多重化双向DC_DC变换器电流纹波分析_陈明
- 格式:pdf
- 大小:389.96 KB
- 文档页数:5
双向 DC-DC 变换器简介双向 DC-DC 变换器是一种可以实现能量在两个方向上传输的电路,能够将能量从一个电源转移到另一个电源。
它在电动车、太阳能系统、电池储能系统等应用中得到广泛应用。
本文将介绍双向 DC-DC 变换器的原理、工作模式和应用。
原理双向 DC-DC 变换器通过两个独立的电感和开关器件实现能量的双向传输。
其拓扑结构常见的有升降压式和升压式两种。
在升降压式拓扑中,输入电源可以比输出电源的电压高或低;而在升压式拓扑中,输入电源的电压必须比输出电源的电压高。
下面介绍升降压式和升压式拓扑的工作原理:升降压式拓扑升降压式拓扑常用的桥式电感拓扑是最常见的升降压式拓扑。
其电路图和工作原理如下:升降压式拓扑升降压式拓扑在升降压式拓扑中,当开关 SW1 和 SW2 关闭时,电感 L1 储存电能;当 SW1和 SW2 开启时,通过二极管 D1 转移到电容 C1 上。
同样,当开关 SW3 和 SW4 关闭时,电感 L2 储存电能;当 SW3 和 SW4 开启时,通过二极管 D2 转移到电容 C2 上。
升压式拓扑升压式拓扑常用的桶式电感拓扑是最常见的升压式拓扑。
其电路图和工作原理如下:升压式拓扑升压式拓扑在升压式拓扑中,当开关 S1 关闭时,电感 L1 储存电能;当 S1 开启时,通过二极管 D1 转移到电感 L2 上。
此时,电容 C1 上的电压逐渐升高,最终达到所需的输出电压。
工作模式双向 DC-DC 变换器有三种工作模式:降压模式、升压模式和反向电流保护模式。
降压模式降压模式是指输入电压高于输出电压的情况。
在此模式下,开关器件周期性地开启和关闭,以维持输出电压在设定范围内。
当开关器件关闭时,电感和电容储存能量;而当开关器件打开时,能量从电感和电容中释放,通过二极管传递到输出端。
这个过程会不断循环,以保持输出电压稳定。
升压模式升压模式是指输入电压低于输出电压的情况。
在此模式下,开关器件周期性地开启和关闭,以提供所需的输出电压。
双向DCDC变换器的研究一、本文概述随着能源科技的不断进步和可再生能源的日益普及,电力电子技术在能源转换和管理中发挥着越来越重要的作用。
双向DC-DC变换器作为一种重要的电力电子设备,具有在宽范围内调节电压、实现能量的双向流动以及高效率的能量转换等特点,因此在电动汽车、储能系统、微电网等领域具有广泛的应用前景。
本文旨在对双向DC-DC变换器进行深入研究,分析其工作原理、拓扑结构、控制策略以及优化方法,以期为该领域的发展提供理论支持和实践指导。
本文将介绍双向DC-DC变换器的基本概念和分类,阐述其在不同应用场景中的重要作用。
接着,将重点分析几种典型的双向DC-DC变换器拓扑结构,包括其工作原理、性能特点以及适用场景。
在此基础上,本文将探讨双向DC-DC变换器的控制策略,包括传统的控制方法和现代的控制算法,分析各自的优缺点,并提出改进和优化方法。
本文还将关注双向DC-DC变换器的效率优化问题,研究如何通过降低损耗、提高转换效率来实现更高效的能量转换。
还将探讨双向DC-DC 变换器在实际应用中面临的挑战和问题,如电磁干扰、热管理、可靠性等,并提出相应的解决方案。
本文将总结双向DC-DC变换器的研究现状和发展趋势,展望未来的研究方向和应用前景。
通过本文的研究,期望能够为双向DC-DC变换器的设计、优化和应用提供有益的参考和启示。
二、双向DCDC变换器的基本原理与结构双向DC-DC变换器,又称为双向直流转换器或可逆DC-DC变换器,是一种特殊的电力电子装置,它能够在两个方向上进行电压和电流的转换。
这种转换器不仅可以像传统的DC-DC变换器那样将一个直流电压转换为另一个直流电压,而且还可以在两个方向上进行这种转换,即既可以实现升压也可以实现降压。
双向DC-DC变换器的基本原理基于电力电子转换技术,主要利用开关管和相应的控制策略,实现电源和负载之间的能量转换。
其核心部分包括开关管、滤波器、变压器以及相应的控制电路。
双向DCDC变换器的分析研究双向DC-DC变换器是一种电力电子器件,用于将直流电能从一个电源转换为另一个电源。
它具有很多应用领域,例如光伏发电系统、电动车充电系统等。
本文将对双向DC-DC变换器进行分析研究,包括工作原理、拓扑结构和性能分析。
双向DC-DC变换器的工作原理如下:当输入电压大于输出电压时,变换器工作在升压模式下,将输入电压提升到输出电压。
当输入电压小于输出电压时,变换器工作在降压模式下,将输入电压降低到输出电压。
变换器通过开关管和电感实现电能的传输和控制。
在升压模式下,开关管导通,将电能储存在电感中,然后关断开关管,使储存的电能通过二极管传递到输出端。
在降压模式下,开关管关断,电感中储存的电能通过二极管传输到输出端。
双向DC-DC变换器有多种拓扑结构,常见的有双边激磁变换器、双边换流电感变换器、双边开关电流变换器等。
其中,双边激磁变换器是一种常用的结构,其工作原理如下:当开关管Q1导通时,输入电源通过L1传导到电容C1和负载,此时输出电压上升;当开关管Q2导通时,L2向负载提供能量,同时电容C2对电流进行平滑滤波。
要对双向DC-DC变换器进行分析研究,需要考虑以下几个关键因素。
首先是效率。
双向DC-DC变换器的效率是指输出功率与输入功率之间的比值。
高效率的变换器可以减少能量的损耗,提高系统的能量利用率。
影响效率的因素主要包括开关管的导通损耗、电感和电容元件的损耗以及输出负载的功率损耗。
研究如何提高变换器的效率,可以通过优化开关管的驱动方式、选择合适的电感和电容元件以及优化输出负载的设计来实现。
其次是稳定性。
双向DC-DC变换器的稳定性是指输出电压稳定在期望值附近的能力。
稳定性的分析主要包括输出电压的波动范围,以及对输入电压和输出负载变化的响应能力。
实际应用中,稳定性是非常重要的,因为电子系统对电压的稳定性要求很高。
研究如何提高变换器的稳定性,可以通过选择合适的控制策略和设计均衡电压环路来实现。
双重移相控制的双向全桥DCDC变换器及其功率回流特性分析一、本文概述本文旨在对双重移相控制的双向全桥DCDC变换器进行深入研究,并探讨其功率回流特性。
随着电力电子技术的快速发展,DCDC变换器作为能源转换与管理的核心组件,广泛应用于电动汽车、可再生能源系统、数据中心等众多领域。
其中,双向全桥DCDC变换器因其高效率、高功率密度和灵活的能量双向流动特性而受到广泛关注。
双重移相控制策略作为一种先进的调制方法,能够有效优化双向全桥DCDC变换器的性能。
它通过独立控制两个桥臂的移相角,实现输出电压和电流的精确调节,同时提高变换器的整体效率。
然而,双重移相控制策略也带来了复杂的功率回流问题,即在变换器工作过程中,部分功率会在不同桥臂之间回流,导致能量损失和效率下降。
因此,本文将对双重移相控制的双向全桥DCDC变换器的功率回流特性进行深入分析。
我们将建立变换器的数学模型,明确功率回流产生的机理和影响因素。
然后,通过仿真和实验验证,研究功率回流对变换器性能的影响程度,并提出相应的优化措施。
我们将总结双重移相控制策略在双向全桥DCDC变换器中的应用前景,为相关领域的研究和实践提供参考。
二、双重移相控制的双向全桥DCDC变换器基本原理双重移相控制的双向全桥DCDC变换器是一种高效、灵活的电能转换装置,能够实现双向的电能传输和功率回流。
其基本原理在于通过两个独立的移相控制策略,分别控制全桥变换器的两个桥臂,从而实现输入与输出之间的电压和电流的灵活调节。
变换器由两个全桥电路组成,每个全桥电路包括四个开关管,通过控制开关管的通断状态,可以实现电能的输入和输出。
双重移相控制策略则通过独立控制两个全桥电路的移相角,实现电能的高效转换。
在功率回流过程中,双重移相控制策略可以有效地调整回流电流的大小和方向,从而实现功率的高效回流。
具体而言,当变换器工作在逆变状态时,通过调整移相角,可以控制回流电流的大小和方向,使其与输入电流相匹配,从而实现功率的高效回流。
双向DC/DC变换器中电流断续的全数字控制研究目前,随着电力电子技术和芯片技术的不断发展,越来越多的电力电子装置采用了全数字控制。
与传统的模拟控制相比,数字系统具有更高的稳定性,是电力电子装置实现网络化和智能化所必备的。
另外,全数字控制系统可以方便地通过编程来实现整个系统的其他辅助功能,例如网络通讯,数据交换等。
因此,对电力电子装置采用全数字控制是大势所趋。
通常在电动汽车、电动工具、通讯以及电力系统的后备电源中,双向DC/DC电路是一个必不可少的能量变换单元。
它首先通过DC/DC变换器将输人电压变换到一定范围,即直、流母线电压值,然后再通过后级电路输出。
因此,双向DC/DC变换器性能的好坏直接影响到整个控制系统。
在数字式双向DC/DC电路的控制中,一般采用平均电流控制法来实现电路的恒流,但由于受数字离散采样的影响,当电感电流工作于断续模式时,常规的平均电流控制方法效果较差。
到目前为止,已有文献对数控系统中的电流采样进行了研究。
本文针对这一问题,提出了一种断续下电流开环的控制策略,即通过采样变换器两端电压来实时计算出电感的平均电流,并将这一计算的电流值用于PI调节。
实验结果表明,当电路工作于断续模式时,该控制策略具有很好的恒流效果。
1 数字控制双向DC/DC变换器本文的双向DC/DC变换器属于20 kW电机驱动器的前级,其采用蓄电池作为输人,整个系统可以工作于电动机和发电机两种状态。
当作为电动机工作时,通过蓄电池组来驱动电机,当作为发电机时,通过专门的内燃机拖动电机,并且通过双向DC/DC 变换器来对蓄电池组进行充电。
为了使电机获得恒定的力矩输出,因此通过前级DC/DC变换器来获得恒定的电流值。
图1所示是系统的双向DC/DC变换器,本文的内容仅限于对该电路的讨论。
下面来分析该电路的工作原理。
1.1 正向电动机模式此时S1工作于开关状态,S2、S3不导通,D2作为Buck电路的二极管,D3持续导通来输出可调的电压Uo,此时电路可以工作于恒流或恒压模式。
高压多电平双向DCDC变换器文献综述引言随着电力电子技术的不断发展,高压多电平双向DCDC变换器得到了广泛的应用,在现代化工业、军事电子、电力系统中有着重要的地位。
高压多电平双向DCDC变换器具有高效率、高功率密度、小体积、快速响应等优点。
本文旨在对高压多电平双向DCDC变换器的相关文献进行综述和归纳。
文献综述文献一:高可靠性高压多电平DC-DC双向变换器这篇文献中提出了一种高可靠性高压多电平DC-DC双向变换器,并针对该变换器设计一种新型控制器。
该设计中使用了模块化的设计思路,运用VHDL语言进行编程,实现双向DC-DC变换器中的PWM控制和PID控制。
该文献中的实验表明,所设计出的双向变换器具有较好的输出电压质量,输出电流质量和性能稳定性。
同时,该变换器还具有较低的噪声水平和出色的短路保护功能,可以在不同的负载条件下提供高质量的输出电流。
通过使用模块化的设计,该文献所设计出的高压多电平DC-DC双向变换器具有较高的可靠性和稳定性。
文献二:基于GAN的高压多电平双向DCDC变换器网络模型该文献利用深度学习算法中的生成对抗网络(GAN)来建立高压多电平双向DCDC变换器网络模型,并测试其在不同负载下的稳定性和可靠性。
该文献中还引入了一种基于欧拉法的离散控制策略,在不同工况下也有着较好的输出质量和稳定性。
该文献中的实验结果显示,使用GAN网络模型的双向DCDC变换器在不同的负载条件下仍然具有出色的性能,具有较低的失调问题和毛刺问题,运行效率也得到了较大的提高。
而且使用欧拉离散控制策略的实验结果也验证了其在高压多电平双向DCDC变换器的应用效果。
文献三:基于LQR控制的高压多电平双向DCDC变换器该文献中提出了一种基于线性二次调节(LQR)控制器的高压多电平双向DCDC变换器,并对其进行仿真测试。
该设计中使用MATLAB工具箱对双向DCDC 变换器进行数值仿真,对变换器进行多种负载工况的测试。
实验结果表明,使用LQR控制器的高压多电平双向DCDC变换器具有较好的稳定性和鲁棒性,能够在负载改变的情况下快速适应并调节输出电压,具有较好的干扰抗性和降噪效果。
《双向双桥串联谐振移相DC-DC变换器及其组合模块研究》篇一双向双桥串联谐振移相DC-DC变换器及其组合模块研究一、引言随着电力电子技术的飞速发展,DC/DC变换器作为电力转换和能量管理的核心部件,其性能的优劣直接关系到整个系统的稳定性和效率。
本文重点研究一种新型的双向双桥串联谐振移相DC/DC变换器及其组合模块,通过深入的理论分析和实验验证,探讨其在高效能量转换和优化系统性能方面的应用。
二、双向双桥串联谐振DC/DC变换器的工作原理1. 基本结构与组成该双向双桥串联谐振DC/DC变换器主要由两个全桥变换器模块、谐振电路以及控制模块构成。
两个全桥变换器模块交错连接,形成一个双桥结构,谐振电路负责提供谐振过程所需的谐振电感和电容。
2. 工作原理在正常工作时,两个全桥变换器模块交替进行开关操作,通过控制开关的相位差实现能量的双向传输。
同时,谐振电路中的电感和电容协同工作,实现能量的高效传输和转换。
三、移相技术的运用移相技术是该变换器的关键技术之一。
通过控制两个全桥变换器模块之间的相位差,可以实现对输出电压和电流的精确控制。
此外,移相技术还可以有效地减小电流的纹波系数,提高系统的效率。
四、串联谐振的特性分析串联谐振电路是该变换器的核心部分。
通过对谐振电路的分析,可以得出其具有高效率、低损耗、高功率因数等优点。
同时,通过合理设计谐振电路的参数,可以实现软开关操作,进一步减小开关损耗,提高系统的整体效率。
五、组合模块的研究与应用针对不同应用场景和需求,将多个双向双桥串联谐振DC/DC 变换器组合成模块化结构。
这种组合模块不仅提高了系统的可靠性,还使得系统具有更高的灵活性和可扩展性。
通过对组合模块的研究,可以进一步优化系统的性能,满足不同应用场景的需求。
六、实验验证与分析通过搭建实验平台,对双向双桥串联谐振移相DC/DC变换器及其组合模块进行实验验证。
实验结果表明,该变换器具有高效率、低损耗、高稳定性等优点,同时组合模块的应用可以进一步提高系统的可靠性和灵活性。
第28卷㊀第2期2024年2月㊀电㊀机㊀与㊀控㊀制㊀学㊀报Electri c ㊀Machines ㊀and ㊀Control㊀Vol.28No.2Feb.2024㊀㊀㊀㊀㊀㊀一种适合宽范围输出的双向DC-DC 变换器袁义生,㊀卢梓意,㊀刘伟(华东交通大学电气与自动化工程学院,江西南昌330013)摘㊀要:提出一种适合宽范围输出的双向DC-DC 变换器㊂该变换器结构与传统LLC 双向DC-DC 变换器类似,但通过开关管复用以及将谐振电感增加绕组复用为一个反激变压器,构造了多种工作模式㊂变换器采用PWM 调制,正向功率传输时有中㊁低两种电压增益模式,反向功率传输时有高㊁中㊁低三种电压增益模式,所有模式中均可实现全负载范围内的软开关状态㊂对各模式的工作原理㊁增益公式推导进行了详细的描述㊂最后以满足4-5节12V 蓄电池的充放电为前提,给出变换器设计和控制方法,并搭建了相应参数的实验样机㊂实验结果验证了该变换器分析的有效性㊂关键词:双向DC-DC 变换器;宽范围;多模式;谐振;软开关DOI :10.15938/j.emc.2024.02.015中图分类号:TM46文献标志码:A文章编号:1007-449X(2024)02-0152-10㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2022-05-23基金项目:国家自然科学基金(52067007);江西省自然科学基金重点项目(20232ACB204024)作者简介:袁义生(1974 ),男,博士,教授,博士生导师,研究方向为电力电子系统及其控制;卢梓意(1996 ),男,硕士,研究方向为电力电子与电力传动;刘㊀伟(1985 ),男,博士研究生,研究方向为电力电子与电力传动㊂通信作者:袁义生Bidirectional DC-DC converter suitable for wide output rangeYUAN Yisheng,㊀LU Ziyi,㊀LIU Wei(School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,China)Abstract :A bidirectional DC-DC converter suitable for wide range output was proposed.The structure of the converter is similar to that of the traditional LLC bi-directional DC-DC converter,but a variety of op-erating modes were constructed by multiplexing the switching and multiplexing the resonant inductor in-creasing winding as a flyback transformer.In the converter,by adopting PWM modulation,forward power transmission has medium and low voltage gain mode,reverse power transmission has high,medium and low voltage gain mode,all modes can achieve the soft switching state within the full load range.The working principle of each mode and derivation of gain formula are described in detail.Finally,on the premise of charging and discharging 4-512V batteries,the design and control method of the converter is given,and the experimental prototype of the corresponding parameters is built.Experimental resultsverify the effectiveness of the proposed converter analysis.Keywords :bidirectional DC-DC converter;wide range;multi-mode;resonance;soft switching0㊀引㊀言近年来,随着直流配电[1-3]和电动汽车直流充电桩[4-5]技术的迅速发展,功率能够双向流动的DC-DC 变换器也得到了越来越多的研究,尤其是能够适应宽输入或宽输出电压范围工作的高效率㊁高电压增益的双向DC-DC 变换器㊂传统的双半桥或者双全桥双向DC-DC 变换器[6-7]具有软开关的优点,但缺点是正㊁反向电压增益都小于1,且关断时刻电流大㊁循环损耗大㊂LLC 谐振型双向DC-DC变换器[8]能够更好地实现软开关且关断电流和循环损耗更小,在正向工作时电压增益能大于1,但一般小于1.4;缺点是反向电压增益小于1,正向工作时开关频率调节范围过宽㊂双向CLLC谐振变换器[9]进一步提升反向电压增益大于1,但缺点是使用器件太多,功率密度较低,且开关频率调节范围过宽㊂带辅助电感的对称式双向LLC谐振变换器[10]比CLLC谐振变换器减小了一个谐振电容,但开关频率范围仍然较宽㊂文献[11]通过在二次侧增加一个双向交流开关,在保持高效的同时可以通过PWM调制增加变换器的电压调节能力,但是这增加了成本和复杂性㊂提高DC-DC变换器的电压增益范围有以下几种方案㊂1)调节谐振腔参数㊂文献[12]通过降低励磁电感使电路在低k值下运行,实现功率高密度㊂文献[13]采用一种充磁电感,在不同的模式中通过改变频率进而改变电感量,可以将导通损耗降到最低并且提高电压增益㊂2)引入辅助桥臂㊂文献[14]在原边增加了辅助双向开关桥臂让电路可以在常态运行和掉电保持运行之间切换,保证了输出电压稳定也提高了工作效率㊂文献[15]通过引入辅助桥臂,增加充能环节,有多种工作模式,拓宽了增益范围进㊂3)新型调制策略㊂文献[16-17]为了限制开关频率的变化并获得较宽的电压增益范围,提出了适用于低谐振变换器的恒频移相控制方法,但变换器在低电压增益或者轻载的情况下会失去零电压开关(ZVS)㊂文献[18-20]采用新型控制策略通过在全桥模式和半桥模式之间切换实现了较宽增益的输出㊂4)改变谐振腔电压㊂文献[21]提出的复合型谐振变换器通过复用谐振电感来提高功率密度,利用多种模态实现全负载下的宽增益输出㊂文献[22]采用两个变压器串联,有四种运行方式,可以覆盖最小输入电压的四倍范围,并且通过优化电路参数来达到较高的效率㊂本文通过器件复用,提出一种结构更简单,具有多种电压增益模式的双向宽范围输出的DC-DC变换器㊂该变换器采用PWM调制,开关频率固定,具有全软开关高效率的优点㊂1㊀拓扑结构及工作原理1.1㊀拓扑结构及工作状态图1为本文提出的适合宽范围输出的双向DC-DC变换器㊂该变换器左右侧均采用全桥结构,由8个开关管S1~S8及其反并二极管和寄生电容构成,通过一个原副边匝比为K1的主变压器T1隔离,是一个传统的桥式双向DC-DC变换器结构㊂此外,还有一个原副边匝比为K2的辅助变压器T2和开关管S9及其反并二极管D9,构成了一个反激双向DC-DC 变换器㊂辅助变压器T2的原边绕组电感L r复用作谐振电感,与谐振电容C r构成谐振腔㊂L m为T1的励磁电感,假设L m极大㊂图1㊀提出的适合宽范围输出的双向DC-DC变换器Fig.1㊀A wide gain multi-mode bidirectional DC-DC converter proposed提出的双向DC-DC变换器有正向功率传输和反向功率传输两种工作方式㊂正向工作时有中㊁低电压增益两种模式,反向工作时有高㊁中㊁低三种电压增益模式,适用于宽范围输出的场合㊂定义特征阻抗Z r=L r/C r,品质因数Q=π2Z r/(8K2R o),谐振频率f r=1/(2πL r C r),开关频率f s,归一化频率f n=f s/f r,谐振角频率ωr= 2πf r㊂1.2㊀正向功率传输方式及工作原理正向功率传输方式时,功率从左侧向右侧传输,有中㊁低两种电压增益模式㊂1.2.1㊀正向中电压增益模式正向中电压增益(forward medium gain,FMG)模式采用脉冲宽度调制(pulse width modulation,PWM)调制,关键波形如图2所示㊂S1㊁S6㊁S7为第一组, S2㊁S5㊁S8为第二组,每组共同导通关断,两组开关管互补导通,占空比为D=[2(t1-t0)/T s]㊂S3㊁S4也是互补导通并且分别和第一组和第二组开关管同时开通,占空比接近0.5㊂一个开关周期分为三个阶段如图3所示,下面对三个阶段进行详细描述㊂351第2期袁义生等:一种适合宽范围输出的双向DC-DC变换器阶段1[t 0-t 1]:LC 谐振阶段㊂t 0时刻S 1和S 4导通,副边S 6和S 7和二极管D 6㊁D 7导通,形成LC 谐振回路㊂电容电压最大为ΔU Cr ,则此阶段副边的电感电流i Lr_F 可以表示为i Lr_F (t )=U i /K 1-U o +ΔU CrZ rsin(ωr t )㊂(1)本阶段通过LC 谐振从左到右传递能量㊂图2㊀FMG 模式的主要波形Fig.2㊀Main waveforms of FMGmode图3㊀FMG 模式各阶段的等效电路Fig.3㊀Equivalent circuits of each stage of FMG mode阶段2[t 1-t 2]:环流阶段㊂t 1时刻S 1㊁S 6㊁S 7关断,D 3迅速导通㊂由于谐振电感电流i Lr_F 不能突变,电容电流i Cr 会瞬间换向通过二极管D 5㊁D 8流向L r ㊂此阶段电容电压U Cr 近似不变,T 1原边短路谐振电感L r 承受(U o -U cr )的反向电压,谐振电流i Lr_F 直线下降㊂变压器电流i Lm 快速下降接近至0再反向㊂此阶段的电感电流i Lr_F 可以表示为i Lr_F (t )=i Lr_F (t 1)-U o +ΔU CrL r(t -t 1)㊂(2)本阶段原边环流,副边换流,L r 继续释放能量㊂阶段3[t 2-t 3]:死区阶段㊂t 2时刻S 4关断,原边电流通过D 2㊁D 3流向电源U i ,此时L r 承受[(U i /n 1)+U Cr -U o ]的正向电压,电流迅速上升㊂至t 3时刻,S 2㊁S 3㊁S 5㊁S 8均实现ZVS 开通㊂本阶段作用时间很短㊂1.2.2㊀正向低电压增益模式正向低电压增益(forward low gain,FLG)模式采用PWM 调制,仅开关管S 9工作,通过控制其占空比D f 来实现电压转换㊂开关管S 9和T 2以及右侧四个二极管构成了一个反激变换器,具体工作原理不再赘述㊂1.3㊀反向功率传输方式及工作原理反向功率传输时,输入电压为U o ,输出电压为U i ,有高㊁中㊁低三种电压增益模式㊂1.3.1㊀反向高电压增益模式反向高电压增益(reverse high gain,RHG)模式关键波形如图4所示㊂各开关管采用PWM 调制㊂副边两个上管S 5和S 6互补导通,(t 3-t 2)为两者间死区时间;两个下管S 7和S 8的导通占空比相等且大于0.5,它们分别与S 6和S 5同时触发导通㊂原边的开关管S 1㊁S 4和S 6同时开通关断,S 2㊁S 3和S 5同时导通关断㊂图4㊀RHG 模式的主要波形Fig.4㊀Main waveforms of RHG mode451电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀RHG 模式通过调整同一桥臂上下管共同导通的占空比D b =[2(t 1-t 0)/T s ]来调节增益㊂以下分析上半个周期[t 0-t 4]的4个工作阶段原理,其等效电路图如图5所示㊂图5㊀RHG 模式各阶段的等效电路Fig.5㊀Equivalent circuits of each stage of RHG mode1)阶段1[t 0-t 1]:Boost 阶段㊂t 0之前i Lr 初始值为0㊂此阶段S 6和S 8导通,电源U o 给谐振电感L r 储能,i Lr 线性上升㊂由于i Lr 初始值为0,所以实现了S 1㊁S 4㊁S 6㊁S 7㊁S 8的ZCS 开通㊂至t 1时刻,电感电流i Lr 上升为i Lr (t 1)=U o D b T sL r㊂(3)本阶段实现了L r 的储能㊂2)阶段2[t 1-t 2]:LC 谐振阶段㊂t 1时刻关断S 8,此时S 6㊁S 7导通,原边S 1㊁S 4㊁D 1㊁D 4导通,进入L r 和C r 谐振阶段㊂C r 初始电压为-U CrM ㊂此阶段谐振电流i Lr 和谐振电压U cr 分别表示为i Lr (t )=U o -U i /K 1+U CrMZ rsin[ωr (t -t 1)]+i Lr (t 1)cos[ωr (t -t 1)];(4)U Cr (t )=i Lr (t 1)Z r sin[ωr (t -t 1)]+U o -K 1U i -(U o -K 1U i +U CrM )cos[ωr (t -t 1)]㊂(5)本阶段通过LC 谐振从右到左传递能量㊂3)阶段3[t 2-t 3]:Flyback 阶段㊂t 2时刻关断S 6㊁S 1㊁S 4,S 7继续导通㊂此时L r 上的能量通过变压器T 2反激传输到U i 侧㊂反激电流为i f =K 2i Lr (t 2)-K 2U iL r(t -t 2)㊂(6)本阶段通过反激方式将L r 的剩余能量全部传递到原边㊂4)阶段4[t 3-t 4]:电流断续阶段㊂t 3时刻i f 下降至0,直至t 4时刻开始下半个周期㊂1.3.2㊀反向中电压增益模式反向中电压增益(reverse medium gain,RMG)模式关键波形如图6所示㊂各开关管采用传统的PWM 调制㊂副边的S 6㊁S 7,和原边的S 1㊁S 4为一组;副边的S 5㊁S 8,和原边的S 2㊁S 3为另一组㊂两组开关管导通占空比都是D m =[2(t 1-t 0)/T s ],导通时刻相差180ʎ㊂图6㊀RMG 模式的主要波形Fig.6㊀Main waveforms of RMG modeRMG 模式相比RHG 模式仅少了一个Boost 阶段㊂[t 0-t 3]是上半个周期的3种工作阶段,各阶段工作原理简述如下:1)阶段1[t 0-t 1]:LC 谐振阶段㊂此阶段工作原理等同于RHG 模式的LC 谐振阶段,区别仅在于谐振电感初始电流i Lr 为0,使得S 6㊁S 7实现ZCS 导通㊂2)阶段2[t 1-t 2]:Flyback 阶段㊂此阶段工作551第2期袁义生等:一种适合宽范围输出的双向DC -DC 变换器原理等同于RHG模式的Flyback阶段㊂3)阶段3[t2-t3]:电流断续阶段㊂此阶段工作原理等同于RHG模式电流断续阶段㊂1.3.3㊀反向低电压增益模式反向低电压增益(reverse low gain,RLG)模式采用PWM调制,右侧四个开关管S5-S8同时通断,通过控制其占空比D f来实现电压转换㊂这四个开关管和T2㊁D9构成了一个反激变换器,具体工作原理不再赘述㊂2㊀电压增益2.1㊀FMG模式电压增益G FMG本模式本质上等同于一个副边LC谐振变换器,因此其电压增益最大为1㊂推导如下㊂定义本模式电感电流i Lr_F在LC谐振阶段的平均值为I d_F,在Flyback阶段的平均值为I f_F,负载电阻为R o,则G FMG=U o Ui =R o(I d_F+I f_F)U i㊂(7)I d_F和I f_F可以表示为I d_F=2f sʏt1t0i Lr_F(t)d t=πU i(1/K1-G FMG)[1-cos(πD)][3+cos(πD)]8QR o[1+cos(πD)];(8)I f_F=2f sʏt3t1i Lr_F(t)d t=πU i sin2(πD)(1/K1-G FMG)2[3+cos(πD)]216QR o[2/K1-G FMG+cos(πD)][1+cos(πD)]㊂(9)联合式(7)㊁式(8)㊁式(9)可以得到有关G FMG㊁D㊁Q的隐函数f FMG(G FMG,D,Q)=8QG FMG[1+cos(πD)]-π(1-G FMG)ˑ[3+cos(πD)]{1-cos(πD)+sin2(πD)(1/K1-G FM G)[3+cos(πD)]2[2/K1-G FM G+cos(πD)]}㊂(10)根据式(10)绘出G FMG曲线如图7所示㊂可以看出,随着占空比D增大,最大增益接近1,并且能够在较大Q值下保持较好的线性调节能力㊂2.2㊀FLG模式电压增益G FLG本模式本质是一个工作在电流断续状态的反激变换器,其电压增益为G FLG=K2D f R oT s2L r㊂(11)图7㊀FMG模式的电压增益曲线Fig.7㊀Gain curve of FMG mode2.3㊀RHG模式电压增益G RHG本模式实质等同于Boost+副边LC谐振+Fly-back变换器,因此其最大增益大于1且易受Boost 阶段控制㊂定义本模式输出电流在LC谐振阶段的平均值为I d_R,在Flyback阶段的平均值为I f_R㊂总的输出电流平均值I i为I d_R和I f_R之和,U i侧负载电阻为R i㊂则㊀G RHG=U i Uo=R i(I d_R+I f_R)U o;(12)㊀I d_R=2K1f sʏt2t1i Lr(t)d t=2K1U o{(1-K1G)[1-cos(D m-D b)]+πD b sin(D m-D b)+2πD b[1-sin(1-D d)]}/{πZ r[1+cos(D m-D b)]};(13)㊀I f_R=2K1f sʏt2t1i f_R(t)d t=L r f s i2Lr(t2)K2U i㊂(14)将式(13)㊁式(14)代入到式(12)得到有关G RHG㊁D m㊁D b㊁Q的隐函数f RHG(G RHG,D m,D b,Q)=π8K21Q{1+cos[π(D m-D b)]}ˑ{2K1πD b sin[π(D m-D b)]+4K1πD b{1-sin(πD m)}+2K1(1-K1G RHG){1-cos[π(D m-D b)]}+12K2G RHG{1+cos[π(D m-D b)]}ˑ{πD b{1+cos[π(D m-D b)]}+2(1-K1G RHG)sin[π(D m-D b)]+2πD b{1-sin[π(D m-D b)]}ˑsin[π(D m-D b)]}2}-G RHG㊂(15)651电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀2.4㊀RMG模式电压增益G RMGRMG无RHG模式的Boost阶段,将D b=0代入式(15)得到G RMG的隐函数f RMG(G RMG,D m,Q)=G RMG-π(1-K1G RMG)4K2K21QG RMGˑ1-cos(πD m)1+cos(πD m)㊂(16)根据式(15)㊁式(16)绘出G RHG和G RMG的特性曲线如图8所示㊂图中实线表示G RMG与Q值和D m 的关系,D m在0~0.8之间调节㊂图8中虚线表示G RHG㊁Q值和D b的关系,D b在0~0.4范围之间调节㊂在D b到达0.2时G RHG就达到1.4,超过传统LLC谐振型DC-DC变换器的增益㊂图8㊀RHG和RMG模式的特性曲线Fig.8㊀Characteristic curves of RHG and RMG modes 2.5㊀RLG模式电压增益G RLG本模式本质是一个工作在电流断续状态的反激变换器,电压增益G RLG=D f K2R i T s2L r㊂(17)3㊀所提变换器的设计设计一个可以对4-5节额定电压为12V的蓄电池组进行充放电的双向DC-DC变换器,其充电电压为55.4~73.5V,放电电压为42~73.5V,设计参数见表1㊂3.1㊀正反向电压增益假设实际需求双向DC-DC变换器最大正向增益为G F,最大反向增益为G R,当主变压器变比K1= 1时双向DC-DC变换器能达到的最大正向增益为G1,最大反向增益为G2,则设计的双向DC-DC变换器的变比K须满足以下条件:G Fɤ1K G1;G RɤKG2㊂}(18)即G RG2ɤKɤG1G F㊂表1㊀设计的参数范围Table1㊀Experimental scope of the design 工作方式实验参数㊀㊀㊀取值正向工作方式输入电压U i/V220额定输出电压/V60额定功率P o/W450输出电压范围U o/V30~73.5开关频率f s/kHz100反向工作方式输入电压U o范围/V42~73.5输出电压U i/V220额定输入电压/V60额定功率P o/W450开关频率f s/kHz100要使电路能达到实际需求,则K1值要有解,所以电路增益要满足G1G2ȡG F G R㊂(19)根据表1得到G F=0.3,G R=5.2㊂代入公式(18),有G1G2ȡ1.56㊂而根据图7和图8所示,本文所提电路只要选择合适的参数,能较容易满足该双向增益条件㊂此处选择G FMG=G1=0.98,G RHG=G2=1.75㊂3.2㊀变压器匝比设计选择好G FMG和G RHG后,设计K1=3㊂设计K2= 1,使变换器在双向工作时均能在Flyback阶段将电感剩余能量馈到负载端㊂3.3㊀品质因数和最大占空比将0.9G RMG设为额定增益G o,则在实际工作增益小于G o时是中增益模式,大于G o时切换成高增益模式㊂定义额定增益下的品质因数Q o=0.2,根据式(15)和式(16),计算得到最大占空比D m_max= 0.8㊂3.4㊀谐振参数设计根据f r和Q o来设计L r和C r,有:751第2期袁义生等:一种适合宽范围输出的双向DC-DC变换器L r =8U 2i G 2o Q oπ2ωs P i;C r =π2P i8U 2i G 2o ωs Q o㊂üþýïïïï(20)其中:P i 为额定功率;角频率ωs =2πf s ㊂将各参数代入上述公式可得:L r =22.5μH;C r =112.6nF㊂4㊀实验分析为了验证提出的双向DC-DC 变换器,制作了一台实验样机,实物照片如图9所示㊂样机工作参数见表1,其他参数如表2所示㊂图9㊀样机实物照片Fig.9㊀Photo of prototype表2㊀实验参数Table 2㊀Experimental parameters器件参数㊀数值主变压器T 1匝比K 13原边电感/漏感810μH /0.2μH 副边电感/漏感90μH /0.2μH 辅助变压器T 2匝比K 21原边电感L r /漏感22μH /0.6μH 副边电感/漏感22μH /0.6μH谐振电容C r 谐振电容C r 110nF 开关管IRF4609个所提变换器采用了最简单的单电压环控制,各个工作模式的切换通过对电压环的输出数值设置不同的阀值进行切换㊂4.1㊀正向工作关键波形设计的双向DC-DC 变换器正向工作范围为输入电压220V,输出电压30~73.5V㊂图10~图12分别为输入电压U i =220V 时,FMG 和FLG 模式下输出电压U o =73.5㊁55.4㊁30V的关键波形㊂图10㊀FMG 模式下73.5V 输出关键波形Fig.10Key waveforms with 73.5V output in FMGmode图11㊀FMG 模式下55.4V 输出关键波形Fig.11㊀Key waveforms with 55.4V output in FMG mode图10为U i =220V㊁U o =73.5V 时,FMG 模式下的关键波形㊂此时的电感电流连续,电容电流i Cr在开关管关断时进行换向,在下一次开关管导通之前与电感电流i Lr 保持一致并进行谐振直到下一次开关管关断进行换流㊂851电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀图12㊀FLG 模式下30V 输出关键波形Fig.12㊀Key waveforms with 30V output in FLG mode图11为U i =220V㊁U o =55.4V 时,FMG 模式下的关键波形㊂图12为U i =220V㊁U o =30V 时,FLG 模式下的关键波形,此时反激占空比D f =0.2㊂电路工作在DCM 模式㊂4.2㊀反向工作关键波形设计的双向DC-DC 变换器反向工作范围为输入电压42~73.5V,输出电压220V㊂图14~图15分别为输入电压U o =42V㊁73.5V 时,RHG 和RMG 模式下输出电压U i =220V 的关键波形㊂图13㊀RHG 模式下220V 输出关键波形Fig.13㊀Key waveforms with 220V output in RHG mode图13为U o =42V㊁U i =220V 时RHG 模式下的关键波形,此时D b =0.35㊂由图可知,电感电流i Lr 在Boost 阶段线性上升,随后和谐振电容C r 进行谐振㊂在S 5和S 6关断时谐振电感电流i Lr 会以Fly-back 的模式通过T 2变压器流到负载端㊂i Lr 会在周期内复位,可以实现ZCS 开通㊂工作在RHG 模式下,电路只有谐振阶段和Flyback 阶段两个阶段向负载馈能㊂图14㊀RMG 模式下220V 输出关键波形Fig.14㊀Key waveforms with 220V output in RMG mode图14为U o =73.5V㊁U i =220V 时RMG 模式下的关键波形,此时占空比D m =0.8㊁㊂相比RHG 模式,RMG 模式没有Boost 阶段,其谐振及软开关过程均与反向HG 模式相同㊂当输出电压降低使得D m 小于0.55时,电路会工作在RLG 模式下,提高电路的效率㊂4.3㊀切载波形及效率曲线图15为电路随负载变化而切换工作模式的动态响应波形㊂图16为提出的双向DC-DC 变换器和传统LLC 谐振双向DC-DC 变换器[8]在U o =60V 的条件下,正向㊁反向工作的效率曲线㊂为了提高传统LLC 谐振双向DC-DC 变换器的电压增益,实验时将其变压器励磁电感减小到50μH㊁漏感增大到10μH,其余参数与提出的变换器一致㊂由图17可见,传统双向DC-DC 变换器最高效率为88.32%,提出的变换器整体效率高于传统双向变换器,且工作在额定功率450W 时达到最高效率94.56%㊂951第2期袁义生等:一种适合宽范围输出的双向DC -DC 变换器图15㊀负载切换动态响应波形Fig.15㊀Dynamic response waveform with loadswitching图16㊀不同工作方式的效率曲线Fig.16㊀Efficiency curves with different modes5㊀结㊀论本文提出了一种适合宽范围输出的双向DC-DC 变换器,该变换器具体有以下几个优点:1)正向功率传输有两种电压增益模式,反向功率传输有三种电压增益模式,适合宽范围电池充放电场合,有较高的最高电压增益;2)采用定频PWM 调制,磁性器件设计简单;3)低增益模式的反激变压器的电感复用做中高增益模式的LC 谐振的谐振电感,提高了电路的功率密度;4)全负载范围内均实现了软开关,降低了开关损耗㊂参考文献:[1]㊀李建国,赵彪,宋强,等.直流配电网中高频链直流变压器的电压平衡控制策略研究[J ].中国电机工程学报,2016,36(2):327.LI Jianguo,ZHAO Biao,SONG Qiang,et al.DC voltage balance control strategy of high frequency link DC transformer in DC distri-bution system[J].Proceedings of the CSEE,2016,36(2):327.[2]㊀SHE X,HUANG A Q,BURGOS R.Review of solidstate trans-former technologies and their application in power distribution sys-tems[J].IEEE Journal of Emerging &Selected Topics in Power E-lectronics,2013,1(3):186.[3]㊀熊雄,季宇,李蕊,等.直流配用电系统关键技术及应用示范综述[J].中国电机工程学报,2018,38(23):6802.XIONG Xiong,JI Yu,LI Rui,et al.An overview of key technology and demonstration application of DC distribution and consumption system[J].Proceedings of the CSEE,2018,38(23):6802.[4]㊀ZHENG Zhong,ZHANG Daifang.Study on electromagnetic com-patibility of DC charging pile[C]//2018China International Con-ference on Electricity Distribution (CICED),September 17-19,2018,Tianjin,China.2018:2805-2810.[5]㊀CHEN Zhiru,LI Xinguang,DONG Xianguang,et al.Researchon remote calibration system of DC metering device for electric ve-hicle charging piles based on embedded[C]//2019IEEE 3rd In-formation Technology,Networking,Electronic and Automation Control Conference,March 15-17,2019,Chengdu,China.2019:300-304.[6]㊀CHOI B Y,NOH Y S,JI Y H,et al.Battery-integrated power op-timizer for PV-battery hybrid power generation system[C]//IEEE Vehicle Power and Propulsion Conference,October 9-12,2012,Seoul,Korea.2012:1343-1348.[7]㊀KRISMER F,KOLAR W J.Efficiency-optimized high-current du-al active bridge converter for automotive applications.[J].IEEE Transactions on Industrial Electronics,2012,59(7):2745.[8]㊀PLEDL G,TAUER M,BUECHERL D.Theory of operation,de-sign procedure and simulation of a bidirectional LLC resonant con-verter for vehicular applications[C]//2010IEEE Vehicle Power and Propulsion Conference,September 1-3,2010,Lille,France.2011:1-5.[9]㊀JUNG J H,KIM H S,RYU M H,et al.Design methodology ofbidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems[J].IEEE Transactions on Power Elec-tronics,2013,28(4):1741.[10]㊀WU H,DING S,SUN K,et al.Bidirectional soft-switching se-ries-resonant converter with simple PWM control and load-inde-pendent voltage-gain characteristics for energy storage system in DC microgrids[J].IEEE Journal of Emerging &Selected Topicsin Power Electronics,2017,5(3):995.[11]㊀LABELLA T,YU W,LAI J S,et al.A bidirectional-switch-based wide-input range high-efficiency isolated resonant converter for photovoltaic applications[J].IEEE Transactions on Power E-061电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀lectronics,2014,29(7):3473.[12]㊀JEONG Y,MOON G W,KIM J K.Analysis on half-bridge LLCresonant converter by using variable inductance for high efficiencyand power density server power supply[C]//IEEE Applied Pow-er Electronics Conference&Exposition,March26-30,2017,Tampa,FL,USA.2017:170-177.[13]㊀KIM D K,MOON S C,YEON C O,et al.High-efficiency LLCresonant converter with high voltage gain using an auxiliary LCresonant circuit[J].IEEE Transactions on Power Electronics,2016,31(10):6901.[14]㊀杨东江,段彬,丁文龙,等.一种带辅助双向开关单元的宽输入电压范围LLC谐振变换器[J].电工技术学报,2020,35(4):775.YANG Dongjiang,DUAN Bin,DING Wenlong,et al.An improvedLLC resonant converter with auxiliary bi-directional switch forwide-input-voltage range applications[J].Transaction of Electro-technical Society,2020,35(4):775.[15]㊀袁义生,梅相龙,张伟先等.一种混合调制的五电平LLC谐振变换器[J].电机与控制学报,2020,24(6):107.YUAN Yisheng,MEI Xianglong,ZHANG Weixian.Five-levelLLC resonant converter with mix-modulation method[J].ElectricMachines and Control,2020,24(6):107.[16]㊀MCDONALD B,WANG F.LLC performance enhancements withfrequency and phase shift modulation control[C]//Applied Pow-er Electronics Conference&Exposition,March16-20,2014,TX,USA.2014:2036-2040.[17]㊀HARISCHANDRAPPA N,BHAT A K S.A fixed-frequencyLCL-type series resonant converter with capacitive output filter u-sing a modified gating scheme[J].IEEE Transactions on Indus-try Applications,2014,50(6):4056-4064. [18]㊀LIANG Z,GUO R,WANG G,et al.A new wide input rangehigh efficiency photovoltaic inverter[C]//IEEE Energy Conver-sion Congress and Exposition,September12-16,2010,Atlan-ta,GA,USA.2010:2937-2943.[19]㊀廖政伟,张雪,尤伟,等.应用于超宽输入范围的变拓扑LLC电路[J].浙江大学学报(工学版),2013,47(12):2073.LIAO Zhengwei,ZHANG Xue,YOU Wei,et al.Variable LLC cir-cuit used in ultra-wide input voltage range[J].Journal of Zhe-jiang University(Engineering Science),2013,47(12):2073.[20]㊀谢晶晶,吕征宇.应用于宽输入范围的变模态LLC电路设计[J].电源学报,2016,14(3):20.XIE Jingjing,LÜZhengyu.Variable modal LLC circuit used indesign of wide input voltage range[J].Journal of Power Supply,2016,14(3):20.[21]㊀袁义生,赖立.一种适用于宽范围输出的复合谐振型全桥变换器[J].中国电机工程学报,2020,40(20):6694.YUAN Yisheng,LAI li.A compound resonant full-bridge convert-er suitable for wide range output[J].Proceedings of the CSEE,2020,40(20):6694.[22]㊀HU H,FANG X,CHEN F,et al.A modified high-efficiency LLCconverter with two transformers for wide input-voltage range appli-cations[J].IEEE Transactions on Power Electronics,2013,28(4):1946.(编辑:刘素菊)161第2期袁义生等:一种适合宽范围输出的双向DC-DC变换器。