测温原理图
- 格式:pdf
- 大小:302.81 KB
- 文档页数:1
课题名称:电加热开水炉温度检测实训报告书-专业系:电气工程系1班级:铁道自动化102班设计课题:热电偶测温系统学生姓名:吴利武李朝晖田琪李彬袁勇指导老师:胡国良老师完成日期:2012-04目录第一章绪论............................................................ -1 -第二章实验的目的及原理.............................................. -2 -2.1实验目的........................................................ -2 -2.2实验原理........................................................ -2 -2.3实验计划........................................................ -2 -第三章热电偶传感器.................................................. -3 -3.1热电偶工作原理:............................................. -3 -3.2热电偶优点:.................................................... -3 -3.3热电偶的种类及结构:......................................... -3 -3.4热电偶冷端的温度补偿......................................... -5 -第四章系统元件介绍.................................................. -8 -4.1 LED 介绍....................................................... -8 -4.2LM324 简介.................................................... -11 -4.3 ICL7107 介绍.................................................. -12 -第五章热电偶测温不准的原因及处理方法........................... -14 -5.1热电偶的补偿导线接反........................................ -14 -5.2热电偶的补偿导线绝缘层磨破,造成信号回路接地................ -14 -5.3端子接触不良................................................... -14 -5.4补偿电阻故障................................................... -14 -5.5锅炉尾部烟道热电偶故障率较高................................ -14 -5.6接地不良..................................................... -14 -第六章调试过程...................................................... -15 -6.1具体过程..................................................... -15 -6.2试注意项..................................................... -15 -6.3实验数据..................................................... -17 -第七章小组实训总结................................................. -19 -第一章绪论温度测量在物理实验、医疗卫生、食品生产等领域,尤其在热学试验(如:物体的比热容、汽化热、热功当量、压强温度系数等教学实验)中,有特别重要的意义。
热电阻(RTD)测温原理因为A/D转换器不能直接测量电阻,而欧姆定路告诉我们R=U÷I,因此我们让一恒定电流流过电阻,通过测量电流在该电阻上的压降而间接测量电阻R=U÷I,如线图:由于热电阻测温原理是温度与阻值的一一对应关系。
当进行温度显示时,一定要用导线将热电阻和显示仪表连起来,这样连接导线的阻值势必要造成测量系统的附加的系统误差,而且导线越长越细,误差就越大。
两线制接法无法克服这一误差,因此必须在软件里设定线路电阻,以软件补偿方式消除这一误差,但这个设定值是个常数,而实际情况是,随着线路老化、环境温度变化等因素影响,线路电阻并不是固定不变的,因此软件补偿方式仍然会有误差,三线接法可以随着线路电阻的变化实时减少或消除这一系统误差,但这也是建立在热电阻两端两条线路的线路电阻相等的前提条件下,当然在材料相同,环境温度相等的条件下热电阻两端两条线路的线路电阻基本上是相等的,因此为了进一步提高精度,彻底消除导线材料、环境温度等因素对测量精度、误差的影响,我们采用四线制测量方法,如下图所示,建议在高精度测量要求的场合下尽量采用四线制测量方式.一、二线制测量、三制测量原理二线制方式下:运放输入差动电压:()22L t t L U R R I U R R I =÷+⨯-=⨯→⨯因此软件测得U ÷I 后需再减去预先设定的常数(线路电阻2R L )即可得到热电阻阻值R t 。
三线制测量方式下:由于两个恒流源电流相等并已知为I ,那么根据叠加定理,运放输入差动电压:[2) ()]((2)L t L L L L L U I R R R I I R R I I I R R U =⨯⨯+⨯-⨯⨯⨯=→+⨯=÷+当采用三线制测量方式时由于采用双恒流源,为了消除线路电阻带来的误差,要求两个恒流源的电流必须相等,还要要求热电阻两端的线路电阻必须相等,实际上由于这两个两个恒流源的电流以及热电阻两端的线路电阻往往总是不相等存在着少量误差,因而线路电阻并不能完全抵消(消除),但在一定精度范围内已经能满足要求.二、什么是四线制测量?有何用途?当测量电阻数值很小时,表笔(测试线)的电阻可能引入明显误差,四线测量用两条附加测试线提供恒定电流,另两条测试线测量未知电阻的电压降,在电压表的内阻或者测量运放输入阻抗足够高的条件下,电流不流过电压表或运放,这就可以精确测量未知电阻上的压降U,再除以已知电流I,即可得出热电阻阻值R t,而且理论上无论线多大以及各段线路电阻是否相等均与测量精度无关,如下图由于通过以上电路测量可以精确得到电压U,而在电路设计阶段以上恒流源的电流I已被设定为一个恒定的已知数。
热电偶温度计工作原理及动图演示
电气温度仪表根据感温元件的不同,可分为热电偶、热电阻、固定收缩式等不同形式温度计。
同时除了微波炉外,压力仪表也包括着温度传感器等部件,它们的工作数学方法各不相同。
本文分享热电偶温度计工作原理以及动图演示,让大家以更加直观的方式,对这种温度仪表的此项工作原理一目了然。
热电偶测温的基本原理是:
两种不同水溶性的材质导体组成线圈闭合回路,当两端存在温度梯度时,回路中就会有电流通过,存在此时两端两者之间就存在电动势——热电动势,这就是所谓的塞贝克共振(Seebeckeffect)。
两种不同成份六种的均质导体为热电极,温度较高的一端为教育工作端,温度较低的一端为自由端,自由端端的通常处于某个恒定的温度下。
根据热电动势与温度的函数亲密关系,制成混频器分度表;
分度表是自由端温度在0℃前会的条件下得到的,不同的热电偶具有不同的分度表。
在热电偶回路中接入另一类回路金属材料时,只要相对湿度该材料七个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种远程管理金属接入回路中的影响。
因此,在热电偶测温时,可接入测量仪表,测得热电动势后,只须知道被测介质的温度。
热电偶测量温度观测时要求其冷端(测量端为热端,通过引线与测量电路的端称为冷端)的温度保持不变,其热电势大小总算与测量温度非常大呈一定的比例关系。
若测量时,冷端的(环境)温度变化,将严重影响测量的可靠性。
在冷端采取一定措施补偿由于冷端温度变化造成赔偿的影响称为热电偶的冷端补偿正常。
与测量仪表连接用专供补偿导线。
热电偶补偿导线的外形图。
测温枪的工作原理
测温枪,又被称为红外线测温仪,它的工作原理主要是基于物体表面的红外辐射来求得被测物体的温度。
具体来说,任何物体的温度只要高于绝对零度(-℃),就会向外发射热辐射。
根据黑体辐射理论,高温度下的黑体辐射强度在任何一个波长范围内都高于低温度下的黑体辐射。
测温枪就是利用这一原理,通过接收人体辐射出的红外线,来测量人体的温度。
测温枪通常采用远红外线发射光讯号,在不接触人体的情况下测量人体的温度,因此可以在传染性疾病发生地区等特殊情况下使用。
温度设计范围通常为-50~480℃,可以在低温环境下轻松实现测量,例如在东北西北等温度偏低的地域也可以正常使用。
总之,测温枪是一种高精度红外非接触式测温设备,具有工业家庭通用、医疗测温枪等多种应用场景。
它的工作原理基于物体表面的红外辐射和黑体辐射理论,通过接收并测量人体辐射出的红外线来得出人体温度。
红外体温测量的原理红外体温测量是一种非接触式的测温方式,它通过接收和分析人体发射出的热辐射,来测量人体的体温。
其基本原理是根据物体的温度不同会发射出不同的红外辐射功率,通过测量红外辐射功率的变化来推算物体的温度。
红外辐射是指波长在0.76至1000微米之间的电磁波辐射。
人体温度一般在36至37之间,对应的红外辐射波长在9至10微米之间。
红外体温测量通常使用的是波长在8至14微米之间的红外辐射,因为在这个波段范围内物体的红外辐射最强。
红外体温测量采用的传感器是红外传感器,它可以感应到物体所放射出的红外辐射,并将其转换为电信号进行处理。
红外传感器通常由红外探测器、光学透镜和相应的信号处理器构成。
红外体温测量仪通过红外传感器来接收人体所发射的红外辐射,然后将接收到的红外辐射信号转化为电信号。
红外传感器的核心部件是红外探测器,常用的红外探测器有热电偶、焦平面阵列探测器和热像仪。
热电偶是一种基于材料的热敏电阻器,它的导电性会随着温度的变化而发生变化。
当红外辐射照射在热电偶上时,热电偶的温度会升高,导致其电阻值发生变化。
通过测量热电偶电阻的变化,就可以推算出被测物体的温度。
焦平面阵列探测器是由多个微小的热电偶元件组成的矩阵,每个热电偶元件对应一个像素。
当红外辐射照射在焦平面阵列探测器上时,每个像素所测得的温度会反映在图像上,通过对图像进行分析处理,就可以得到被测物体的温度分布情况。
热像仪是一种专门用于红外热像图像的设备,它采用焦平面阵列探测器作为核心部件,可以实时地显示物体的红外影像。
热像仪通过对红外辐射的测量,可以将红外辐射转换成热图像,然后通过图像的处理,可以获得物体的温度信息。
红外体温测量的原理是基于人体发射的红外辐射功率与其体温之间的关系。
当人体体温升高时,其发射的红外辐射功率也会相应增大。
红外体温测量仪接收到人体发射的红外辐射后,会将其转化为电信号,并通过信号处理器进行处理和分析,从而得到人体的体温数值。
欢迎阅读详解各种温度计原理介绍(附图说明)温度计是测温仪器的总称,可以准确的判断和测量温度。
其制造的原理主要有以下几个方面:一是利用固体、液体、气体受温度的影响而热胀冷缩的现象;二是在定容条件下,气体(或蒸汽)的压强因不同温度而变化;三是热电效应的作用;四是电阻随温度的变化而变化;五是热辐射的影响等。
根据这些作用原理,3. 指针式温度计指针式温度计工作原理:利用两种不同金属在温度改变时膨胀程度不同的原理工作的。
主要的元件是一个用两种或多种金属片叠压在一起组成的多层金属片。
为提高测温灵敏度,通常将金属片制成螺旋卷形状。
当多层金属片的温度改变时,各层金属膨胀或收缩量不等,使得螺旋卷卷起或松开。
由于螺旋卷的一端固定而另一端和一可以自由转动的指针相连,因此,当双金属片感受到温度变化时,指针即可在一圆形分度标尺上指示出温度。
工作特点:温度显示直观方便;安全可靠,使用寿命长;多种结构形式,可满足不同要求;可以直接测量各种生产过程中的-80℃~500℃范围内液体、蒸汽和气体介质温度。
4. 玻璃管温度计玻璃管温度计6. 热电偶温度计热电偶温度计工作原理:两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。
热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。
工作特点:①测量精度高。
因热电偶直接与被测对象接触,不受中间介质的影响;②测量范围广。
常用的热电偶从-50℃~+1600℃均可连续测量,某些特殊热电偶最低可测到-269℃,最高可达+2800℃;③构造简单,使用方便。
通常是由两种不同的金属丝组成,而且不受大小和形状的限制,外有保护套管,用起来非常方便。
9. 水银温度计水银温度计工作原理:利用水银的热涨冷缩大于玻璃,由此可以显示出温度。
惠更斯电桥(三线制Pt100)惠更斯电桥的原理图如图所示,它的测量原理是当电桥的上下两个桥臂的电阻对应成比例时,a 点和b 点的电位相等,则检流计流过的电流为零.当其中一个电阻的阻值发生变化时,a 点和b 点的电位就会不等,检流计中就会有电流流过,检流计的指针就会发生偏转.根据这个原理,如果这四个电阻中的任何一个是未知的,而另外三个电阻相等时就可以通过检流计的偏转程度得知未知电阻的大小.热电阻检测温度的原理是利用了热敏电阻的阻值与温度对应成比例的原理,通过检测电阻值的大小来确定检测对象的实际温度.在实际现场中使用的热电阻的型号大多是Pt100,这个型号的含义是当实际温度是0度时,热电阻的阻值是100欧姆.温度每升高或降低一度阻值将变化约0.39欧姆.例如:当你使用万用表测量的阻值为110欧姆时,你可以通过下列计算方法得到实际温度值.先将实测阻值110减去100得到其差值10欧姆,然后用10除以0.39就可以得到实际的温度了.在本例中实际的温度值为25.64度.如果实测电阻值为90欧姆,计算方法和前面的一样,用90减去100得到-10,用-10除以0.39得到实际温度值为零下25.64度.热电阻检测温度的原理是利用了热敏电阻的阻值与温度对应成比例的原理,通过检测电阻值的大小来确定检测对象的实际温度.在实际现场中使用的热电阻的型号大多是Pt100,这个型号的含义是当实际温度是0度时,热电阻的阻值是100欧姆.温度每升高或降低一度阻值将变化约0.39欧姆.例如:当你使用万用表测量的阻值为110欧姆时,你可以通过下列计算方法得到实际温度值.先将实测阻值110减去100得到其差值10欧姆,然后用10除以0.39就可以得到实际的温度了.在本例中实际的温度值为25.64度.如果实测电阻值为90欧姆,计算方法和前面的一样,用90减去100得到-10,用-10除以0.39得到实际温度值为零下25.64度.知道了检测原理,下面要做的工作就是如何检测这个与温度对应成比例的电阻值了.我们通常使用的方法就是利用惠更斯电桥原理.如图我们将电桥的一个桥臂接入测温电阻RTD,另外三个桥臂电阻相等.这样在检流计中流过的电流就会随热电阻阻值的变化而变化.如果我们将检流计两端的电位差引入PLC 的AI 模板中,经过计算就会在HMI 上得到实际温度值.但是,如果只是简单的应用原理进行接线的话是达不到精度要求的.这是因为从PLC 到检测现场有很长的一段距离,导线的线路电阻是不能被忽略的.从右边的图可以看出,电桥的测量桥臂包括了两根连接导线的线路电阻 r .这样是不行的.这就是RTD 测温采用三线制的原因.下图的左边部分是三线制的原理接线图.由图中看出电源通过C 线接入测量桥路,这时电路就可以等效为右图.从右图得知,A 线和B 线的线路电阻 r 被分别连接到上下桥臂中.由于这两根导线的长度一样,既电阻一样,这样就消除了线路电阻的影响.注意:在等效线路图中没有将C 线的线路电阻画出来,这是因为它在供电线路中可以忽略不计.但是当由于接触不良造成C 线电阻过大时,情况就会发生变化.由于C 线电阻过大,供到电桥中的电压会有较大的压降损失,从而导致桥路的输出比实际的要低因此,在实际维护中发现仪表的显示值比实际低时,应检查C线电阻值.PLC 现场•三线制电阻杆的示意图如左图所示.电阻体的一端引出一根引线,我们称为A线,另一端引出两根引线,称为B线和C线.•A线、B线和C线引入接线盒内并分别接在标有A、B和C(或B,b)的接线端子上.•当来自PLC的三根信号电缆一一对应的接到这三个端子上时,随温度变化的电阻值就被接入到PLC的AI 输入插板中并转换为实际温度.对于使用Pt100热电阻测量介质温度时发生故障时的一般检查方法当HMI上的温度显示值波动较为剧烈时,一般情况下是由于接触不良造成的.这是因为温度是一种变化比较缓慢的量,属于惯性环节.特别是热容较大的被测对象.(如检测一个几十立方米容积的液体储槽中的液体温度时,温度基本不会发生剧烈波动.)在这种情况下应检查各接线端子处的端子接线是否有松动现象或连接导线有无似断似连的现象.当温度值显示为无穷大时,一般情况下故障原因是由于线路开路引起.如果温度值显示为负最大,一般情况下为线路短路引起.由上述两点引申出下面的结论:1.如果显示温度比实际的要高,则可能由于接线端子接触不良或接线松脱、折断造成电阻增大所至.这时应对电阻杆接线盒内的接线柱和各个中间端子箱的对应端子进行检查并紧固.另外也可能由于端子与导线间有氧化层使得电阻增大所引起.这种情况可使用砂纸或其他工具将氧化层去除即可;2.如果显示温度比实际的要低,则可能有短路现象或如前面所讲的那样C线电阻增大所引起.检查热电阻是否正常的方法是:无论你在那一个位置(PLC柜的接线端子、中间端子箱、就地电阻杆)进行检查时,都要将A线断开. 这是因为使用万用表的电阻档测量电阻时,表本身要向铂电阻供电,而A线同样是向铂电阻供电的线路.如果不拆下A线,则测量的值就会与实际值相去甚远.断开A线后先将表的红、黑表笔短接,校对表的零点.然后测量AB间、AC间电阻的值,并对这两个值进行比较.如果一致,再用这个值使用前面所示的公式求出实际温度值.。