《运筹学》复习题
- 格式:doc
- 大小:397.00 KB
- 文档页数:14
《运筹学》试题及参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。
2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。
4、在图论中,称无圈的连通图为树。
5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。
二、(每小题5分,共10分)用图解法求解下列线性规划问题:1)max z =6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。
2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。
⑴⑵⑶⑷⑸⑹、⑺由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫⎝⎛21x x =(11,0)T∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:AB C 甲94370乙46101203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。
(10分)解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x ,2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0x 3+0x 4+0x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x 解:用大M 法,先化为等效的标准模型:max z /=-5x 1-2x 2-4x 3s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z /=-5x 1-2x 2-4x 3-M x 6-M x 7s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)B 1B 2B 3B 4s iA 1A 2A 312348765910119108015d j82212181)用最小费用法求初始运输方案,并写出相应的总运费;(5分)2)用1)得到的基本可行解,继续迭代求该问题的最优解。
《运筹学》试题一、名词解释(20分)对偶可行基影子价格灵敏度分析平衡运输问题不平衡运输问题纯整数规划0—1规划问题混合整数规划网络最大流问题二、选择题(20分)1、我们可以通过()来验证模型最优解。
A观察B应用C实验D调查2、建立运筹学模型的过程不包括()阶段。
A观察环境B数据分析C模型设计D模型实施3、建立模型的一个基本理由是去揭晓那些重要的或有关的()A数量B变量 C 约束条件 D 目标函数4、模型中要求变量取值()A可正B可负C非正D非负5、运筹学研究和解决问题的效果具有()A连续性 B 整体性 C 阶段性 D 再生性6、如果线性规划问题有可行解,那么该解必须满足()A所有约束条件 B 变量取值非负 C 所有等式要求 D 所有不等式要求7、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在()集合中进行搜索即可得到最优解。
A基 B 基本解 C 基可行解 D 可行域8、线性规划问题是针对()求极值问题.A约束B决策变量 C 秩D目标函数9、如果第K个约束条件是“≤”情形,若化为标准形式,需要()A左边增加一个变量B右边增加一个变量C左边减去一个变量D右边减去一个变量10、若某个bk≤0, 化为标准形式时原不等式()A不变 B 左端乘负1 C 右端乘负1 D 两边乘负1三、填空题(20分)1、线性规划问题具有对偶性,即对于任何一个求最大值的线性规划问题,都有一个求()的线性规划问题与之对应,反之亦然。
2、在一对对偶问题中,原问题的约束条件的右端常数是对偶问题的()。
3、如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为()。
4、对偶问题的对偶问题是()。
5、若原问题可行,但目标函数无界,则对偶问题()。
6、在某线性规划问题中,已知某资源的影子价格为Y1,相应的约束常数b1,在灵敏度容许变动范围内发生Δb1的变化,则新的最优解对应的最优目标函数值是()(设原最优目标函数值为Z﹡)7、若某约束常数bi的变化超过其容许变动范围,为求得新的最优解,需在原最优单纯形表的基础上运用()求解。
《运筹学》复习题一、填空题(1分×10=10分)1.运筹学的主要研究对象是(组织系统的管理问题)。
2.运筹学的核心主要是运用(数学)方法研究各种系统的优化。
3.模型是一件实际事物或现实情况的代表或抽象。
4.通常对问题中变量值的限制称为(约束条件),它可以表示成一个等式或不等式的集合。
5.运筹学研究和解决问题的基础是(最优化技术),并强调系统整体优化功能。
6.运筹学用(系统)的观点研究(功能)之间的关系。
7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。
8.运筹学的发展趋势是进一步依赖于计算机的应用和发展。
9.运筹学解决问题时首先要观察待决策问题所处的环境。
10.用运筹学分析与解决问题,是一个科学决策的过程。
11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。
12.运筹学中所使用的模型是数学模型。
用运筹学解决问题的核心是(建立数学模型),并对模型求解。
13.用运筹学解决问题时,要分析,定义待决策的问题。
14.运筹学的系统特征之一是用系统的观点研究功能关系。
15.数学模型中,“s.t.”表示约束。
16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。
17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。
18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。
19.线性规划问题是求一个(线性目标函数),在一组(线性约束)条件下的极值问题。
20.图解法适用于含有两个变量的线性规划问题。
21.线性规划问题的可行解是指满足所有约束条件的解。
22.在线性规划问题的基本解中,所有的(非基变量)等于零。
23.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关24.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
25.线性规划问题有可行解,则必有基可行解。
26.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解的集合中进行搜索即可得到最优解。
一、单选题1.目标函数取极小(minZ )的线性规划问题可以转化为目标函数取极大的线性规划问题求解,原问题的目标函数值等于( )。
A. maxZB. max(-Z)C. –max(-Z)D.-maxZ2. 下列说法中正确的是( )。
A .基本解一定是可行解B .基本可行解的每个分量一定非负C .若B 是基,则B 一定是可逆D .非基变量的系数列向量一定是线性相关的3.在线性规划模型中,没有非负约束的变量称为 ( )A.多余变量 B .松弛变量 C .人工变量 D .自由变量4. 当满足最优解,且检验数为零的变量的个数大于基变量的个数时,可求得( )。
A .多重解B .无解C .正则解D .退化解 5.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验但不完全满足 ( )。
A .等式约束B .“≤”型约束C .“≥”约束D .非负约束6. 原问题的第i个约束方程是“=”型,则对偶问题的变量i y 是( )。
A .多余变量B .自由变量C .松弛变量D .非负变量7.在运输方案中出现退化现象,是指数字格的数目( )。
A.等于m+nB.大于m+n-1C.小于m+n-1D.等于m+n-1二、判断题1.线性规划问题的一般模型中不能有等式约束。
2.对偶问题的对偶一定是原问题。
3.产地数与销地数相等的运输问题是产销平衡运输问题。
4.对于一个动态规划问题,应用顺推或逆解法可能会得出不同的最优解。
5.线性规划问题的每一个基本可行解对应可行域上的一个顶点。
6.线性规划问题的基本解就是基本可行解。
三、填空题1.如果某一整数规划:MaxZ=X 1+X 2 X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3X 1,X 2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 和 。
2.如希望I 的2 倍产量21x 恰好等于II 的产量2x ,用目标规划约束可表为:3. 线性规划解的情形有4. 求解指派问题的方法是 。
《运筹学》复习题一、单项选择题1、()运筹学的主要内容包括: [单选题] *A.线性规划B.非线性规划C.存贮论D.以上都是(正确答案)2、()下面是运筹学的实践案例的是: [单选题] *A.丁谓修宫B.田忌赛马C.二战间,英国雷达站与防空系统的协调配合D.以上都是(正确答案)5、()运筹学模型: [单选题] *A.在任何条件下均有效B.只有符合模型的简化条件时才有效(正确答案)C.可以解答管理部门提出的任何问题D.是定性决策的主要工具8、()图解法通常用于求解有()个变量的线性规划问题。
[单选题] *A.1B.2(正确答案)C.4D.510、 (D)将线性规划问题转化为标准形式时,下列说法不正确的是: [单选题] *A.如为求z的最小值,需转化为求-z的最大值(正确答案)B.如约束条件为≤,则要增加一个松驰变量C.如约束条件为≥,则要减去一个剩余变量D.如约束条件为=,则要增加一个人工变量12、()关于主元的说法不正确的是: [单选题] *A.主元所在行称为主元行B.主元所在列称为主元列C.主元列所对应非基变量为进基变量D.主元素可以为零(正确答案)13、()求解线性规划的单纯形表法中所用到的变换有: [单选题] *A.两行互换B.两列互换C.将某一行乘上一个不为0的系数(正确答案)D.都正确14、()矩阵的初等行变换不包括的形式有: [单选题] *A. 将某一行乘上一个不等于零的系数B.将任意两行互换C. 将某一行乘上一个不等于零的系数再加到另一行上去D.将某一行加上一个相同的常数(正确答案)17、()关于标准线性规划的特征,哪一项不正确: [单选题] *A.决策变量全≥0B.约束条件全为线性等式C.约束条件右端常数无约束(正确答案)D.目标函数值求最大18、()线性规划的数学模型的组成部分不包括: [单选题] *A.决策变量B.决策目标函数C.约束条件D.计算方法(正确答案)19、()如果在线性规划标准型的每一个约束方程中各选一个变量,它在该方程中的系数为1,在其它方程中系数为零,这个变量称为: [单选题] *A.基变量(正确答案)B.决策变量C.非基变量D.基本可行解21、 (C)关于线性规划的最优解判定,说法不正确的是: [单选题] *A.如果是求最小化值,则所有检验数都小于等于零的基可行解是最优解。
运筹学试题及答案大家不妨来看看小编推送的运筹学试题及答案,希望给大家带来帮助!《运筹学》复习试题及答案(一)一、填空题1、线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。
2、图解法适用于含有两个变量的线性规划问题。
3、线性规划问题的可行解是指满足所有约束条件的解。
4、在线性规划问题的基本解中,所有的非基变量等于零。
5、在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6、若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
7、线性规划问题有可行解,则必有基可行解。
8、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。
9、满足非负条件的基本解称为基本可行解。
10、在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。
11、将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。
12、线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。
13、线性规划问题可分为目标函数求极大值和极小_值两类。
14、线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。
15、线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16、在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。
17、求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。
18、19、如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj,同时令Xj=Xj- Xj。
20、表达线性规划的简式中目标函数为ijij21、、(2、1 P5))线性规划一般表达式中,aij表示该元素位置在二、单选题1、如果一个线性规划问题有n个变量,m个约束方程(m<n),系数矩阵的数为m,则基可行解的个数最为_C_。
《运筹学》一、判断题:在下列各题中,您认为题中描述的内容为正确者,在题尾括号内写“T”,错误者写“F”。
1、 T2、 F3、 T4、T5、T6、T7、 F8、 T9、 F10、T 11、 F 12、 F 13、T 14、 T 15、 F1、线性规划问题的每一个基本可行解对应可行域的一个顶点。
( T )2、用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j≤0,则问题达到最优。
( F )3、若线性规划的可行域非空有界,则其顶点中必存在最优解。
( T )4、满足线性规划问题所有约束条件的解称为可行解。
( T )5、在线性规划问题的求解过程中,基变量与非机变量的个数就是固定的。
( T )6、对偶问题的对偶就是原问题。
( T )7、在可行解的状态下,原问题与对偶问题的目标函数值就是相等的。
( F )8、运输问题的可行解中基变量的个数不一定遵循m+n-1的规则。
( T )9、指派问题的解中基变量的个数为m+n。
( F )10、网络最短路径就是指从网络起点至终点的一条权与最小的路线。
( T )11、网络最大流量就是网络起点至终点的一条增流链上的最大流量。
( F)12、工程计划网络中的关键路线上事项的最早时间与最迟时间往往就是不相等。
( F )13、在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。
(T )14、单目标决策时,用不同方法确定的最佳方案往往就是不一致的。
( T )15、动态规则中运用图解法的顺推方法与网络最短路径的标号法上就是一致的。
( F )二、单项选择题1、A2、B3、D4、B5、A6、C7、B8、C9、 D 10、B11、A 12、D 13、C 14、C 15、B1、对于线性规划问题标准型:maxZ=CX, AX=b, X≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为( A )。
A、增大B、不减少C、减少D、不增大2、若线性规划问题的最优解不唯一,则在最优单纯形表上( B )。
《运筹学》复习题一、填空题(1分×10=10分)1.运筹学的主要研究对象是(组织系统的管理问题)。
2.运筹学的核心主要是运用(数学)方法研究各种系统的优化。
3.模型是一件实际事物或现实情况的代表或抽象。
4.通常对问题中变量值的限制称为(约束条件),它可以表示成一个等式或不等式的集合。
5.运筹学研究和解决问题的基础是(最优化技术),并强调系统整体优化功能。
6.运筹学用(系统)的观点研究(功能)之间的关系。
7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。
8.运筹学的发展趋势是进一步依赖于计算机的应用和发展。
9.运筹学解决问题时首先要观察待决策问题所处的环境。
10.用运筹学分析与解决问题,是一个科学决策的过程。
11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。
12.运筹学中所使用的模型是数学模型。
用运筹学解决问题的核心是(建立数学模型),并对模型求解。
13.用运筹学解决问题时,要分析,定义待决策的问题。
14.运筹学的系统特征之一是用系统的观点研究功能关系。
15.数学模型中,“s.t.”表示约束。
16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。
17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。
18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。
19.线性规划问题是求一个(线性目标函数),在一组(线性约束)条件下的极值问题。
20.图解法适用于含有两个变量的线性规划问题。
21.线性规划问题的可行解是指满足所有约束条件的解。
22.在线性规划问题的基本解中,所有的(非基变量)等于零。
23.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关24.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
25.线性规划问题有可行解,则必有基可行解。
26.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解的集合中进行搜索即可得到最优解。
运筹学复习题及答案运筹学复习题及答案运筹学是一门应用数学学科,旨在通过数学建模和分析,优化决策和解决问题。
它在各个领域都有广泛的应用,如供应链管理、生产调度、交通规划等。
在学习运筹学的过程中,我们需要不断进行复习和练习,以巩固所学的知识。
下面是一些常见的运筹学复习题及其答案,希望对大家的复习有所帮助。
1. 线性规划问题a. 什么是线性规划问题?b. 线性规划问题的标准形式是怎样的?c. 解释线性规划问题中的最优解、可行解和无界解。
d. 举例说明线性规划问题的应用场景。
答案:a. 线性规划问题是一类优化问题,目标函数和约束条件都是线性的。
b. 线性规划问题的标准形式为:最小化(或最大化)目标函数,满足一系列线性约束条件。
c. 最优解是指在满足约束条件的前提下,使目标函数取得最小(或最大)值的解;可行解是指满足约束条件的解;无界解是指目标函数可以无限增大或无限减小的解。
d. 例如,在生产调度中,我们希望最小化生产成本,同时满足各种资源约束条件,这就可以用线性规划来解决。
2. 整数规划问题a. 什么是整数规划问题?b. 整数规划问题与线性规划问题有什么区别?c. 解释整数规划问题中的最优整数解和最优松弛解。
d. 举例说明整数规划问题的应用场景。
答案:a. 整数规划问题是一类线性规划问题,目标函数和约束条件都是线性的,但是变量需要取整数值。
b. 整数规划问题与线性规划问题的区别在于变量的取值范围不同,线性规划问题的变量可以取任意实数值,而整数规划问题的变量只能取整数值。
c. 最优整数解是指在满足约束条件的前提下,使目标函数取得最小(或最大)值的整数解;最优松弛解是指在不考虑变量取整数的限制下,使目标函数取得最小(或最大)值的解。
d. 例如,在旅行商问题中,我们希望找到一条最短的路径,使得旅行商可以依次访问多个城市,这就可以用整数规划来解决。
3. 网络流问题a. 什么是网络流问题?b. 网络流问题的常见模型有哪些?c. 解释网络流问题中的最大流和最小割。
运筹学复习题及答案一、一个毛纺厂用羊毛和涤纶生产A、B、C混纺毛料,生产1单位A、B、C分别需要羊毛和涤纶3、2;1、1;4、4单位,三种产品的单位利润分别为4、1、5。
每月购进的原料限额羊毛为8000单位,涤纶为3000单位,问此毛纺厂如何安排生产能获得最大利润?(要求:建立该问题的数学模型)解:设生产混纺毛料ABC各x1、x2、x3单位max z=x1+x2+5x33x1+x2+4x3≤80002x1+x2+4x3≤3000x1,x2,x3≥0二、写出下述线性规划问题的对偶问题max s=2x1+3x2-5x3+x4x1+x2-3x3+x4≥52x1 +2x3-x4≤4x2 +x3+x4=6x1,x2,x3≥0;x4无约束解:先将原问题标准化为:max s=2x1+3x2-5x3+x4-x1-x2+3x3-x4≤-52x1 +2x3-x4≤4x2 +x3+x4=6x1,x2,x3≥0;x4无约束则对偶问题为:min z=-5y1+4y2+6y3-y1+2y2≥2-y1+ y2≥33y1+ 2y2+y3≥-5-y1-y2+y3=1y1,y2≥0,y3无约束三、求下述线性规划问题min S =2x1+3x2-5x3x 1+x 2-3x 3 ≥5 2x 1 +2x 3 ≤4x 1,x 2,x 3≥0解:引入松弛变量x4,x5,原问题化为标准型:max Z=-S =-2x 1-3x 2+5x 3x 1+x 2-3x 3 -x 4=5 2x 1 +2x 3 +x 5=4x 1,x 2,x 3, x 4,x 5≥0 对应基B 0=(P2,P5T(B 0)=x1的检验数为正,x1进基,由min {5/1,4/2}=4/2知,x5出基,迭代得新基B1=(P2,P1),对应的单纯形表为T(B 1)=至此,检验数全为非正,已为最优单纯形表。
对应的最优解为: x1=2,x2=3,x3=x4=x5=0,max z=-13,故原问题的最优解为: x1=2,x2=3,x3 =0,min s=13。
运筹学复习题及参考答案《运筹学》一、判断题:在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“T”,错误者写“F”。
1. T2. F3. T4.T5.T6.T7. F8. T9. F10.T 11. F 12. F 13.T 14. T 15. F1. 线性规划问题的每一个基本可行解对应可行域的一个顶点。
( T )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j≤0,则问题达到最优。
( F )3. 若线性规划的可行域非空有界,则其顶点中必存在最优解。
( T )4. 满足线性规划问题所有约束条件的解称为可行解。
( T )5. 在线性规划问题的求解过程中,基变量和非机变量的个数是固定的。
( T )6. 对偶问题的对偶是原问题。
( T )7. 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。
( F )8. 运输问题的可行解中基变量的个数不一定遵循m+n-1的规则。
( T )9. 指派问题的解中基变量的个数为m+n。
( F )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。
( T )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。
( F)12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往是不相等。
( F )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。
(T )14. 单目标决策时,用不同方法确定的最佳方案往往是不一致的。
( T )15. 动态规则中运用图解法的顺推方法和网络最短路径的标号法上是一致的。
( F )二、单项选择题1.A2.B3.D4.B5.A6.C7.B8.C9.D 10.B11.A 12.D 13.C 14.C 15.B1、对于线性规划问题标准型:maxZ=CX, AX=b, X ≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为( A )。
一、单项选择题1、下列叙述正确的是()。
A.线性规划问题,若有最优解,则必是一个基变量组的可行基解B.线性规划问题一定有可行基解C.线性规划问题的最优解只能在最低点上达到D.单纯形法求解线性规划问题时,每换基迭代一次必使目标函数值下降一次答案:A2、线性规划的变量个数与其对偶问题的()相等。
A.变量目标函数B.变量约束条件C.约束条件个数D.不确定答案:C3、在利用表上作业法求各非基变量的检验数时,有闭回路法和()两种方法。
A.西北角法B.位势法C.最低费用法D.元素差额法答案:B4、下列各项()不是目标规划的特点。
A.多目标B.单一目标C.具有优先次序D.不求最优答案:B5、下列关于图的说法中,错误的为()。
A.点表示所研究的事物对象B.边表示事物之间的联系C.无向图是由点及边所构成的图D.无环的图称为简单图答案:D6、利用单纯形法求解线性规划问题时,首先需要()。
A.找初始基础可行基B.检验当前基础可行解是否为最优解C.确定改善方向D.确定入变量的最大值和出变量答案:A7、对偶问题最优解的剩余变量解值()原问题对应变量的检验数的绝对值。
A.大于B.小于C.等于D.不能确定答案:C8、当某个非基变量检验数为零,则该问题有()。
A.无解B.无穷多最优解C.退化解D.惟一最优解答案:B9、PERT 网络图中,()表示一个工序。
A.节点B.弧C.权D.关键路线答案:B10、假设对于一个动态规划问题,应用顺推法以及逆推解法得出的最优解分别为P和D,则有()。
A.P>D B.P<DC.P=D D.不确定答案:C11、下列有关线性规划问题的标准形式的叙述中错误的是()。
A.目标函数求极大B.约束条件全为等式C.约束条件右端常数项全为正D.变量取值全为非负答案:C12、线性规划问题的数学模型由目标函数、约束条件和()三个部分组成。
A.非负条件B.顶点集合C.最优解D.决策变量答案:D13、如果原问题有最优解,则对偶问题一定具有()。
单项选择题(将唯一正确答案前面的字母填入题后的括号里。
正确得2 分,选错、多选或不选得0 分)1.原问题与对偶问题都有可行解,则(D)。
A.原问题有最优解,对偶问题没有最优解 B. 原问题与对偶问题可能都没有最优解C. 一个问题有最优解,另一个问题有无界解D. 原问题与对偶问题都有最优解2、当线性规划问题的可行解集合非空时一定(D)。
A. 包含原点X=(0,0,…)B. 有界C. 无界D. 是凸集3、若原问题中xi 为自由变量,那么对偶问题中的第i个约束一定为(A)。
A. 等式约束B. “≤”型约束C. “≥”约束D. 无法确定4.在目标规划中,要求不低于第一目标值,恰好完成第二目标值,则其目标函数为(A)。
A. min Z = P1d1- + P2(d2- + d2+)B. min Z = P1d1+ + P2(d2- + d2+)C. min Z = P1(d1- + d1+) + P2(d2- + d2+)D. min Z = P1(d2- + d2+) + P2d2-5.若树 T 有 n 个点,那么它的边数一定是(D)。
A. 2nB. nC. n+1D. n-16.完全决定确定型动态规划问题第k+1阶段的状态S k+1的是(D)。
A. 阶段数kB. 决策U kC. 状态S kD. 状态S k与决策U k7.任何图中,次为奇数的顶点的个数必为(B)。
A. 奇数B. 偶数C. 奇偶性无法判断D. 奇数偶数均可8.图=(V,E)有生成树的充要条件是(C)。
A. G是欧拉图B. G是完全图C. G是连通图D. G是有限图G9.求m个产地,n个销地的运输问题的表上作业法中,用最小元素法确定初始可行解时基变量(即填有数字格)的个数为(A)A. m+n-1B. m+nC. m+n+1D. mn10.求解指派问题的匈牙利方法要求系数矩阵中每个元素都是(A)。
A. 非负的B. 大于零C. 无约束D. 非零常数11.满足线性规划问题全部约束条件的解称为(C)。
运筹学复习题一、选择题1.若树T 有n 个顶点,那么它的边数一定是 ( ) A .n B .n-1 C .n+1 D . 2n 2、决策的三要素是( )。
A. 方案、状态和收益B. 方案集、状态集和损益矩阵C. 方案、状态和损失D. 方案集、状态集和概率集 3.线性规划问题中只满足约束条件的解称为 ( )。
A .基本解B .可行解C .最优解D .基本可行解 4.如果要使目标规划实际实现值不超过目标值,则应满足( )A.0>+dB.0=+dC.0_=d D.0,0_>>+d d5、线性规划问题的数学模型的三个部分中不包括( )。
A. 约束条件B. 最优解C. 决策变量D. 目标函数 6.线性规划一般模型中,自由变量可以用两个非负变量的 ( )代换。
A .和 B .差 C .积 D .商7、针对某一特定的不确定型的决策问题,分别采用五种决策准则(等可能准则、乐观准则、悲观准则、折衷准则和后悔值准则)进行决策,其决策结果( )。
A. 相同 B. 一般不相同 C. 绝大多数相同 D. 不能确定 8.最早运用运筹学理论的是( )A . 二次世界大战期间,英国政府将运筹学运用到政府制定计划B .二次世界大战期间,英国军事部门将运筹学运用到军事战略部署C .50年代,运筹学运用到研究人口,能源,粮食,第三世界经济发展等问题上D . 美国最早将运筹学运用到农业和人口规划问题上 9.可用于风险条件下决策类型的是( ) A .最大最大决策标准 B.最大期望收益值标准 C.最大最小决策标准D.最小最大遗憾值决策标准10.在库存管理中,“订货提前期”,亦可称为( ) A .再订货点B.前置时间C.前置时间内的需求量D.经济订货量11.线性规划的图解法适用于( ) A .只含有一个变量的线性规划问题 B.只含有2个变量的线性规划问题 C.含有多个变量的线性规划问题D.任何情况 12.网络计划技术是解决哪类管理问题的科学方法?( ) A .环境条件不确定问题 B. 组织生产和进行计划管理 C.具有对抗性局势竞争问题D.订货与库存问题13.在网络计划技术中,以结点代表活动,以箭线表示活动之间的先后承接关系,这种图称之为( )A .箭线式网络图 B.结点式网络图 C.最短路线图 D.最大流量图 14.网络图中,完成一项活动可能最短的时间,称为( ) A .作业时间 B.最早完成时间 C.最迟完成时间D.最可能时间15.在一个网络中,如果从一个起点出发到所有的点,找出一条或几条路线,以使在这样一些路线中所采用的全部支线的总长度最小,这种方法称之为( ) A .点的问题B. 最小生成树问题C.树的问题D. 线的问题 16.线性规划模型的特点是 ( )。
运筹学试习题及答案《运筹学》复习试题及答案(一)一、填空题1、线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。
2、图解法适用于含有两个变量的线性规划问题。
3、线性规划问题的可行解是指满足所有约束条件的解。
4、在线性规划问题的基本解中,所有的非基变量等于零。
5、在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6、若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
7、线性规划问题有可行解,则必有基可行解。
8、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。
9、满足非负条件的基本解称为基本可行解。
10、在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。
11、将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。
12、线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。
13、线性规划问题可分为目标函数求极大值和极小_值两类。
14、线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。
15、线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16、在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。
17、求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。
18、19、如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj,同时令Xj=Xj- Xj。
20、表达线性规划的简式中目标函数为ijij21、、(2、1 P5))线性规划一般表达式中,aij表示该元素位置在二、单选题1、如果一个线性规划问题有n个变量,m个约束方程(m行解的个数最为_C_。
′〞′A、m个B、n个C、CnD、Cm个2、下列图形中阴影部分构成的集合是凸集的是A mn3、线性规划模型不包括下列_ D要素。
运筹学试题及答案大家不妨来看看小编推送的运筹学试题及答案,希望给大家带来帮助!《运筹学》复习试题及答案(一)一、填空题1、线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。
2、图解法适用于含有两个变量的线性规划问题。
3、线性规划问题的可行解是指满足所有约束条件的解。
4、在线性规划问题的基本解中,所有的非基变量等于零。
5、在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6、若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
7、线性规划问题有可行解,则必有基可行解。
8、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。
9、满足非负条件的基本解称为基本可行解。
10、在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。
11、将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。
12、线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。
13、线性规划问题可分为目标函数求极大值和极小_值两类。
14、线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。
15、线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16、在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。
17、求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。
18、19、如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj,同时令Xj=Xj- Xj。
20、表达线性规划的简式中目标函数为ijij21、、(2、1 P5))线性规划一般表达式中,aij表示该元素位置在二、单选题1、如果一个线性规划问题有n个变量,m个约束方程(m 行解的个数最为_C_。
′〞′A、m个B、n个C、CnD、Cm个2、下列图形中阴影部分构成的集合是凸集的是A mn3、线性规划模型不包括下列_ D要素。
四、把下列线性规划问题化成标准形式:2、minZ=2x1-x2+2x3五、按各题要求。
建立线性规划数学模型1、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。
月销售分别为250,280和120件。
问如何安排生产计划,使总利润最大。
2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋90根,长度为4米的钢筋60根,问怎样下料,才能使所使用的原材料最省?1. 某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示: 起运时间 服务员数 2—6 6—10 10一14 14—18 18—22 22—2 4 8 10 7 12 4每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少?五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相当于图解法可行域中的哪一个顶点。
六、用单纯形法求解下列线性规划问题:七、用大M法求解下列线性规划问题。
并指出问题的解属于哪一类。
八、下表为用单纯形法计算时某一步的表格。
已知该线性规划的目标函数为maxZ=5x 1+3x 2,约束形式为“≤”,X 3,X 4为松驰变量.表中解代入目标函数后得Z=10X l X 2 X 3 X 4 —10 b -1 f g X 3 2 C O 1 1/5 X lade1(1)求表中a ~g 的值 (2)表中给出的解是否为最优解?(1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=-5 (2) 表中给出的解为最优解第四章 线性规划的对偶理论五、写出下列线性规划问题的对偶问题1.minZ=2x 1+2x 2+4x 3六、已知线性规划问题应用对偶理论证明该问题最优解的目标函数值不大于25七、已知线性规划问题maxZ=2x1+x2+5x3+6x4其对偶问题的最优解为Y l﹡=4,Y2﹡=1,试应用对偶问题的性质求原问题的最优解。
1.某家具制造厂生产五种不同规格的家具。
每件家具都要经过机械成型、打磨、上漆等几个主要生产工序。
每种家具的每道工序所使用的时间及每道工序的可用时间、每种家具的利润等数据如表1-1所示。
问工厂应如何安排生产,才能使总利润最大?表1-1家具生产数据生产工序所需时间可用时间(小时)一二三四五成型 3 4 6 2 3 3600 打磨 4 3 5 6 4 3950 上漆 2 3 3 4 3 2800 利润(百元)2.7 3 4.5 2.5 32.G.A.T公司的产品之一是一种新式玩具,该产品的估计单位利润为3美元。
因为该产品具有极大的需求,公司决定增加该产品原来每天1000件的生产量。
但是从卖主那里可以购得的玩具配件(A,B)是有限的。
每一玩具需要两个A类配件,而卖主只能将其供应量从现在的每天2000增加到3000。
同时,每一玩具需要一个B类的配件,但卖主却无法增加目前每天1000的供应量。
因为目前无法找到新的供货商,所以公司决定自己开发一条生产线,在公司内部生产玩具配件A 和B 。
据估计,公司自己生产的成本将会比从卖主那里购买增加2.5美元每件(A,B )。
管理层希望能够确定玩具以及两种配件的生产组合以取得最大的利润。
将该问题视为资源分配问题,公司的一位管理者为该问题建立如下的参数表:使用Excel 求解,求解后的电子表格和灵敏度报告如下图所示:A B C DE F 1 生产玩具 生产配件2 单位利润3 -2.5 34 资源 单位资源使用量 所需资源 可获得的资源总量5 资源A 2 -1 3000 <= 3000 6资源B1 -11000<=1000资源 每种活动的单位资源使用量可获得的资源总量生产玩具生产配件 配件A 配件B 2 1 -1 -1 3000 1000 单位利润 3美元-2.5美元78 活动量2000 1000 总利润3500可变单元格终递减目标式允许的允许的单元格名字值成本系数增量减量$B$8 活动量单位资源使用量2000 0 3 2 0.5$C$8 活动量生产配件1000 0 -2.5 1 0.5约束终阴影约束允许的允许的单元格名字值价格限制值增量减量$D$5 资源A 所需资源3000 0.5 3000 1E+30 1000$D$6 资源B 所需资源1000 2 1000 500 1E+30(1)用Excel建模时,单元格F8的输入是什么?(2)针对第一个活动(生产玩具),运用Excel敏感性报告,给出该活动单位利润从3美元增加到4美元时问题的最优解和总利润。
运筹学-学习指南一、名词解释1松弛变量为将线性规划问题的数学模型化为标准型而加入的变量。
2可行域满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域。
3人工变量亦称人造变量.求解线性规划问题时人为加入的变量。
用单纯形法求解线性规划问题,都是在具有初始可行基的条件下进行的,但约束方程组的系数矩阵A中所含的单位向量常常不足m个,此时可加入若干(至多m)个新变量,称这些新变量为人工变量。
4对偶理论每一个线性规划问题都存在一个与其对偶的问题,在求出一个问题解的同时,也给出了另一个问题的解。
研究线性规划中原始问题与对偶问题之间关系的理论5灵敏度分析研究与分析一个系统(或模型)的状态或输出变化对系统参数或周围条件变化的敏感程度的方法。
在最优化方法中经常利用灵敏度分析来研究原始数据不准确或发生变化时最优解的稳定性。
通过灵敏度分析还可以决定哪些参数对系统或模型有较大的影响。
6影子价格反映资源配置状况的价格。
影子价格是指在其他资源投入不变的情况下,每增加一单位的某种资源的投入所带来的追加收益。
即影子价格等于资源投入的边际收益。
只有在资源短缺的情况下,每增加一单位的投入才能带来收益的增加7产销平衡运输一种特殊的线性规划问题。
产品的销售过程中,产销平衡是指工厂产品的产量等于市场上的销售量。
8西北角法是运筹学中制定运输问题的初始调运方案(即初始基可行解)的基本方法之一。
也就是从运价表的西北角位置开始,依次安排m个产地和n个销地之间的运输业务,从而得到一个初始调运方案的方法。
9最优性检验检验当前调运方案是不是最优方案的过程。
10动态规划解决多阶段决策过程优化问题的方法:把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解11状态转移方程从阶段K到K+1的状态转移规律的表达式12逆序求解法在求解时,首先逆序求出各阶段的条件最优目标函数和条件最优决策,然后反向追踪,顺序地求出改多阶段决策问题的最优策略和最优路线。
13最短路问题最短路径问题是图论研究中的一个经典算法问题, 旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。
14最小费用最大流在一个网络中每段路径都有“容量”和“费用”两个限制的条件下,此类问题的研究试图寻找出:流量从A 到B ,如何选择路径、分配经过路径的流量,可以达到所用的费用最小的要求。
15排队论排队论(queueing theory), 或称随机服务系统理论, 是通过对服务对象到来及服务时间的统计研究,得出这些数量指标(等待时间、排队长度、忙期长短等)的统计规律,然后根据这些规律来改进服务系统的结构或重新组织被服务对象,使得服务系统既能满足服务对象的需要,又能使机构的费用最经济或某些指标最优。
二、选择题1. 用图解法求解一个关于最大利润的线性规划问题时,若其等利润线与可行解区域相交,但不存在可行解区域最边缘的等利润线,则该线性规划问题( B )。
A 、有无穷多个最优解B 、有可行解但无最优解C 、有可行解且有最优解D 、无可行解2. 若线性规划问题的最优解同时在可行解域的两个顶点处达到,则此线性规划问题的最优解为( B )A 、两个B 、无穷多个C 、零个D 、过这的点直线上的一切点3. 用图解法求解一个关于最小成本的线性规划问题时,若其等成本线与可行解区域的某一条边重合,则该线性规划问题( A )。
A .有无穷多个最优解B 、有有限个最优解C .有唯一的最优解D .无最优解4. 在求极小值的线性规划问题中,引入人工变量之后,还必须在目标函数中分别为它们配上系数,这些系数值应为( A )。
A 、很大的正数B 、较小的正数C 、1D 、05. 对LP 问题的标准型:max ,,0Z CX AX b X ==≥,利用单纯形表求解时,每做一次换基迭代,都能保证它相应的目标函数值Z 必为( B )A 增大B 不减少C 减少D 不增大6. 若LP 最优解不唯一,则在最优单纯形表上( A )A 非基变量的检验数必有为零者B 非基变量的检验数不必有为零者C 非基变量的检验数必全部为零D 以上均不正确7. 求解线性规划模型时,引入人工变量是为了(B )A 使该模型存在可行解B 确定一个初始的基可行解C 使该模型标准化D 以上均不正确11. 用大M法求解LP模型时,若在最终单纯形表上基变量中仍含有非零的人工变量,则原模型(C )A 有可行解,但无最优解B 有最优解C 无可行解D 以上都不对12. 已知1(2,4)x=,2(4,8)x=是某LP的两个最优解,则(D )也是LP的最优解。
A (4,4)x=B (1,2)x=C (2,3)x=D 无法判断13、线性规划问题的灵敏度分析研究(BC )A、对偶单纯形法的计算结果;B、目标函数中决策变量系数的变化与最优解的关系;C、资源数量变化与最优解的关系;D、最优单纯形表中的检验数与影子价格的联系。
14、对偶单纯形法迭代中的主元素一定是负元素( A )A、正确B、错误C、不一定D、无法判断15、对偶单纯形法求解极大化线性规划时,如果不按照最小化比值的方法选取什么变量则在下一个解中至少有一个变量为正(B )A、换出变量B、换入变量C、非基变量D、基变量16、影子价格是指(D)A、检验数B、对偶问题的基本解C、解答列取值D、对偶问题的最优解17、影子价格的经济解释是( C )A、判断目标函数是否取得最优解B、价格确定的经济性C、约束条件所付出的代价D、产品的产量是否合理18、在总运输利润最大的运输方案中,若某方案的空格的改进指数分别为I WB=50元,I WC=-80元,I YA=0元,I XC=20元,则最好挑选( A )为调整格。
A、WB格B、WC格C、YA格D、XC格19、在一个运输方案中,从任一数字格开始,( B )一条闭合回路。
A.可以形成至少B.不能形成C、可以形成D.有可能形成20、运输问题可以用( B )法求解。
A、定量预测B、单纯形C、求解线性规划的图解D、关键线路21、在运输问题的表上作业法选择初始基本可行解时,必须注意(AD )。
A、针对产销平衡的表;B、位势的个数与基变量个数相同;C、填写的运输量要等于行、列限制中较大的数值;D、填写的运输量要等于行、列限制中较小的数值。
22、用增加虚设产地或者虚设销地的方法可将产销不平衡的运输问题化为产销平衡的运输问题(A )A、正确B、错误C、不一定D、无法判断23、通过什么方法或者技巧可以把产销不平衡运输问题转化为产销平衡运输问题( C )A、非线性问题的线性化技巧B、静态问题的动态处理C、引入虚拟产地或者销地D、引入人工变量24、动态规划方法不同于线性规划的主要特点是(AD )。
A、动态规划可以解决多阶段决策过程的问题;B、动态规划问题要考虑决策变量;C、它的目标函数与约束不容易表示;D、它可以通过时间或空间划分一些问题为多阶段决策过程问题。
25、用DP方法处理资源分配问题时,通常总是选阶段初资源的拥有量作为决策变量(B )A、正确B、错误C、不一定D、无法判断26、用DP方法处理资源分配问题时,每个阶段资源的投放量作为状态变量(B )A、正确B、错误C、不一定D、无法判断27、.动态规划最优化原理的含义是:最优策略中的任意一个K-子策略也是最优的(A )A、正确B、错误C、不一定D、无法判断28.动态规划的核心是什么原理的应用(A )A、最优化原理B、逆向求解原理C、最大流最小割原理D、网络分析原理29.动态规划求解的一般方法是什么?( C )A、图解法B、单纯形法C、逆序求解D、标号法30.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解(B )A、任意网络B、无回路有向网络C、混合网络D、容量网络31.动态规划的求解的要求是什么(ACD )A、给出最优状态序列B、给出动态过程C、给出目标函数值D、给出最优策略32.用动态规划解决生产库存的时候,应该特别注意哪些问题?(BC )A、生产能力B、状态变量的允许取值范围C、决策变量的允许取值范围D、库存容量33. 在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( C )。
A、降低的B、不增不减的C、增加的D、难以估计的34. 最小枝权树算法是从已接接点出发,把( C )的接点连接上A、最远B、较远C、最近D、较近35. 在箭线式网络固中,( D )的说法是错误的。
A、结点不占用时间也不消耗资源B、结点表示前接活动的完成和后续活动的开始C、箭线代表活动D、结点的最早出现时间和最迟出现时间是同一个时间36. 如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( C )。
A 、1200 B、1400C、1300D、170037.15km,20 km 25km,则(D )。
A、最短路线—定通过A点B、最短路线一定通过B点C、最短路线一定通过C点D、不能判断最短路线通过哪一点38. 在一棵树中,如果在某两点间加上条边,则图一定( A )A、存在一个圈B、存在两个圈C、存在三个圈D、不含圈39 网络图关键线路的长度( C )工程完工期。
A.大于B.小于C.等于D.不一定等于40. 在计算最大流量时,我们选中的每一条路线( C )。
A、一定是一条最短的路线B、一定不是一条最短的路线C 、是使某一条支线流量饱和的路线D 、是任一条支路流量都不饱和的路线41. 从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用( C ) A 、树的逐步生成法 B 、求最小技校树法C 、求最短路线法D 、求最大流量法42. 为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( B )。
A 、求最短路法B 、求最小技校树法C 、求最大流量法D 、树的逐步生成法 43.排队系统状态转移速度矩阵中,每一列的元素之和等于0。
( B )A 、正确B 、错误C 、不一定D 、无法判断44. 排队系统中状态是指系统中的顾客数( A )A 、正确B 、错误C 、不一定D 、无法判断45.排队系统的组成部分有( ABC )A 、输入过程B 、排队规则C 、服务机构D 、服务时间46.排队系统中,若系统输入为泊松流,则相继到达的顾客间隔时间服从什么分布( D )A 、正态分布B 、爱尔朗分布C 、泊松流D 、负指数分布47.研究排队模型及数量指标的思路是首先明确系统的意义,然后( ABC )A 、写出状态概率方程B 、写出状态转移速度矩阵C 、画出状态转移速度图D 、写出相应的微分方程48.排队系统的状态转移速度矩阵中( B )元素之和等于零。
A 、每一列B 、每一行C 、对角线D 、次对角线三、计算题1..用图解法求解下列LP 问题12max 2z x x =+12121212221228 416 ..412 ,0s t x x x x x x x x +≤⎧⎪+≤⎪⎪≤⎨⎪≤⎪≥⎪⎩ 答案:依题有可得最优解集合为1212{(,)|(,)(2,3)(1)(4,2),01}a a a x x x x =+-≤≤ 也即1212{(,)|(,)(42,2),01}a a a x x x x =-+≤≤ 最优值为8z*=(详细求解过程略去)2. 用分枝界定法求解下列线性规划问题12121212max ()6424132 7,0 f x x xx x x x x x =++≤⎧⎪+≤⎨⎪≥⎩且为整数 答案:松弛问题的最优解为 x 1=2.5, x 2=2, OBJ =23由x 1=2.5 得到两个分枝如下:121212112max ()6424132 7I 2,0 f x x x x x x x x x x =++≤⎧⎪+≤⎪⎨≤⎪⎪≥⎩问题且为整数和121212112max ()6424132 7II 3,0 f x x x x x x x x x x =++≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩问题且为整数 问题I 问题II x 1 2 3 x 2 9/4 1 f (x ) 21 223、已知线性规划问题123123123123123max 5675315 561020 5 ,0 ,z s.t.x x x x x x x x x x x x x x x =---⎧-+-≥⎪--+≤⎪⎨--=-⎪⎪≤⎩无约束 要求:(1)化为标准型式(2)列出用两阶段法求解时第一阶段的初始单纯形表 解:(1)令133333';''','''0'x z z x x x x x x =-=-≥-=、,原模型可以转化为133333123346123351233712334567';''','''0''53'3''155'610'10''20'''' 5 ',,','',,,,0 x z z x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x =-=-≥-=+-+-+=⎧⎪-+-+=⎪⎨++-+=⎪⎪≥⎩、,(2)见下表4、求下列线性规划问题,并写出LP 问题的对偶问题1212121212max 322 43214 3 ,0z s.t.x x x x x x x x x x =+⎧-+≥⎪+≤⎪⎨-≤⎪⎪≥⎩ 答案:51315[000]244X *=max 4Z =对偶问题:12312312312,3min 4143332220,0 w s.t.y y yy y y y y y y y =++⎧-++≥⎪⎪+-≥⎨⎪≤≥⎪⎩5、求出下列问题的对偶问题并分别队原问题及对偶问题求解123123123123123: max ()5362182316..10,0,f x x x xx x x x x x s t x x x x x x =++++≤⎧⎪++≤⎪⎨++=⎪⎪≥±⎩原问题不限答案:123123123123123: min ()1816102523..36,0,g y y y yy y y y y y s t y y y y y y =++++≥⎧⎪++≥⎪⎨++=⎪⎪≥±⎩对偶问题不限c j - z j0 -1 0 0 0 -1 -M-3对偶问题最优解:y4=0 y5=1 y6=0 y1=0 y2=1 y3=3原问题最优解:x1=14, x2=0, x3=-4, x4=8, x5=0, x6=0, OBJ=466、运输问题的数据如下表:B1B2B3 B4产量A1 A2 A3 2 2 3 74 35 91 6 7 8500600300销量300 200 500 400求最优运输方案。