基于ARM的温度监测系统的设计
- 格式:pdf
- 大小:304.90 KB
- 文档页数:5
基于ARM的远程温度监测系统的学位论文基于ARM的远程温度监测系统的设计作者姓名:郝冬冬学科专业:通信太原工业学院毕业设计(论文)工程学号:092027111指导教师:焦冬莉讲师完成日期:2013-6-9太原工业学院Taiyuan Institute of Technology诚信申明本人申明:本人所提交的毕业设计(论文)《基于ARM的远程温度监测系统的设计》的所有材料是本人在指导教师指导下独立研究、写作、完成的成果,设计(论文)中所引用他人的无论以何种方式发布的文字、研究成果,均在设计(论文)中加以说明;有关教师、同学和其他人员对我的设计(论文)的写作、修订提出过并为我在设计(论文)中加以采纳的意见、建议,均已在我的致谢辞中加以说明并深致谢意。
本设计(论文)和资料若有不实之处,本人承担一切相关责任。
特此申明。
本人签名:2013年06月15日毕业设计(论文)任务书设计(论文)题目:基于ARM的远程温度监测系统的设计系部:电子工程系专业:通信工程学号: 092027111学生:郝冬冬指导教师(含职称):焦冬莉(讲师)专业负责人:焦冬莉1.设计(论文)的主要任务及目标随着科技的发展,人类进入了信息时代,人类对信息的获取越来越多,但是信息时代的另外一个重要的特点是人们在生产生活中越来越多的依赖信息技术,从而达到节省时间,提高效率,节约经费的目的。
目前,信息技术的一个重要应用方向是远程温度监测技术,温度是最基本的环境参数,人们的生活与其息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度测量方法和装置具有重要的意义。
温度监测可以分为现场和远程监测,现场监测就是在测量对象附近显示数值,特定场合下由于监测地点比较分散、偏远、环境对工作人员身体健康有害等,采用传统的温度测量方式周期长、成本高,而且工作人员必须到现场进行测量,因此工作效率非常低,且不便于管理。
远程监测就是在测量对象附近放置信号发射装置,将现场采集到的温度数值发射到工程师的接收器上。
基于单片机的数字温度计的设计与实现摘要采用单片机来对他们控制不仅具有控制方便,简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。
在生产过程中,为了高效地进行生产,必须对它的主要参数,如温度、压力、流量等进行有效的控制。
传统的测温元件有热电偶和二电阻。
而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,这些方法相对比较复杂,需要比较多的外部硬件支持。
我们用一种相对比较简单的方式来测量。
温度范围为-55~125 ºC,最高分辨率可达0.0625 ºC。
DS18B20可以直接读出温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的特点。
本文介绍一种基于AT89C51单片机的一种温度测量及报警电路,该电路采用DS18B20作为温度监测元件,测量范围0℃-~+100℃,使用七级数码管LED模块显示,能设置温度报警上下限。
正文着重给出了软硬件系统的各部分电路,介绍了集成温度传感器DS18B20的原理,AT89C51单片机功能和应用,该电路设计新颖、功能强大、结构简单。
关键词:温度测量;DS18B20 ; AT89C51Design of Digital Thermomer Based on SCMABSTRACTControlled by single-chip microcomputer to control not only to them, advantages of simplicity and flexibility, and can significantly increase the temperature specifications, which can significantly increase the quality and quantity of the products. In the process of production, in order to efficiently produce, it must be the main parameters, such as temperature, pressure, flow, and other effective control. Traditional temperature measuring component thermocouple and resistance. Are generally voltage of thermocouple and thermal resistance measured, then converted to the corresponding temperature, these methods are relatively complex and requires more external hardware support. We are in a relatively simple way to measure.-55~125 ºc temperature range, maximum resolution up to 0.0625 ºc. DS18B20 can read temperature value, and wire connected to the microcontroller, reduced external hardware circuits, low cost and ease of use features.The introduction of a cost-based AT89C51 MCU a temperatur measurement circuits, the circuits used DS18B20 high-precision temperatur sensor, measuring scope 0℃-~+100℃,can set the warning limitation, the use of Seven digital tube seven segments LED that can be display the current temperature. The paper focuses on providing a software and hardware system components circuit, introduced the theory of DS18B20, the founctions and applications of AT89C51 .This circuit design innovative, powerful, can be expansionary strong.Keywords:Temperature measurement ;DS18B20 ;AT89C51目录摘要 (I)ABSTRACT (II)第一章绪论 (1)1.1 引言 (1)1.1.1 国内外现状 (1)1.1.2 课题背景及研究意义 (2)1.2 设计内容及性能指标 (2)1.3 系统概述 (3)1.3.1 系统方案论证与比较 (3)1.3.2 系统设计原理与组成 (5)第二章开发工具Proteus与Keil (6)2.1 Proteus软件 (6)2.1.1 Proteus简介 (6)2.1.2 4大功能模块 (6)2.1.3 Proteus简单应用 (8)2.2 Keil软件 (8)2.2.1 Keil软件简介 (8)2.2.2 Keil软件调试功能 (9)第三章系统硬件设计 (10)3.1 单片机的选择 (10)3.1.1 AT89C51单片机的介绍 (10)3.1.2 AT89C51单片机主要特性 (11)3.2 温度传感器的选择 (13)3.3 硬件电路设计 (17)第四章系统软件设计 (20)4.1 各模块的程序设计 (20)4.2 Protues测温仿真 (25)4.3 系统调试 (28)4.4 结果分析 (30)结论 (31)致谢 (32)参考文献 (33)附录1 全部程序清单 (34)附录2 系统总体设计图 (41)第一章绪论1.1引言1.1.1 国内外现状温度控制系统在国内各行各业的应用虽然已经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比,仍然有着较大的差距。
基于ARM的多功能环境检测系统曲爱玲;马长路【摘要】为了实时检测环境中的PM2.5浓度及温湿度,提出了一种基于ARM的多功能环境检测系统的设计方法.该系统利用ARM处理器、PM2.5激光传感器、温湿度传感器实现了对当前环境PM2.5浓度、温度和湿度的实时检测,并具有液晶屏实时显示和外部触发语音播报双重感知功能,可满足不同领域及各种群体的需求.实验结果表明,该环境检测系统检测精确度高、实时性强、显示与播报功能稳定,具有良好的实用性和推广价值.%In order to detect the concentration of PM 2.5 and the temperature and humidity of the environment in real time ,a multifunctional environment detecting system based on ARM was designed .The system can detect efficiently the concentration of PM2.5 and the temperature and humidity of the environment in real time with ARM processor , PM2.5 laser sensor , temperature and humidity sensor , and it has the real-time LCD display and external trigger voice broadcast functions to meet the requirements of different fields and differentusers .Experimental results showed that the detecting system has high detection accuracy , good re-al-time performance, stable display and voice broadcast performance , and the system is very practical and has strong promotional value.【期刊名称】《仪表技术与传感器》【年(卷),期】2017(000)009【总页数】3页(P91-93)【关键词】ARM;PM2.5;温湿度;液晶屏显示;语音播报【作者】曲爱玲;马长路【作者单位】北京农业职业学院,北京 102442;北京农业职业学院,北京 102442【正文语种】中文【中图分类】TP3Abstract:In order to detect the concentration of PM2.5 and the temperature and humidity of the environment in real time,a multifunctional environment detecting system based on ARM was designed. The system can detect efficiently the concentration of PM2.5 and the temperature and humidity of the environment in real time with ARM processor, PM2.5 laser sensor, temperature and humidity sensor, and it has the real-time LCD display and external trigger voice broadcast functions to meet the requirements of different fields and different users. Experimental results showed that the detecting system has high detection accuracy, good real-time performance, stable display and voice broadcast performance, and the system is very practical and has strong promotional value.Keywords:ARM; PM2.5; temperature and humidity; LCD display; voice broadcast随着我国经济水平的显著提高,人们对生存环境越发关注。
基于单片机的智能体温检测系统设计摘要:由于新冠疫情的爆发给大众的生活带来了巨大变化,为了满足疫情条件下对温度快速测量的需求,采用无接触式测温既有效规避病毒传染风险,又可以第一时间检测疑似病例。
在此基础上添加口罩识别功能极大减轻了工作人员人工识别的负担,为防疫工作提供保障。
目前市场现有系统存在价格高以及不易携带的问题,并且目前市场应用的大部分装置都是单独的口罩识别或是无接触测温系统。
与之相比该系统将两种功能结合在同一系统中,具有体积小、便携、易操作等优点,为操作人员提供了极大便利。
此装置适用于学校、工厂、商场等人流密集场所,可以为进出人员提供检测服务。
人机交互式装置在疫情防控中发挥重要作用,节省人力物力,并且其效率远高于人工检测。
关键词:单片机;智能体温;检测系统;设计引言患新冠肺炎的主要症状是发热,因此体温检测是疫情防控的第一道防线。
以当今人流密集场所疫情防控情况为背景,设计并实现了一款基于STM32单片机的非接触式体温测量与身份识别系统。
该系统利用OPENMV对目标人脸进行快速检测,精准识别目标身份信息和口罩佩戴情况,利用MLX90614准确测量目标体表温度,实时将测量信息通过显示屏直观地展示并通过蓝牙发送到手机App上,实现系统逻辑结构的完整性与任务完成的效率最优解。
1系统的组成及其工作原理1.1系统的组成以单片机作为系统控制基础,利用传感器测量温度,通过通信和控制技术,形成温度测量控制系统。
具体可分为基于MLX90614红外测温传感器的温度检测模块、LCD12864液晶屏显示模块、4X4矩阵键盘模块、电源模块、复位模块、晶振模块、报警模块、继电器控制模块和震动传感器模块。
1.2系统工作原理该系统基于STC12C5A60S2单片机进行设计,包括电源电路、复位电路、晶振电路、红外测温传感器、震动传感器、LCD显示电路、蜂鸣器报警电路、键盘输入电路和继电器控制电路,通过MLX90614红外温度传感器实现温度数据的处理。
基于嵌入式芯片的智能监控系统设计【摘要】随着信息化技术的高速发展,智能监控系统对于多维信息的采集与可视化系统通常采用嵌入式芯片进行系统的设计。
本文主要从智能化系统的原理出发,对嵌入式芯片的选择、系统平台的搭建进行探讨,对智能监控系统的重要性加以诠释。
【关键词】嵌入式芯片;智能监控系统设计前言随着信息化技术和芯片技术的快速发展,监控系统做为智能工厂的重要组成部分,可以实时监控生产过程中的信息(日照、温度、湿度、电流、电压、视频)使得原来的集中化生产转向智能化、信息化生产。
智能工程产业的资源虚拟化以及制造工程中的信息化与智能化使得智能监控系统已成为大势所趋。
面对如此趋势,进一步优化多维信息采集系统以及可视化系统,在生产过程中融入智能控制系统,使得机器具备更高的分析判断能力,有助于提高工厂的生产效率。
一、智能系统的理论原理智能系统具有包括智能信息、智能反馈、智能决策等方面的特点,在被控制对象与环境所具有的高度复杂性与不确定性等方面具有相应的克制作用,而智能系统理论原理又包括深度学习理论与分层递阶智能控制理论。
深度学习理论是一种具备对数据进行表征作用学习的一种深层次数据观测理念,由深度学习发展而来的信息观测技术在数据的分析与处理上具有相当大的作用。
而分层递阶智能控制则是利用嵌入式系统与计算机技术相结合,使其具有集中式、分布式的优点,能满足客户的多样化需求。
1.智能监控系统硬件平台的搭建搭建智能监控系统的多维信息采集与可视化系统,在数据采集终端中利用Raspberry Pi作为信息采集的开发板,它是一款基于ARM的微型电脑主板,以SD/MicroSD卡为内存硬盘,卡片主板周围有1/2/4个USB接口和一个10/100 以太网接口(A型没有网口),可连接键盘、鼠标和网线,同时拥有视频模拟信号的电视输出接口和HDMI高清视频输出接口,以上部件全部整合在一张仅比信用卡稍大的主板上,具备所有PC的基本功能只需接通电视机和键盘,就能执行如电子表格、文字处理、玩游戏、播放高清视频等诸多功能。
天津工业大学信息学院2010届本科生毕业答辩答辩第一小组组长:王金海成员:高华、高强、段晓杰、徐伟秘书:徐伟地点:主楼A501时间:2010年6月21号下午13:30(周一)时间:2010年6月22号下午13:30(周二)时间:2010年6月23号上午8:00(周三)答辩第二小组组长:唐新宇成员:王豪、李金桐、荣峰、张艳丽秘书:张艳丽地点:主楼A座414时间:2010年6月21号上午8:00(周一)时间:2010年6月21号下午13:30(周一)时间: 2010年6月22号下午13:30(周二)时间:2010年6月23号上午8:00(周三)答辩第三小组组长:郑羽成员:任智华、冯永茂、张诚、周勇秘书:周勇地点:主楼A座417时间:2010年6月21号上午8:00(周一)时间:2010年6月21号下午13:30(周一)时间:2010年6月22号下午13:30(周二)时间:2010年6月23号上午8:00(周三)答辩第四小组组长:苗长云成员:邢林海、潘崧、夏靖、刘敏秘书:夏靖地点:教六308时间:2010年6月21号上午8:00(周一)时间:2010年6月21号下午14:00(周一)时间:2010年6月22号下午14:00(周二)时间:2010年6月23号上午8:00(周三)答辩第五小组组长:郭翠娟成员:缪竟鸿、王学静、石博雅、武志刚秘书:石博雅地点:主楼A座1102时间:2010年6月21号上午8:00(周一)时间:2010年6月21号下午14:00(周一)时间: 2010年6月22号下午14:00(周二)时间:2010年6月23号上午8:00(周三)答辩第六小组组长:李现国成员:宋培林、李建雄、李杰、黄伟志秘书:李杰地点:主楼A座514时间:2010年6月21号上午8:00(周一)时间:2010年6月21号下午14:00(周一)时间:2010年6月22号下午14:00(周二)时间:2010年6月23号上午8:00(周三)答辩第七小组组长:张隆成员:徐妮妮、郭文平、耿磊秘书:龙帮强地点:教六 511答辩第八小组组长:吴骏成员:王巍、林志贵秘书:徐秀知地点:主A51711答辩第九小组组长:肖志涛成员:吴涛、韩晓军秘书:刘丽杰地点:教六-50812答辩第十小组组长:李鸿强成员:王中伟、李晓云、刘宏伟秘书:张芳地点:主楼A51113答辩第十一小组组长:牛萍娟成员:于莉媛、田海涛、高铁成、张建新秘书:邢海英地点:主楼A40514答辩第十二小组组长:卢克清成员:付贤松、杨广华、曲丹、田会娟秘书:王莎莎地点:主楼A506时间:2010年6月21日上午8:301516。
zynq ultrascale中温度检测计算公式推导1. 引言1.1 概述本篇长文将介绍在Zynq Ultrascale中的温度检测计算公式推导。
Zynq Ultrascale是一种集成了处理器系统和可编程逻辑的综合型芯片,该芯片广泛应用于嵌入式系统中,其温度检测功能对系统的稳定性和可靠性至关重要。
1.2 文章结构本文主要分为引言、温度检测计算公式推导、实验与分析结果、结论与展望以及总结五个部分。
首先,我们将介绍文章的背景和研究目的,在引言部分提供整体视角。
接下来,我们将详细说明Zynq Ultrascale架构和温度传感器工作原理,并推导出相应的温度检测计算公式。
然后,我们将介绍实验设计与参数设置,以及数据采集与处理方法。
最后,我们将进行结果分析与讨论,并总结主要研究发现并展望未来研究方向。
1.3 目的本文旨在通过对Zynq Ultrascale中温度检测计算公式的推导,深入探索该芯片内部温度监测技术,并为后续嵌入式系统开发提供技术支持和指导。
通过深入了解Zynq Ultrascale架构和温度传感器工作原理,我们将能够准确计算芯片的工作温度,并根据这些结果对系统进行优化和改进。
以上是对“1. 引言”部分内容的详细说明,请参考普通文本格式回答。
2. 温度检测计算公式推导2.1 Zynq Ultrascale架构概述在开始推导温度检测计算公式之前,我们先来了解一下Zynq Ultrascale的架构。
Zynq Ultrascale是由赛灵思公司开发的一种可编程系统单芯片(SoC)产品,它结合了处理器系统和可编程逻辑部分(PL)。
处理器系统基于ARM Cortex-A53核心,它可以执行软件任务和应用程序。
而可编程逻辑部分则由可重构逻辑片段(FPGA)组成,可以实现硬件加速、并行计算等功能。
2.2 温度传感器工作原理在Zynq Ultrascale中,温度传感器负责监测芯片的温度,并将其转化为数字信号供系统使用。
毕业设计说明书基于ARM的嵌入式温度监测系统摘要随着科技的发展,嵌入式系统的发展也异常迅速,同时,嵌入式系统已经应用于各个方面,给人们的生产和生活带来了极大的便利。
目前嵌入式系统的应用已经发展到了嵌入式处理器与操作系统相结合的阶段,本设计就是将ARM处理器与Linux操作系统相结合实现的。
嵌入式温度监测系统由温度监测硬件系统和温度监测软件两部分组成。
其中硬件系统包括SBC2410开发套件,温度检测电路、信号放大电路及信号显示终端,论文中按模块对各部分硬件的设计进行了详细的介绍。
温度监测软件系统的设计过程如下,本设计首先为温度监测系统构建Linux环境,其次在Linux下编写并加载系统驱动程序,然后编写应用程序,编译并下载到ARM开发板中。
经过反复调试,实现了温度监测的功能。
关键词:ARM;linux;内核;驱动;温度监测Embedded System of Temperature Testing Based on ARMAbstractWith the development of science, embedded system develops at a fast speed. Embedded system has been applied to all aspects, which has brought great convenience to people's production and daily life. At present, the application of embedded system have been developed to the stage of combining embedded processor with operating system, and the design comes true based on combining the ARM processor with linux operating system.Embedded temperature measurement system includes temperature monitoring hardware and software systems. Hardware system includes SBC2410 system development kit, temperature detection circuit, signal amplifier circuit and signal display terminal. This paper, in detail, introduces the hardware design according to modules.The process of the design of temperature measurement software system is as follows: First,the design construct Linux environment for temperature measurement the system .Secondly, the design compiles and loads driver program in Linux; At last, the design writes, compiles and downloads the application program to ARM development board. After repeated debugging, the design achieves the purpose of the temperature measurement.Key words: Linux ; ARM ; Kernel ; Drivert ; Emperature measurement目录摘要 (II)Abstract (III)第一章嵌入式系统简介 (1)1.1 嵌入式系统的概念 (1)1.2 嵌入式系统的结构 (1)1.3 嵌入式系统与普通单片机开发的不同之处 (2)1.3.1 交叉编译 (2)1.3.2 交叉调试 (3)第二章设计用嵌入式模块 (5)2.1 ARM处理器 (5)2.2 Flash模块 (5)2.3 SDRAM模块 (6)2.4 JTAG调试器 (8)第三章温度监测电路设计 (10)3.1 AD590的室温补偿电路 (10)3.1.1 性能 (10)3.1.2 误差校正 (10)3.1.3 AD590的补偿电路设计 (11)3.2 热电偶的测温电路 (12)3.2.1 热电偶的测温原理 (12)3.2.2 热电偶的测温电路设计 (14)第四章温度监测系统的Linux构建 (17)4.1 构建交叉编译器 (17)4.1.1 交叉编译器 (17)4.1.2 设置共享文件夹,并解压linux开发包 (17)4.1.3 安装交叉编译器 (18)4.2 Linux操作系统 (19)4.2.1 引导加载程序 (20)4.2.2 内核 (21)4.2.3 文件系统 (23)4.3 烧写 (24)4.3.1 Windows下烧写vivi (24)4.3.2 分区格式化Flash及重新下载vivi (25)4.3.3 烧写linux内核 (27)4.3.4 下载文件系统 (27)第五章温度监测系统的软件编程 (28)5.1 编写Linux下的ADC驱动程序 (28)5.1.1 Linux设备 (29)5.1.2 驱动程序的编写说明 (32)5.1.3 驱动程序编写的具体内容 (34)5.1.4 ADC驱动程序具体函数的分析 (36)5.1.5 ADC驱动程序的加载和删除 (39)5.2 编写应用程序 (41)5.2.1 线性化部分 (41)5.2.2 A/D转换速率的计算 (44)5.2.3 主程序的编写 (45)第六章温度监测的调试 (47)6.1 编译ad驱动程序 (47)6.2 运行应用程序 (48)6.2.1 为ARM开发板更新内核和文件系统 (48)6.2.2 编译main.c应用程序 (48)6.2.3 运行main 主程序 (49)总结 (51)参考文献 (52)附录 (54)附录A:程序源代码 (54)附录B:测温原理图 (68)附录C:ARM板电路图 (69)致谢 (70)第一章嵌入式系统简介1.1嵌入式系统的概念嵌入式系统是不同于常见计算机系统的一种计算机系统,它不以独立设备的物理形态出现,即它没有一个统一的外观,它的部件根据主体设备以及应用需要嵌入在设备的内部,发挥着运算、存储、以及控制的作用。
基于单片机的室内无线环境监测系统设计与应用一、概述随着科技的飞速发展和人们生活水平的提高,室内环境质量日益受到人们的关注。
无线环境监测系统作为现代智能家居的重要组成部分,具有实时监测、数据分析和远程控制等功能,为改善室内环境提供了有力支持。
本文旨在探讨基于单片机的室内无线环境监测系统的设计与应用,以期为相关领域的研究和实践提供参考。
基于单片机的室内无线环境监测系统,主要利用单片机作为核心控制器,结合传感器技术、无线通信技术以及数据处理技术,实现对室内环境参数(如温度、湿度、空气质量等)的实时监测和数据传输。
该系统具有成本低、功耗低、易于扩展和维护等优点,适用于家庭、办公室、学校等多种场所。
本文首先介绍了室内无线环境监测系统的研究背景和意义,阐述了系统设计的必要性和可行性。
接着,详细阐述了基于单片机的室内无线环境监测系统的硬件设计和软件设计,包括传感器的选型与连接、单片机的选型与编程、无线通信模块的配置与调试等方面。
本文还探讨了系统在实际应用中的性能表现和优化策略,为系统的进一步推广和应用提供了有力支持。
1. 介绍室内环境监测的重要性和需求随着科技的发展和人们生活水平的提高,室内环境质量与人们的健康和生活品质日益密切相关。
室内环境监测的重要性逐渐凸显,它不仅能够提供关于室内空气质量、温湿度、光照等关键环境参数的数据,还能帮助人们及时了解和改善居住环境,预防潜在的健康风险。
室内空气质量直接关系到人们的呼吸健康。
现代生活中,各种家具、装修材料释放的甲醛、苯等有害物质,以及室内吸烟、烹饪产生的油烟和颗粒物,都可能对人们的呼吸系统造成损害。
实时监测室内空气质量,特别是PMTVOC(总挥发性有机化合物)等关键指标,对保障人们健康至关重要。
温湿度也是影响室内舒适度的重要因素。
过高或过低的温度和湿度都可能引发身体不适,如感冒、呼吸道疾病等。
通过环境监测系统实时调节室内温湿度,可以创造更加舒适的居住环境。
光照条件也对人们的生理和心理健康有着不可忽视的影响。
湖北工业大学毕业设计(论文)题目:基于Cortex-M3的数据采集系统研究学院:电气工程与电子工程专业:自动化学生:军指导教师:权轶日期:2014 年4 月基于STM32的数据采集系统研究摘要随着嵌入式技术的发展,单片机技术进入了一个新的台阶,目前除最早的51单片机现在有了STM32系列单片机以ARM的各系列单片机,而本次毕业设计我采用STM32单片机来完成,目的是实现温湿度的采集和传输,温湿度的采集是作为自动化学科中一个必须掌握的检测的技术,也是一项比较实用的技术。
数据采集是获取信号对象信息的过程。
本文设计了一个基于ARM Cortex-M3处理器的数据采集系统,利用置的丰富的外设资源,实现多路模拟输入电压信号的连续采集和顺序转换,通过RS232串行通信将转换结果在PC接收端显示,并产生PWM方波信号,实现对现场温度信号的实时监测。
本次设计目的是提供方法进行可行性研究。
关键词:嵌入式技术;电路设计;STM32;sht10温湿度采集;程序设计abstract引言我的毕业设计做的是温湿度数据的采集和传输。
温湿度的采集的用途是非常的广泛的,比如说化工业中做酶的发酵,必须时刻了解所发酵酶的温湿度才可以得到所需酶。
文物的保护同样也离不开温、湿度的采集,在博物馆和档案馆中,空气湿度和和空气质量条件的优劣,是藏品保存关键,所以温湿度的检测对其也是具有重要意义的。
最后就是大型机房的温湿度的采集,国家对此有严格标准规定温湿度的围,超出此围会影响服务器或系统的正常工作等等。
所以温湿度的检测是目前被广泛运用。
此次设计的芯片采用的是STM32,由于STM32系列基于专为要求高性能、低成本、低功耗的嵌入式应用专门设计的ARM Cortex-M3核,增强型系列时钟频率达到72MHz,是同类产品中性能最高的产品;基本型时钟频率为36MHz,以16位产品的价格得到比16位产品大幅提升的性能,是16位产品用户的最佳选择。
两个系列都置32K到128K的闪存,不同的是SRAM的最大容量和外设接口的组合。
基于ARM的智能测温系统经典案例引言测温测量和控制在当今社会生活中扮演着至关重要的角色,国际国内市场现有的多种测温技术涵盖了安检、市场、生活、消防、科研等诸多领域。
温度的测量和控制在工业生产中有广泛的应用,尤其在石油、化工、电力、冶金等重要工业领域中,对温度的测量和监控是非常重要的一个环节。
在传统的温度测量系统中,温度采集器通常采用模拟温度传感器,模拟信号在传输的过程中容易受到干扰从而影响测量的准确度,模拟信号转化成数字信号,精度较高的A/D 转换器一般价格昂贵,对于传统系统存在的不足,结合国内外在温度监测系统上的研究现状,本文进行了新的设计。
本文智能测温系统基于物联网技术与嵌入式技术实现远程无线可移动的视频监控系统,依托于FS_S5PC100开发平台用三星公司先进的基于Cortex-A8 内核的S5PC100处理器和无线网卡WI-FI作为硬件载体,综合应用WLAN、嵌入式Linux和JSP技术等技术,以程序软件的通用性和易用性为方向,实现无线视频和智能测温系统控制以及环境信息采集。
图1 平台硬件组成结构图图2 系统软件结构框图1 系统总体设计1.1 平台设计接口目标与功能本文设计智能温度采集系统,需要具备温度采集、温度数据的存储、温度数据的显示和网络通信功能。
因此,平台拟设计的接口如下:电路板设计温度传感器采集接口1路,温度传感器采用DS18B20一线制通信接口;由于平台需要对采集的数据存储同时又需要存储本地操作系统代码,需要有稳定的存储方案,因此平台设计NAND FLASH与SD卡结合的存储方案,其中NAND FLASH主要用于存储本地代码,SD卡用于存储采集数据;系统需要将采集的温度以及历史温度实时的显示图3 S5PC100 DDR2 SDRAM电路原理图图4 S5PC100 NandFlash电路原理出来,因此需要集成图形显示接口,系统中采用24bit TFT LCD接口电路;系统为满足远程对平台采集数据访问功能,因此集成一路10M/100M 自适应以太网接口;为满足对温度的监控需要,平台集成一路PWM蜂鸣器接口以及一路RS232 接口,RS232接口可连接GPRS模块。
基于STM32的温湿度监控系统设计温湿度的监测对于当前控制室内环境,改善室内环境起着重要的作用,为了提高室内用户的舒适度,一般都会对室内的温湿度进行监控,通过监测温湿度的变化情况来确定下一步的动作,例如在温室中严格监控室内温度,使得温室内的植物能到最合适的生存环境。
文章就基于STM32的温湿度监控系统设计问题进行了全面分析,通过其有效提高温度的时效性管理意义重大。
标签:STM32;温湿度;ucosII系统;监控系统设计此次的基于STM32的温湿度监控系统设计主要是32位的单片机为主控芯片,DHT11为温湿度监测装置,搭载的是ucosII操作系统,显示设备为主控ITL9438的彩屏,通过DHT11采集的信息对经过单片机的内部程序的处理,将其以数字的形式显示在彩屏上,并且同时根据单片机内部的温度设定值进行相应的动作,实现的室内温湿度的智能控制。
1 温湿度监控系统设计1.1 温湿度监控系统硬件设计系统主控芯片为STM32F103ZET6,除了必须的STM32单片机正常的驱动的电路之外,彩屏为使用的是已经做成模块的ITL9438彩屏,而采集模块则是使用的DHT11,如图所示为使用的DHT11的引脚图,可得知只要通过采集Dout 引脚的输出的电平变化,查看数据手册,根据DHT11的时序图写出相应的驱动程序,驱动DHT11温湿度传感器。
彩屏的程序可以直接使用的屏幕厂家写好的程序,移植到STM32上既可,而通过将Dout引脚上的高低电平变化,进行相应的数据处理可以将温湿度数据已数字的形式显现在彩屏上,通过内部的程序根据比较当前的温湿度值与设定的参数值进行比较,使得进行下一步的温湿度调节动作,通过向外部电路发送信号,例如温度高了,打开排风机降低室内的温度等措施优先对温度的控制,这与空调的原理类似,但是系统比空调电路简捷的多。
DHT11数字湿温度传感器采用单总线数据格式,单个数据引脚端口完成输入输出双向传输。
其数据包由5Byte(40Bit)组成。
stm32单片机温控电路设计概述说明以及解释1. 引言1.1 概述在现代工业和生活中,温控电路设计是一个非常关键的技术领域。
通过对温度的监测和控制,可以实现许多重要的功能,例如保持设备运行在适宜的温度范围内,提高工作效率,预防过热或过冷导致的故障等。
而STM32单片机则是一种广泛应用于嵌入式系统中的强大的微控制器芯片,在温控电路设计中发挥着重要作用。
1.2 文章结构本文主要分为以下几个部分进行阐述。
首先介绍STM32单片机以及其在嵌入式系统中的作用与优势。
然后详细讲解温控电路设计原理,包括基本原理、主要组成部分等内容。
接着会对温度传感器进行选型与接口设计方面进行深入探讨。
最后,我们将进一步展开讨论其他相关话题并得出结论与展望。
1.3 目的本文旨在通过对STM32单片机温控电路设计的概述说明和解释,帮助读者更好地理解和应用该技术。
同时,将介绍一些常见的温控电路设计原理和方法,以及如何选择适合的温度传感器并设计有效的接口。
通过本文的阅读,相信读者能够对STM32单片机温控电路设计有更深入的了解,并且能够根据实际需求进行具体应用。
2. 正文:2.1 stm32单片机简介STM32单片机是由STMicroelectronics(意法半导体)公司开发的基于ARM Cortex-M内核的微控制器系列。
它具有强大的性能、高度集成的外设以及丰富的接口,广泛应用于各种嵌入式系统中。
2.2 温控电路设计原理温控电路设计的目标是通过对温度进行监测和反馈调节,实现对某个系统或器件的温度进行精确控制。
其原理可以简要分为两个步骤:温度检测和温度调节。
在温度检测方面,我们通常会选用一种合适的温度传感器来实时感知环境或器件中的温度变化。
传感器将通过电压信号、模拟信号或数字信号等形式输出相应的温度数值。
而在温度调节方面,我们使用stm32单片机作为控制器来完成。
借助stm32单片机丰富的外设和强大的处理能力,可以通过与其他元件(如继电器、加热元件等)结合使用,在有效范围内调整或维持系统、器件所需的目标温度。
基于STM32的温湿度检测系统设计及实现一、本文概述本文旨在探讨基于STM32的温湿度检测系统的设计与实现。
我们将详细介绍整个系统的硬件组成、软件设计以及实现方法,并通过实验验证其性能和可靠性。
我们将概述STM32微控制器的特点和优势,以及为什么选择它作为温湿度检测系统的核心。
然后,我们将详细介绍系统的硬件设计,包括温湿度传感器的选择、电路设计和搭建等。
接下来,我们将阐述软件设计思路,包括传感器数据的读取、处理、显示以及传输等关键问题的解决方案。
我们将通过实验数据来验证系统的性能和可靠性,并讨论可能存在的改进和优化方案。
通过本文的阐述,读者可以对基于STM32的温湿度检测系统有一个全面而深入的了解,为相关研究和应用提供参考和借鉴。
二、系统总体设计本设计旨在开发一个基于STM32的温湿度检测系统,该系统能够实现环境温湿度的实时监测,并将数据通过适当的接口进行传输,以便进行后续的数据处理和分析。
设计目标包括高精度测量、低功耗运行、良好的用户界面以及易于扩展和集成。
系统的硬件架构主要由STM32微控制器、温湿度传感器、电源管理模块、通信接口以及显示模块组成。
STM32微控制器作为核心处理器,负责数据的采集、处理和控制逻辑的实现。
温湿度传感器用于实时采集环境中的温度和湿度信息。
电源管理模块负责为系统提供稳定的电源供应,保证系统的稳定运行。
通信接口用于将采集到的数据传输到外部设备或网络,实现远程监控和数据分析。
显示模块则提供用户友好的界面,展示当前的温湿度信息。
软件架构的设计主要包括操作系统选择、任务划分、数据处理流程以及通信协议等方面。
考虑到STM32的性能和功耗要求,我们选择使用嵌入式实时操作系统(RTOS)进行任务管理和调度。
任务划分上,我们将系统划分为数据采集任务、数据处理任务、通信任务和显示任务等,确保各个任务之间的独立性和实时性。
数据处理流程上,我们采用中断驱动的方式,当传感器数据采集完成后,通过中断触发数据处理任务,确保数据的及时处理。