焊接方法和设备——第六章钨极氩弧焊
- 格式:ppt
- 大小:2.26 MB
- 文档页数:55
钨极氩弧焊一、概述:1、钨极氩弧焊就是以氩气作为保护气体,钨极作为不熔化极,借助钨电极与焊件之间产生的电弧,加热熔化母材(同时添加焊丝也被熔化)实现焊接的方法。
氩气用于保护焊缝金属和钨电极熔池,在电弧加热区域不被空气氧化。
2、一般氩弧焊的优点:(1) 能焊接除熔点非常低的铝锡外的绝大多数的金属和合金。
(2) 交流氩弧焊能焊接化学性质比较活泼和易形成氧化膜的铝及铝镁合金。
(3) 焊接时无焊渣、无飞溅。
(4) 能进行全方位焊接,用脉冲氩弧焊可减小热输入,适宜焊0.1mm不锈钢(5) 电弧温度高、热输入小、速度快、热影响面小、焊接变形小。
(6) 填充金属和添加量不受焊接电流的影响。
3、氩弧焊适用焊接范围适用于碳钢、合金钢、不锈钢、难熔金属铝及铝镁合金、铜及铜合金、钛及钛合金,以及超薄板0.1mm,同时能进行全方位焊接,特别对复杂焊件难以接近部位等等。
二、钨极氩弧焊焊机的组成1、本公司氩弧焊机的型号(见图表)、编制方法、文字说明。
2、焊机的部件(焊机、焊枪、气、水、电)、地线及地线钳、钨极。
3、焊机的连接方法(以WSM系列为例)(1) 焊机的一次进线,根据焊机的额定输入容量配制配电箱,空气开关的大小,一次线的截面。
(2) 焊机的输出电压计算方法:U=10+0.04I(3) 焊机极性,一般接法:工件接正为正极性接法;工件接负为负极性接法。
钨极氩弧焊一定要直流正极性接法:焊枪接负,工件接正。
(4) 水源接法、氩气接法三、焊枪的组成(水冷式、气冷式):手把、连接件、电极夹头、喷嘴、气管、水管、电缆线、导线。
四、氩气的作用、流量大小与焊接关系、调节方法。
1、氩气属于惰性气体,不易和其它金属材料、气体发生反应。
而且由于气流有冷却作用,焊缝热影响区小,焊件变形小。
是钨极氩弧焊最理想的保护气体。
2、氩气主要是对熔池进行有效的保护,在焊接过程中防止空气对熔池侵蚀而引起氧化,同时对焊缝区域进行有效隔离空气,使焊缝区域得到保护,提高焊接性能。
钨极氩弧焊原理
钨极氩弧焊是一种常用的焊接方法,其原理是利用气体保护下的电弧将工件进行连接。
下面将介绍钨极氩弧焊的工作原理。
钨极氩弧焊使用钨电极和氩气作为保护气体。
首先,通过电源提供电流,使电极和工件形成电弧。
钨电极由于其高熔点和良好的电导性能,能够在高温下稳定工作。
而氩气则起到了保护作用,防止电弧与外界气体发生反应。
在焊接过程中,电弧使焊件表面加热至熔点,并且通过电极传导热量使焊缝处的材料熔化。
熔化的金属在电弧的作用下形成良好的焊缝。
同时,氩气在焊接区域形成保护性的气氛,防止氧气和其他气体的进入,避免了氧化和污染,从而提高了焊接质量。
钨极氩弧焊具有焊接速度快、焊缝质量高等优点。
同时,由于在焊接过程中没有焊芯,避免了焊接材料的污染。
这种方法广泛应用于对焊缝质量要求高的领域,如航空、航天、核工程等行业。
总结起来,钨极氩弧焊利用钨电极和氩气的配合,形成稳定的电弧和保护气氛,将焊接材料熔化并连接在一起。
其工作原理简单而有效,是一种常用的焊接方法。
手工钨极氩弧焊操作方法
手工钨极氩弧焊(也称为TIG焊)是一种高质量、高精度的焊接方法。
以下是手工钨极氩弧焊的基本操作步骤:
1. 准备工作:检查钨极是否磨损,将其磨尖并削尖,清洁钨极和焊材表面。
确保焊接区域干净。
2. 设定电流和氩气流量:根据焊接材料的类型和厚度,设置适当的电流和氩气流量。
碳钢通常需要较高的电流,而不锈钢和铝等材料需要较低的电流。
氩气流量应足够保护焊接区域和钨极。
3. 钨极准备:将磨好的钨极装入气冷或水冷钨极夹中。
确保钨极凸出约1.5倍钨极直径,使其能够适当接触焊接区域。
4. 起弧:将钨极轻轻接触焊接区域,同时按下起弧按钮或踏板。
将钨极抬起约3-4毫米并保持弧长稳定。
5. 稳定弧焊:保持适当的焊接速度,控制焊接区域的温度。
按照需要移动焊枪或焊接材料以保持恒定和合适的焊接位置。
6. 控制焊接速度:快速焊接可能导致焊缝质量下降,而过慢的焊接速度则可能导致过热和变形。
保持适当的焊接速度,使焊接区域充分融化并形成均匀的焊缝。
7. 结束焊接:焊接结束后,逐渐将焊枪抬起,同时继续焊接,直到弧熄灭。
等待焊缝冷却后,进行后续处理和清洁。
重要注意事项:
- 在手工钨极氩弧焊时,保持焊接区域干净,并确保周围环境有良好通风,以防止有毒气体的积聚。
- 需要根据确切的应用要求和材料类型选择合适的钨极和焊接电流。
- 注意安全操作,例如佩戴防护眼镜、手套和防火衣,并避免将赤裸皮肤暴露在焊接辐射和飞溅金属上。
为了确保高质量的焊接,请参考相关的焊接手册或咨询专业人士。
钨极氩弧焊的电流种类和极性钨极氩弧焊的电流种类和极性钨极氩弧焊时,焊接电弧正、负极的导电和产热机构与电极材料的热物理性能有密切关系、从而对焊接工艺有显著影响。
下面分别讨论采用不同电流种类和极性进行钨极氩弧焊的情况。
一、直流钨极氩弧焊直流钨极氩弧焊时,电流极性没有变化,电弧连续而稳定,按电源极性的不同接法,又可将直流钨极氩弧焊分为直流正极性法和直流反极性法两种方法。
1.直流正极性法直流正极性法焊接时,焊件接电源正极,钨极接电源负极。
由于钨极熔点很高,热发射能力强,电弧中带电粒子绝大多数是从钨极上以热发射形式产生的电子。
这些电子撞击焊件(负极),释放出全部动能和位能(逸出功),产生大量热能加热焊件,从而形成深而窄的焊缝。
该法生产率高,焊件收缩应力和变形小。
另一方面,由于钨极上接受正离子撞击时放出的能量比较小,而且由于钨极在发射电子时需要付出大量的逸出功,所以钨极上总的产热量比较小,因而钨极不易过热,烧损少;对于同一焊接电流可以采用直径较小的钨极。
再者,由于钨极热发射能力强,采用小直径钨棒时,电流密度大,有利于电弧稳定。
综上所述,直流正极性有如下特点:1)熔池深而窄,焊接生产率高,焊件的收缩应力和变形都小。
2)钨极许用电流大,寿命长。
3)电弧引燃容易,燃烧稳定。
总之,直流正极性优点较多,所以除铝、镁及其合金的焊接以外,钨极氩弧焊一般都采用直流正极性焊接。
2.直流反极性法直流反极性时焊件接电源负极,钨极接正极。
这时焊件和钨极的导电和产热情况与直流正极性时相反。
由于焊件一般熔点较低,电子发射比较困难,往往只能在焊件表面温度较高的阴极斑点处发射电子,而阴极斑点总是出现在电子逸出功较低的氧化膜处。
当阴极斑点受到弧柱中来的正离子流的强烈撞击时,温度很高,氧化膜很快被汽化破碎,显露出纯洁的焊件金属表面,电子发射条件也由此变差。
这时阴极斑点就会自动转移到附近有氧化膜存在的地方,如此下去,就会把焊件焊接区表面的氧化膜清除掉,这种现象称为阴极破碎(或称阴极雾化)现象。
1、焊接方法原理根据ISO标准,钨极氩弧焊数字代号为141。
(德文符号为WSG,WIG,英文符号为TIG)将钨电极装夹在焊枪内,焊接电流将流过钨电极,并在钨极与工件之间产生电弧,使母材和填充的焊棒熔化,保护气体从焊枪流出,并保护钨极和焊接熔池免受空气侵入。
2、焊接设备与工艺见图1①网络②焊接电源③焊接电缆(电极)④焊接电缆(工件)⑤工件夹具⑥带有减压阀和气体流量计的保护气体瓶⑦保护气体软管⑧焊枪⑨焊棒⑩工件11 钨极12 夹紧套筒和导电咀13 电弧14 液态焊缝15 固态焊缝16 保护气罩图1 TIG焊接装置及焊接工艺3、保护气体的应用钨极惰性气体保护焊只能使用惰性气体作为保护气体,因为灼热的钨极是不允许产生化学反应的,所使用的惰性气体为氩气(Ar),氦气(He),氩气和氦气以及氢气(H2)的混合气体。
采用钨极惰性气体保护焊可对钢和有色金属在所有位置上进行焊接,较为经济的使用是构件厚度在0.5㎜到5㎜,对于较厚工件在焊接工艺上只用于封底焊接。
钨极惰性气体保护焊可应用于重要领域中,例如空间技术、精密机械、化工设备及压力容器等方面。
4、脉冲TIG焊接脉冲TIG焊接采用专用焊接电源,所输出时焊接电流为正弦波或方形波或者带有可调节脉冲参数(脉冲幅度、脉冲频率、占空比)的直流脉冲(见图2)。
图2 TIG —脉冲焊电流波形原理(J1=基值电流,J2=脉冲电流,t1=脉冲电流时间,t2=基值电流时间)脉冲电流时,将较高的热输入量输送到所焊部位,使工件熔化,在脉冲间歇时,低的焊接电流只将少量热量送给工件,焊接熔池相对热量较低(见图3)。
图3 TIG 焊时的热输入通过对脉冲时间和电流值的调整可明显改变热输入量,在极端情况下,焊缝可以由相邻的脉冲焊点的叠加而形成。
脉冲TIG 焊与直流TIG 焊相比较有以下优缺点: 优点:·较低的能量输入·在厚板焊接时具有良好的深/宽比 ·稳定的电弧 ·均匀的封底成形 ·良好定位性 ·工件变形小 ·熔池容易控制 ·良好的弥隙性能缺点:·焊接设备昂贵 ·设备调整较复杂5、TIG 焊枪(结构)TIG 焊时,根据电弧容量(焊接电流)大小,焊枪可分为气冷和水冷式,焊枪的结构原理见图4。