相关文档 最新文档