导轨的结构设计演示教学
- 格式:doc
- 大小:323.00 KB
- 文档页数:13
数控机床核心部件:滚珠直线滚动导轨结构简介作为运动引导装置的一种的直线导轨具备轨道和以能够沿着轨道移动的方式安装的滑块。
在轨道和滑块之间设置有多个能够进行滚动运动的钢球。
多个钢球在设置于滑块上的环状的钢球循环路中循环。
滑块的钢球循环路由与轨道的钢球滚动槽对置的直线状的负载钢球滚动槽(即,负荷滚动路)、与负载钢球滚动槽平行的直线状的钢球返回路(即,无负荷通路 ) 以及将负载钢球滚动槽的端部和钢球返回路的端部连接的 U 字状的钢球方向转换路构成。
在上述运动引导装置中,当安装于滑块上的被载置物产生倾斜等时、即在安装面上存在较大误差时,产生的内部载荷都集中在负荷滚动路上,根据轨道的寿命计算公式 L=(C /P)3 ×50( 其中,L :轨道的寿命、C :轨道的额定动载荷、P :负荷计算值 ( 包括使用时施加的外部载荷和误差等引起的内部载荷)) 明确可知,由于负荷计算值P 增大而导致轨道寿命 L 降低。
为了分担上述的集中作用在负荷滚动路上的内部载荷,在该运动引导装置中,沿着轨道滑动的滑块分为上滑块和下滑块,在上滑块和下滑块相对置的对置面之间设置有作为滚动体的针辊、用于保持该针辊的保持架以及减振膜,并且,在针辊滚动的对置面的滚动方向的两端部和保持架的侧边之间形成有间隙,上滑块相对于下滑块在该间隙的范围内沿着与滑块滑动的方向正交的方向滑动。
通过上述的结构,即便在安装面上存在较大误差时,通过上滑块的移动,也能够消除或降低平行度的误差,不产生滑动阻力的变动等。
也就是说,通过上述的针辊和减振膜来分担集中作用在负荷滚动路上的内部载荷,从而降低作用在负荷滚动路上的内部载荷以提高轨道的寿命。
但是,只能以特定的载荷方向为对象,即,仅仅能够消除或降低特定的载荷方向即与滑块滑动的方向正交的方向的误差,无法消除或降低其他方向的误差。
数控机床核心部件:滚珠直线滚动导轨结构作为运动引导装置的一种的直线导轨具备轨道10 和以能够沿着轨道 10 移动的方式安装的滑块 1,滑块 1 在轨道 10 的长度方向上相对地进行直线运动。
导轨的结构设计直线导轨的结构设计(含转动导轨)1 导轨的作用和设计要求当运动件沿着承导件作直线运动时,承导件上的导轨起支承和导向的作用,即支承运动件和保证运动件在外力(载荷及运动件本身的重量)的作用下,沿给定的方向进行直线运动。
对导轨的要求如下:1.一定的导向精度。
导向精度是指运动件沿导轨移动的直线性,以及它与有关基面间的相互位置的正确性。
2.运动轻便平稳。
工作时,应轻便省力,速度均匀,低速时应无爬行现象。
3.良好的耐磨性。
导轨的耐磨性是指导轨长期使用后,能保持一定的使用精度。
导轨在使用过程中要磨损,但应使磨损量小,且磨损后能自动补偿或便于调整。
4.足够的刚度。
运动件所受的外力,是由导轨面承受的,故导轨应有足够的接触刚度。
为此,常用加大导轨面宽度,以降低导轨面比压;设置辅助导轨,以承受外载。
5.温度变化影响小。
应保证导轨在工作温度变化的条件下,仍能正常工作。
6.结构工艺性好。
在保证导轨其它要求的条件下,应使导轨结构简单,便于加工、丈量、装配和调整,降低本钱。
不同设备的导轨,必须作具体分析,对其提出相应的设计要求。
必须指出,上述六点要求是相互影响的。
2 导轨设计的主要内容设计导轨应包括下列几方面内容:1.根据工作条件,选择合适的导轨类型。
2.选择导轨的截面外形,以保证导向精度。
3.选择适当的导轨结构及尺寸,使其在给定的载荷及工作温度范围内,有足够的刚度,良好的耐磨性,以及运动轻便和平稳。
4.选择导轨的补偿及调整装置,经长期使用后,通过调整能保持需要的导向精度。
5.选择公道的润滑方法和防护装置,使导轨有良好的工作条件,以减少摩擦和磨损。
6.制订保证导轨所必须的技术条件,如选择适当的材料,以及热处理、精加工和丈量方法等。
3 导轨的结构设计1. 滑动导轨(1) 基本形式(见图21-10)三角形导轨:该导轨磨损后能自动补偿,故导向精度高。
它的截面角度由载荷大小及导向要求而定,一般为90°。
为增加承载面积,减小比压,在导轨高度不变的条件下,采用较大的顶角(110°~120°);为进步导向性,采用较小的顶角(60°)。
假如导轨上所受的力,在两个方向上的分力相差很大,应采用不对称三角形,以使力的作用方向尽可能垂直于导轨面。
矩形导轨:优点是结构简单,制造、检验和修理方便;导轨面较宽,承载力较大,刚度高,故应用广泛。
但它的导向精度没有三角形导轨高;导轨间隙需用压板或镶条调整,且磨损后需重新调整。
燕尾形导轨:燕尾形导轨的调整及夹紧较简便,用一根镶条可调节各面的间隙,且高度小,结构紧凑;但制造检验不方便,摩擦力较大,刚度较差。
用于运动速度不高,受力不大,高度尺寸受限制的场合。
圆形导轨:制造方便,外圆采用磨削,内孔珩磨可达精密的配合,但磨损后不能调整间隙。
为防止转动,可在圆柱表面开键槽或加工出平面,但不能承受大的扭矩。
宜用于承受轴向载荷的场合。
(2)常用导轨组合形式三角形和矩形组合:这种组合形式以三角导轨为导向面,导向精度较高,而平导轨的工艺性好,因此应用最广。
这种组合有V-平组合、棱-平组合两种形式。
V-平组合导轨易储存润滑油,低、高速都能采用;棱-平组合导轨不能储存润滑油,只用于低速移动。
见图21-11。
图21-11为使导轨移动轻便省力和两导轨磨损均匀,驱动元件应设在三角形导轨之下,或偏向三角形导轨。
矩形和矩形组合:承载面和导向面分开,因而制造和调整简单。
导向面的间隙用镶条调整,接触刚度低。
见图双三角形导轨:由于采用对称结构,两条导轨磨损均匀,磨损后对称位置位置不变,故加工精度影响小。
接触刚度好,导向精度高,但工艺性差,四个表面刮削或磨削也难以完全接触,假如运动部件热变形不同,也不能保证四个面同时接触,故不宜用在温度变化大的场合。
(3)间隙调整为保证导轨正常工作,导轨滑动表面之间应保持适当的间隙。
间隙过小,会增加摩擦阻力;间隙过大,会降低导向精度。
导轨的间隙如依靠刮研来保证,要废很大的劳动量,而且导轨经过长期使用后,会因磨损而增大间隙,需要及时调整,故导轨应有间隙调整装置。
矩形导轨需要在垂直和水平两个方向上调整间隙。
在垂直方向上,一般采用下压板调整它的低面间隙,其方法有:a)刮研或配磨下压板的结合面;b)用螺钉调整镶条位置;c)改变垫片的片数或厚度;见图21-13。
在水平方向上,常用平镶条或斜镶条调整它的侧面间隙。
见图21-14。
圆形导轨的间隙不能调整。
图21-13图21-14(4)夹紧装置有些导轨(如非水平放置的导轨)在移动之后要求将它的位置固定,因而要用专用的锁(夹)紧装置。
常用的锁紧方式有机械锁紧和液压锁紧。
见图21-15。
(5)进步耐磨性措施导轨的使用寿命取决于导轨的结构、材料、制造质量、热处理方法,以及使用与维护。
进步导轨的耐磨性,使其在较长的时间内保持一定的导向精度,就能延长设备的使用寿命。
进步导轨耐磨性的措施有:1)选择公道的比压单位面积上的压力成为比压,即p=P/S(公斤/厘米2)式中 P-作用在导轨上的力(公斤)S-导轨的支承面积(厘米2)由上式可知,要减小导轨的比压,应减轻运动部件的重量和增大导轨支承面的面积。
减小两导轨面之间的中心距,可以减小外形尺寸和减轻运动部件的重量。
但减小中心距受到结构尺寸的限制,同时中心距太小,将导致运动不稳定。
降低导轨比压的另一办法,是采用卸荷装置,即在导轨载荷的相反方向,增加弹簧或液压作用力,以抵消导轨所承受的部分载荷。
2)选择合适材料目前常采用的导轨材料有以下几种:铸铁- 导轨与承导件或运动件铸成一体,其材料常用灰口铸铁。
它具有本钱低,工艺性好,热稳定性高等优点。
在润滑和防护良好的情况下,具有一定的耐磨性。
常用的是HT200~HT400,硬度以HB=180~200较为合适。
适当增加铸铁中含碳量和含磷量,减少含硅量,可进步导轨的耐磨性。
若灰口铸铁不能满足耐磨性要求,可使用耐磨铸铁,如高磷铸铁,硬度为HB=180~220,耐磨性能比灰口铸铁高一倍左右。
若加进一定量的铜和钛,成为磷铜钛铸铁,其耐磨性比灰口铸铁高两倍左右。
但高磷系铸铁的脆性和铸造应力较大,易产生裂纹,应采用适当的铸造工艺。
此外,还可使用低合金铸铁及稀土铸铁。
钢-要求较高的或焊接机架上的导轨,常用淬火的合金钢制造。
淬硬的钢导轨的耐磨性比普通灰铸铁高5~10倍。
常用的有20Cr钢渗碳淬火和40Cr高频淬火。
钢导轨镶接的方法有:螺钉连接,应使螺钉不受剪切;为避免导轨上有孔(孔内积存赃物而加速磨损),一般采用倒装螺钉。
结构上不便于从下面伸进螺钉固定时,可采用如图21-16所示的方法。
螺钉固紧后,将六角头磨平,使导轨上的螺钉孔和螺钉头之间没有间隙。
用环氧树脂胶接,胶接面之间的间隙不超过0.25毫米。
胶粘导轨具有一定的胶接刚度和强度,尚有一定的抗冲击性能,工艺简单,本钱较低。
塑料-用聚四氟乙烯为基材,添加不同的填充剂作为导轨材料。
它具有耐磨、抗振以及动、静摩擦系数低(0.04),可消除低速爬行现象,在实际应用中取得良好的效果。
3)热处理为进步铸铁导轨的耐磨性,常对导轨表面进行淬火处理。
表面淬火方法有:火焰淬火、高频淬火和电接触淬火。
4)润滑和防护润滑油能使导轨间形成一层极薄的油膜,阻止或减少导轨面直接接触,减小摩擦和磨损,以延长导轨的使用寿命。
同时,对低速运动,润滑可以防止"爬行";对高速运动,可减少摩擦热,减少热变形。
导轨润滑的方式有浇杯、油杯、手动油泵和自动润滑等。
导轨的防护装置用来防止切削、灰尘等赃物落到导轨表面,以免使导轨擦伤、生锈和过早的磨损。
为此,在运动导轨端部安装刮板;采用各种式样的防护罩,使导轨不过露等办法。
(6) 结构尺寸的验算1)校核温度变化对导轨间隙的影响导轨在温度变化较大的环境中工作,应在选定精度和配合后,作导轨间隙验算。
为了保证工作时不致卡住,导轨的最小间隙应大于或即是零,即Δmin≥0导轨的最小间隙用下式计算:Δmin=Dmin[1+αk(t-t0)]-dmax[1+αz(t-t0)] (mm)式中t-工作温度(°C)t0-制造时温度(°C)Dmin-包容件在t0时的最小尺寸(mm)dmax-被包容件在t0时的最大尺寸(mm)αk-包容件材料的线膨胀系数(1/°C)αz-被包容件材料的线膨胀系数(1/°C)为保证导向精度,导轨的最大间隙Δmax应小于或即是答应值,即Δmax≤[Δmax]导轨的最大间隙用下式计算:Δmax=Dmax[1+αk(t-t0)]-dmin[1+αz(t-t0)] (mm)式中 Dmax-包容件在t0时的最大尺寸(mm)dmin-被包容件在t0时的最小尺寸(mm)2)不自锁条件和导轨间隙计算当初定导轨的结构形式和尺寸后,应留意作用力的方向和作用点的位置,力求使导轨的倾斜力矩小,否则使导轨的摩擦力增大,磨损加快,从而降低导轨的灵活性和导向精度,甚至回使导轨卡住。
其验算公式见表21-6。
2.转动导轨在承导件和运动件之间放进一些转动体(滚珠、滚柱或滚针),使相配的两个导轨面不直接接触的导轨,称为转动导轨。
转动导轨的特点是摩擦阻力小,运动轻便灵活;磨损小,能长期保持精度;动、静摩擦系数差别小,低速时不易出现"爬行"现象,故运动均匀平稳。
因此,转动导轨在要求微量移动和精确定位的设备上,获得日益广泛的运用。
转动导轨的缺点是:导轨面和转动体是点接触或线接触,抗振性差,接触应力大,故对导轨的表面硬度要求高;对导轨的外形精度和转动体的尺寸精度要求高。
(1)结构形式滚珠导轨-图示21-17为V-平截面的滚珠导轨、双V形截面的滚珠导轨和圆形截面滚珠导轨。
由于滚珠和导轨面是点接触,故运动轻便,但刚度低,承载能力小。
常用于运动件重量、载荷不大的场合。
滚柱(滚针)导轨-滚柱导轨中的滚柱与导轨面是线接触,故它的承载能力和刚度比滚珠导轨大,耐磨性较好,灵活性稍差。
如图21-18,滚柱对导轨的不平度较敏感,轻易产生侧向偏移和滑动,而使导轨的阻力增加,磨损加快,精度降低。
滚柱的直径越大,对导轨的不平度越为敏感。
当结构尺寸受限制时,可采用直径较小的滚柱,这种导轨称为滚针导轨。
滚柱导轨支承为标准部件,具有安装、润滑简单,调整防护轻易等优点。
其结构如图21-19所示。
由于滚柱在封闭的滚道内转动,故可用于行程很大的导轨上。
转动导轨支撑1-本体 2-滚柱 3-导向片 4-反射器滚柱导轨可采用标准的转动轴承,装在偏心轴上,如图21-20所示,以便于调整。
其偏心量一般取0.2-0.5毫米。
2)转动导轨设计的一般题目1)结构形式的选择:转动导轨按其结构特点,分为开式和闭式两种。
开式转动导轨用于外加载荷作用在两条导轨中间,依靠运动件本身重量即可保持导轨良好接触的场合。