山东省济南市2013届高三针对训练-数学(文)(精)
- 格式:doc
- 大小:728.00 KB
- 文档页数:10
山东省2013届高三最新文科模拟试题精选(26套含一、二模)分类汇编5:数列一、选择题1 .(山东省济南市2013届高三3月高考模拟文科数学)等差数列}{n a 中,482=+a a ,则它的前9项和=9S( )A .9B .18C .36D .72【答案】B 在等差数列中,28194a a a a +=+=,所以1999()941822a a S +⨯===,选 B . 2 .(山东省莱芜市莱芜二中2013届高三4月模拟考试数学(文)试题)等差数列{}n a 前n 项和为n S ,已知310061006(1)2013(1)1,a a -+-= 310081008(1)2013(1)1,a a -+-=-则 ( )A .2013100810062013,S a a =>B .2013100810062013,S a a =<C .2013100810062013,S a a =->D .2013100810062013,S a a =-<【答案】B3 .(山东省临沂市2013届高三3月教学质量检测考试(一模)数学(文)试题)已知等差数列{n a }中,74a π=,则tan(678a a a ++)等于( )A .B .C .-1D .1【答案】在等差数列中6787334a a a a π++==,所以6784tan()tan14a a a π++==-,选 C . 4 .(山东省莱芜市莱芜十七中2013届高三4月模拟数学(文)试题)已知正项组成的等差数列{}n a 的前20项的和100,那么615a a ⋅最大值是 ( )A .25B .50C .100D .不存在【答案】A5 .(山东省淄博市2013届高三3月第一次模拟考试数学文试题)数列}{n a 的前n 项和为n S ,已知511=a ,且对任意正整数m ,n ,都有n m n m a a a ⋅=+,若t S n <恒成立,则实数t 的最小值为 ( )A .41 B .43 C .34 D .4【答案】A6 .(山东省德州市2013届高三3月模拟检测文科数学)若正项数列{}n a 满足1111n n ga ga +=+,且a 2001+a 2002+a 2003+a 2010=2013,则a 2011+a 2012+a 2013+a 2020的值为( )A .2013·1010B .2013·1011C .2014·1010D .2014·1011【答案】A 由条件知1111lg1n n n n a ga ga a ++-==,即110n naa +=为公比是10的等比数列.因为102001201020112020()a a q a a ++=++,所以1020112020201310a a ++=⋅,选( )A .7 .(山东省济南市2013届高三4月巩固性训练数学(文)试题(word 版))已知函数⎩⎨⎧>+-≤<-=0,1)1(01,)(3x x f x x x f ,若函数x x f x g -=)()(的零点按从小到大的顺序排列成一个数列,则该数列的通项公式为 ( )A .2)1(-=n n a n B .)1(-=n n a n C .1-=n a n D .22-=n n a【答案】C8 .(山东省聊城市2013届高三高考模拟(一)文科数学)已知数列{}n a 是等比数列,且2512,4a a ==,则12231n n a a a a a a +++⋅⋅⋅+= ( )A .16(14)n-- B .16(12)n--C .32(14)3n -- D .32(12)3n -- 【答案】C9 .(山东省日照市2013届高三第一次模拟考试数学(文)试题)已知等比数列{}n a 的公比为正数,且26429,1a a a a ⋅==,则1a 的值为( )A .3B .3-C .13-D .13【答案】D 解析:答案D .由4629a a a =⋅,得422229a a q a q ⨯=,解得29q =,所以3q =或3q =-(,0>q 舍),所以2113a a q ==. 10.(山东省滨州市2013届高三第一次(3月)模拟考试数学(文)试题)已知数例{}n a 为等差数例,其前n 项的和为n S ,若336,12a S ==,则公差d = ( )A .1B .2C .3D .53【答案】B 在等差数列中,13133()3(6)1222a a a S ++===,解得12a =所以解得2d =,选 B . 11.(山东省济南市2013届高三4月巩固性训练数学(文)试题(word 版))在等比数列{}n a中,531=+a a ,1042=+a a ,则=7a ( )A .64B .32C .16D .128【答案】A12.(山东省淄博市2013届高三复习阶段性检测(二模)数学(文)试题)已知等差数列{}n a 的前n 项和为n S ,满足1313113a S a ===,则 ( )A .14-B .13-C .12-D .11-【答案】D13.(山东省莱芜五中2013届高三4月模拟数学(文)试题)已知数列{},{}n n a b 满足113a b ==,113n n n nb a a b ++-==,n N +∈,若数列{}n c 满足n n a c b =,则2013c = ( )A .20129B .201227C .20139D .201327【答案】D 二、填空题14.(山东省日照市2013届高三第一次模拟考试数学(文)试题)记123,1,2,3,k k k k k S n k =+++⋅⋅⋅+=当时,观察下列2321211111,22326S n n S n n n =+=++,4325341111,4245S n n n S n =++= 43111,2330n n n ++-6542515,212S An n n Bn =+++⋅⋅⋅, 观察上述等式,由1234,,,S S S S 的结果推测A B -=_______.【答案】解析:答案41.根据所给的已知等式得到:各等式右边各项的系数和为1;最高次项的系数为该项次数的倒数.∴16A =,151212A B +++=,解得112B =-,所以A B -=14. 15.(山东省淄博市2013届高三复习阶段性检测(二模)数学(文)试题)在如图所示的数阵中,第9行的第2个数为___________.【答案】6616.(山东省菏泽市2013届高三第二次模拟考试数学(文)试题)设数列{}n a 的前n 项和为n S ,已知12a =,28a =,()11452n n n S S S n +-+=≥,n T 是数列{}2n a log 的前n 项和.(1)求数列{}n a 的通项公式; (2)求n T ;(3)求23111111100n n T T T ⎛⎫⎛⎫⎛⎫--⋅⋅-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭当时的值. 【答案】(本小题主要考查等差数列、等比数列、数列求和等知识,考查分类与整合、化归与转化的数学思想方法,以及抽象概括能力、运算求解能力和创新意识) (1) 解:∵当2n ≥时,1145n n n S S S +-+=, ∴()114n n n n S S S S +--=- ∴14n n a a +=. ∵12a =,28a =, ∴214a a =∴数列{}n a 是以12a =为首项,公比为4的等比数列. ∴121242n n n a --=⋅=(2) 解:由(1)得:2122221n n a n log log -==-, ∴21222n n T a a a log log log =+++()1321n =+++-()1212n n +-=2n = .(3)解: 23111111n T T T ⎛⎫⎛⎫⎛⎫--⋅⋅- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭22211111123n ⎛⎫⎛⎫⎛⎫=--⋅⋅- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 222222222131411234n n ----=⋅⋅⋅⋅()()2222132********n n n ⋅⋅⋅⋅⋅⋅⋅-+=⋅⋅⋅⋅12n n+=.101100200n =值为17.(山东省济南市2013届高三4月巩固性训练数学(文)试题(word 版))对大于或等于2的自然数m的n 次方幂有如下分解方式:2213=+ 3235=+ 23135=++ 337911=++ 241357=+++ 3413151719=+++2513579=++++ 292725232153++++=根据上述分解规律,若3*()m m N ∈的分解中最小的数是73,则m 的值为________. 【答案】918.(山东省菏泽市2013届高三第二次模拟考试数学(文)试题)已知数列{}n a 是等差数列,123(1),0,(1)a f x a a f x =+==-,若2()42f x x x =-+,则数列{}n a 的通项公式n a =_______.【答案】4(,)(0,)3-∞-⋃+∞19.(山东省莱芜五中2013届高三4月模拟数学(文)试题)容易计算2510,22551210,222555123210,2222555512343210⨯=⨯=⨯=⨯=;根据此规律猜想9922225555⋅⋅⋅⨯⋅⋅⋅位位所得结果由左向右的第八位至第十位的三个数字依次为_____________.【答案】898;20.(山东省济宁市2013届高三第一次模拟考试数学(文)试题 Word 版含答案)已知等差数列{n a }中,35a a +=32,73a a -=8,则此数列的前10项和10S =____.【答案】190 21.(山东省潍坊市2013届高三3月第一次模拟考试数学(文)试题)现有一根n 节的竹竿,自上而下每节的长度依次构成等差数列,最上面一节长为10cm,最下面的三节长度之和为114cm,第6节的长度是首节与末节长度的等比中项,则n=_____.【答案】16设对应的数列为{}n a ,公差为,(0)d d >.由题意知110a =,12114n n n a a a --++=,261n a a a =.由12114n n n a a a --++=得13114n a -=,解得138n a -=,即2111(5)()n a d a a d -+=+,即2(105)10(38)d d +=+,解得2d =,所以11(2)38n a a n d -=+-=,即102(2)38n +-=,解得16n =.22.(山东省凤城高中2013届高三4月模拟检测数学文试题 )已知2(3)4log 3233,xf x =+则8(2)(4)(8)...(2)f f f f ++++的值等于_________________.【答案】2008 23.(山东省淄博市2013届高三3月第一次模拟考试数学文试题)观察下列不等式:①121<;②26121<+;③31216121<++;...请写出第n 个不等式_____________.【答案】24.(山东省泰安市2013届高三第一轮复习质量检测数学(文)试题)正项数列{}n a 满足:()222*121171,2,2,2,n n n a a a a a n N n a +-===+∈≥=则______.【答案】因为()222*112,2n n n a a a n N n +-=+∈≥,所以数列2{}n a 是以211a =为首项,以2221413d a a =-=-=为公差的等差数列,所以213(1)32n a n n =+-=-,所以1n a n =≥,所以7a 25.(山东省潍坊市2013届高三第二次模拟考试数学(文)试题)已知等差数列{}n a 的前n 项和为n S ,若2,4,3a 成等比数列,则5S =_________. 【答案】4026.(山东省青岛市2013届高三第一次模拟考试文科数学)设n S 是等差数列{}n a 的前n 项和,1532,3a a a ==,则9S =_____________ ;【答案】54-由1532,3a a a ==得1143(2)a d a d +=+,即12d a =-=-,所以919899298542S a d ⨯=+=⨯-⨯=-. 三、解答题27.(山东省文登市2013届高三3月质量检测数学(文)试题)已知数列{}n a 为公差不为0的等差数列,nS 为前n 项和,5a 和7a 的等差中项为11,且25114a a a a ⋅=⋅.令11,n n n b a a +=⋅数列{}n b 的前n 项和为n T .(Ⅰ)求n a 及n T ;(Ⅱ)是否存在正整数1,(1),,,m n m n m n T T T <<使得成等比数列?若存在,求出所有的,m n 的值;若不存在,请说明理由.【答案】解:(Ⅰ)因为{}n a 为等差数列,设公差为d ,则由题意得 整理得111511212a d d a d a +==⎧⎧⇒⎨⎨==⎩⎩ 所以1(1)221n a n n =+-⨯=- 由111111()(21)(21)22121n n n b a a n n n n +===-⋅-+-+5712511411112221022()(4)(13)a a a d a a a a a d a d a a d +=⇒+=⎧⎨⋅=⋅⇒++=+⎩所以111111(1)2335212121n nT n n n =-+-++-=-++ (Ⅱ)假设存在 由(Ⅰ)知,21n n T n =+,所以11,,32121m n m nT T T m n ===++若1,,m n T T T 成等比,则有222121()2132144163mn m n m nT T T m n m m n =⋅⇒=⋅⇒=+++++ 2222441633412m m n mm m n n m ++++-⇒=⇒=, (1)因为0n >,所以2412011m m m +->⇒<<, 因为,1,2,m N m m *∈>∴=,当2m =时,带入(1)式,得12n =; 综上,当2,12m n ==可以使1,,m n T T T 成等比数列28.(山东省临沂市2013届高三3月教学质量检测考试(一模)数学(文)试题)已知等比数列{n a }的首项为l,公比q≠1,n S 为其前n 项和,a l ,a 2,a 3分别为某等差数列的第一、第二、第四项. (I)求n a 和n S ;(Ⅱ)设21n n b log a +=,数列{21n n b b +}的前n 项和为T n ,求证:34n T <.【答案】29.(山东省潍坊市2013届高三第二次模拟考试数学(文)试题)(本小题满分】2分)某工厂为扩大生产规模,今年年初新购置了一条高性能的生产线,该生产线在使用过程中的维护费用会逐年增加,第一年的维护费用是4万元,从第二年到第七年,每年的维护费用均比上年增加2万元,从第八年开始,每年的维护费用比上年增加25%(I)设第n 年该生产线的维护费用为n a ,求n a 的表达式; (Ⅱ)设该生产线前n 年维护费为n S ,求n S . 【答案】30.(山东省济南市2013届高三4月巩固性训练数学(文)试题(word 版))已知数列{}n a 的前n 项和为n S ,且22n n S a =-,数列{}n b 满足11b =,且12n n b b +=+. (1)求数列{}n a ,{}n b 的通项公式;(2)设1(1)1(1)22n nn n n c a b --+-=-,求数列{}n c 的前2n 项和2n T . 【答案】解:(1)当1=n ,21=a ; 当2≥n 时,1122n n n n n a S S a a --=-=- ,∴ 12n n a a -= ∴{}n a 是等比数列,公比为2,首项12a =, ∴2n n a = 由12n n b b +=+,得{}n b 是等差数列,公差为2 又首项11=b ,∴ 21n b n =-(2)2(21)n n c n ⎧=⎨--⎩ 为偶数为奇数n n3212222[37(41)]n n T n -=+++-+++-2122223n n n +-=--31.(山东省淄博市2013届高三3月第一次模拟考试数学文试题)设数列}{n a 的前n 项和为n S ,点),(n n S a 在直线123-=x y 上. (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)在n a 与1+n a 之间插入n 个数,使这2+n 个数组成公差为n d 的等差数列,求数列}1{nd 的前n 项和n T . 【答案】32.(山东省莱芜市莱芜二中2013届高三4月模拟考试数学(文)试题)已知数列{}n a 是等差数列,()*+∈-=N n a a c n n n 212(1)判断数列{}n c 是否是等差数列,并说明理由;(2)如果()为常数k k a a a a a a 13143,130********-=+++=+++ ,试写出数列{}n c 的通项公式;(3)在(2)的条件下,若数列{}n c 得前n 项和为n S ,问是否存在这样的实数k ,使n S 当且仅当12=n 时取得最大值.若存在,求出k 的取值范围;若不存在,说明理由. 【答案】解:(1)设{}n a 的公差为d ,则22221121()()n n n n n n c c a a a a ++++-=--- 2221112()()n n n a a d a d +++=---+22d =-∴数列{}n c 是以22d -为公差的等差数列3(2)1325130a a a +++=242614313a a a k +++=-∴两式相减:131313d k =-1d k ∴=-113(131)1321302a d -∴+⨯=k a 1221+-=)313()1()1(1-+-=-+=∴k n k d n a a n22111()()n n n n n n n c a a a a a a +++∴=-=+-22)1)(12(63226k n k k -+-+-= 53025)1(222+-+--=k k n k 8(3)因为当且仅当12n =时n S 最大 12130,0c c ∴><有即2222224(1)2530501819036(1)25305022210k k k k k k k k k k ⎧⎧--+-+>+->⎪⎪⇒⎨⎨--+-+<-+>⎪⎪⎩⎩ 1191921211k k k k k k ><-⎧⇒⇒<->⎨><⎩或或或1233.(山东省曲阜师大附中2013届高三4月月考数学(文)试题)设数列{}n a 的前n 项和为n S ,且满足*12,.+=∈n n S a n N(1)求数列{}n a 的通项公式;(2)在数列{}n a 的每两项之间都按照如下规则插入一些数后,构成新数列:1n n a a +和两项之间插入n 个数,使这2n +个数构成等差数列,其公差记为n d ,求数列1⎧⎫⎨⎬⎩⎭n d 的前n 项的和n T . 【答案】34.(山东省莱芜五中2013届高三4月模拟数学(文)试题)在等差数列{}n a 中,345842,30a a a a ++==.(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足2(3)n a n b λ+=+(R λ∈),则是否存在这样的实数λ使得{}n b 为等比数列;(3)数列{}n c 满足112,1,2n n n n n c T a n --⎧⎪=⎨⎪⎩为奇数,为偶数为数列{}n c 的前n 项和,求2n T .【答案】解:(1)因为{}n a 是一个等差数列,所以34544342,14a a a a a ++==∴=. 设数列{}n a 的公差为d ,则84416d a a =-=,故4d =;故4(4)42n a a n d n =+-=- (2)2(3)9n a n n b λλ+=+=+.假设存在这样的λ使得{}n b 为等比数列,则212n n n b b b ++=⋅,即122(9)(9)(9)n n n λλλ+++=+⋅+, 整理可得0λ=. 即存在0λ=使得{}n b 为等比数列(3)∵12,23,n n n c n n -⎧=⎨-⎩为奇数为偶数,∴242221(223)2(243)22(223)n n T n -=+⨯-++⨯-++++⨯-242212224(12)3n n n -=++++++++-214(1)414321423n n n n n n n -+-=+⨯-=+--35.(山东省济南市2013届高三3月高考模拟文科数学)正项等比数列}{n a 的前n 项和为n S ,164=a ,且32,a a 的等差中项为2S . (1)求数列}{n a 的通项公式; (2)设12-=n n a n b ,求数列}{n b 的前n 项和n T .【答案】解:(1)设等比数列}{n a 的公比为)0(>q q ,由题意,得⎪⎩⎪⎨⎧+=+=)(2161121131q a a q a q a q a ,解得⎩⎨⎧==221q a 所以n n a 2= (2)因为12122--==n n n n a n b ,所以12753224232221-+++++=n n nT , 121275322123222141+-+-++++=n n n n n T , 所以12127532212121212143+--+++++=n n n n T122411)411(21+---=n n n 12233432+⋅+-=n n 故2181612992n n nT ++=-⋅36.(山东省滨州市2013届高三第一次(3月)模拟考试数学(文)试题)已知数列{}n a 的前n 项和是n S ,且11()2n n S a n *+=∈N (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设113log (1)()n n b S n *+=-∈N ,令122311n T b b b b =++11n n b b ++,求n T . 【答案】37.(山东省莱钢高中2013届高三4月模拟检测数学文试题 )设数列{}n a 为等差数列,且145=a ,720a =,数列{}n b 的前n 项和为n S ,123b =且132(2,)n n S S n n N -=+≥∈;, (Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)若,1,2,3,n n n c a b n =⋅=,n T 为数列{}n c 的前n 项和. T n <m 恒成立对N n *∈,求m 的最小值.【答案】解:(Ⅰ) 数列{}n a 为等差数列,公差751() 3 2d a a ==-, 易得21=a 所以 13-=n a n由22n n b S =-,令1n =,则1122b S =-,又11S b =,所以.21222()b b b =-+,则229b =由132n n S S -=+当3n ≥时,得1232n n S S --=+,两式相减得.1123()n n n n S S S S ----=-即13n n b b -= 113n n b b -= 又2113b b =.所以{}n b 是以123b =为首项,31为公比的等比数列,于是nn b 312⋅= (Ⅱ)n n n n n b a c 31)13(2⋅-=⋅= ∴],31)13(318315312[232n n n T ⋅-++⋅+⋅+⋅=⎥⎦⎤⎢⎣⎡⋅-+⋅-++⋅+⋅=+13231)13(31)43(315312231n n n n n T 两式相减得]31)13(31313313313313[232132+⋅---⋅++⋅+⋅+⋅=n n n n T所以 17712233n n n nT -=-⋅-从而2733127271<-⋅-=-n n n n T∵T n <m 恒成立对N n *∈∴27≥m ∴m 的最小值是2738.(山东省烟台市2013届高三3月诊断性测试数学文)设{a n }是正数组成的数列,a 1=3.若点()2*11,2()n n n a a a n N ++-∈在函数321()23f x x x =+-的导函数()y f x '=图像上. (1)求数列{a n }的通项公式; (2)设12n n nb a a +=⋅,是否存在最小的正数M,使得对任意n *N ∈都有b 1+b 2++b n <M 成立?请说明理由.【答案】39.(山东省青岛市2013届高三第一次模拟考试文科数学)已知N n *∈,数列{}n d 满足2)1(3nn d -+=,数列{}n a 满足1232n n a d d d d =+++⋅⋅⋅+;数列{}n b 为公比大于1的等比数列,且42,b b 为方程064202=+-x x 的两个不相等的实根.(Ⅰ)求数列{}n a 和数列{}n b 的通项公式;(Ⅱ)将数列{}n b 中的第.1a 项,第.2a 项,第.3a 项,,第.n a 项,删去后剩余的项按从小到大的顺序排成新数列{}n c ,求数列{}n c 的前2013项和.【答案】解:(Ⅰ)2)1(3n n d -+= ,∴1232n n a d d d d =+++⋅⋅⋅+3232nn ⨯== 因为42,b b 为方程064202=+-x x 的两个不相等的实数根. 所以2042=+b b ,6442=⋅b b 解得:42=b ,164=b ,所以:n n b 2=(Ⅱ)由题知将数列{}n b 中的第3项、第6项、第9项删去后构成的新数列{}n c 中的奇数列与偶数列仍成等比数列,首项分别是12b =,24b =公比均是,8201313520132462012()()T c c c c c c c c =+++⋅⋅⋅+++++⋅⋅⋅+1007100610062(18)4(18)208618187⨯-⨯-⨯-=+=--40.(山东省凤城高中2013届高三4月模拟检测数学文试题 )已知数列{}n a 是等差数列,{}n b 是等比数列,且112a b ==,454b =,12323a a a b b ++=+. (Ⅰ)求数列{}n a 和{}n b 的通项公式(Ⅱ)数列{}n c 满足n n n c a b =,求数列{}n c 的前n 项和n S . 【答案】解:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q 由341b b q =,得354272q ==,从而3q = 因此11132--⋅=⋅=n n n q b b又123223361824a a a a b b ++==+=+=,28a ∴= 从而216d a a =-=,故466)1(1-=⋅-+=n n a a n(Ⅱ)13)23(4-⋅-⋅==n n n n n b a c令122103)23(3)53(373431--⋅-+⋅-++⨯+⨯+⨯=n n n n n Tn n n n n T 3)23(3)53(37343131321⋅-+⋅-++⨯+⨯+⨯=-两式相减得13)13(3313)23(333333331211321--⨯+=⋅--⨯++⨯+⨯+⨯+=---n nn n n Tnn 3)23(⋅--n n n 3)232)13(911⋅---+=-( 73(67)44n n n T -∴=+,又n n n n T S 3)76(74⋅-+==41.(山东省聊城市2013届高三高考模拟(一)文科数学)已知正项数列{}n a 的前n 项和为n S ,且11,1(2)n n n a a S S n ==+-≥(I)求数列{}n a 的通项公式;(Ⅱ)设212131n n n a b a +++=-,数列{}n b 的前项n 和为n T ,求证:1n T n <+【答案】42.(山东省德州市2013届高三3月模拟检测文科数学)数列{}n a 是公差不小0的等差数列a 1、a 3,是函数2()1(66)f x n x x =-+的零点,数列{}n b 的前n 项和为n T ,且*12()n n T b n N =-∈ (1)求数列{}n a ,{}n b 的通项公式;(2)记n n n c a b =,求数列{}n c 的前n 项和S n . 【答案】43.(山东省莱芜市莱芜十七中2013届高三4月模拟数学(文)试题)已知数列{}n a 的前n 项和n S 满足21n n S a =-,等差数列{}n b 满足11b a =,43b S =.(1)求数列{}n a 、{}n b 的通项公式; (2)设11n n n c b b +=,数列{}n c 的前n 项和为n T ,问n T >10012012的最小正整数n 是多少?【答案】解:(1)当1n =时,11121a S a ==-,∴11a =当2n ≥时,111(21)(21)22n n n n n n n a S S a a a a ---=-=---=-, 即12nn a a -= ∴数列{}n a 是以11a =为首项,2为公比的等比数列,∴12,21n n n n a S -==- 设{}n b 的公差为,d 111b a ==,4137b d =+=,∴2d = ∴1(1)221n b n n =+-⨯=- (2)111111()(21)(21)22121n n n c b b n n n n +===--+-+∴11111111(1...)(1)2335212122121n n T n n n n =-+-++-=-=-+++ 由n T >10012012,得21n n +>10012012,解得n >100.1∴n T >10012012的最小正整数n 是10144.(山东省泰安市2013届高三第二次模拟考试数学(文)试题 )已知等差数列{}n a 的首项13,0a d =≠公差,其前n 项和为n S ,且1413,,a a a 分别是等比数列{}n b 的234,,.b b b(I)求数列{}n a 与{}n b 的通项公式; (II)证明1211113.34n S S S ≤++⋅⋅⋅+< 【答案】45.(山东省日照市2013届高三第一次模拟考试数学(文)试题)若数列{}n b :对于n N *∈,都有2n n b b d +-=(常数),则称数列{}n b 是公差为d 的准等差数列.如数列n c :若{}41,;49,.n n n n c c n n -⎧=⎨+⎩当为奇数时则数列当为偶数时是公差为8的准等差数列.设数列{}n a 满足:1a a =,对于n N *∈,都有12n n a a n ++=.(I)求证:{}n a 为准等差数列;(II)求证:{}n a 的通项公式及前20项和20.S 【答案】解:(Ⅰ)n a a n n 21=++ (*∈N n )① ∴)1(221+=+++n a a n n ② ②-①,得22=-+n n a a (*∈N n ). 所以,{}n a 为公差为2的准等差数列(Ⅱ)又已知a a =1,n a a n n 21=++(*∈N n ),∴1221⨯=+a a ,即a a -=22. 所以,由(Ⅰ) ,,,531a a a 成以a 为首项,2为公差的等差数列,,,,642a a a 成以a -2为首项,2为公差的等差数列,所以当n 为偶数时,a n n a a n -=⨯⎪⎭⎫⎝⎛-+-=2122, 当n 为奇数时,12121-+=⨯⎪⎭⎫⎝⎛-++=a n n a a n .⎩⎨⎧--+=∴.,,,1为偶数 为奇数n a n n a n a n 20S n n a a a a a a S ++++++=-14321 1920a + ()()(14321nn a a a a a a ++++++=- (1920a +)1(23212-⨯++⨯+⨯=n 19 =(119)1022002+⨯⨯= 46.(山东省济宁市2013届高三第一次模拟考试数学(文)试题 Word 版含答案)(本小题满分l2分)设数列{n a }满足:a 1=5,a n+1+4a n =5,(n ∈N*)(I)是否存在实数t ,使{a n +t }是等比数列?(Ⅱ)设数列b n =|a n |,求{b n }的前2013项和S 2013.【答案】解:(I)由+1+4=5n n a a 得+1=4+5n n a a -令()+1+=4+n n a t a t -,得+1=45n n a a t -- 则5=5t -,=1t -从而()+11=41n n a a --- .又11=4a -, {}1n a ∴-是首项为4,公比为4-的等比数列,∴存在这样的实数=1t -,使{}+n a t 是等比数列(II)由(I)得()11=44n n a --⋅- ()=14n n a ∴--{1+4, 41==n n n n n n b a -∴为奇数,为偶数()()()()()123420132013122013=++=1+4+41+1+4+41++1+4S b b b ∴--1232013=4+4+4++4+1201420144441=+1=143---47.(山东省枣庄市2013届高三3月模拟考试 数学(文)试题)已知等比数列13212{}1,6,,8n a q a a a a a >=-的公比且成等差数列.(1) 求数列{a n }的通项公式;(2)设(1),: 1.n n n n n b b a +=≤求证(2)【答案】48.(山东省潍坊市2013届高三3月第一次模拟考试数学(文)试题)已知数列{}n a 的各项排成如图所示的三角形数阵,数阵中每一行的第一个数1247,,,,a a a a ⋅⋅⋅构成等差数列{}n b ,n S 是{}n b 的前n 项和,且1151,15b a S ===( I )若数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知916a =,求50a 的值; (Ⅱ)设122111n n n nT S S S ++=++⋅⋅⋅+,求n T .【答案】解:(Ⅰ){}n b 为等差数列,设公差为155,1,15,51015,1d b S S d d ==∴=+==1(1)1.n b n n ∴=+-⨯=设从第3行起,每行的公比都是q ,且0q >,2294,416,2,a b q q q ===1+2+3++9=45,故50a 是数阵中第10行第5个数,而445010102160.a b q ==⨯=(Ⅱ)12n S =++(1),2n n n ++=1211n n n T S S ++∴=++21n S + 22(1)(2)(2)(3)n n n n =++++++22(21)n n ++ 11112(1223n n n n =-+-+++++11)221n n +-+ 1122().121(1)(21)n n n n n =-=++++ 49.(山东省泰安市2013届高三第一轮复习质量检测数学(文)试题)设等比数列{}n a 的前n 项和为,415349,,,n S a a a a a =-成等差数列.(I)求数列{}n a 的通项公式;(II)证明:对任意21,,,k k k R N S S S +++∈成等差数列.【答案】50.(山东省德州市2013届高三第二次模拟考试数学(文)试题)各项均为正数的等比数列{a n }中,已知a 1=2,a 5= 512,T n 是数列{log 2a n }的前n 项和.(I)求数列{a n }的通项公式;(Ⅱ)求T n ;(Ⅲ)求满足2311110111112013n T T T ⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的最大正整数n 的值. 【答案】51.(山东省淄博市2013届高三复习阶段性检测(二模)数学(文)试题)等比数列....{}n c 满足(){}1*1104,n n n n c c n N a -++=⋅∈数列的前n 项和为n S ,且2log .n n a c =(I)求,n n a S ;(II)数列{}{}1,41n n n n n b b T b S =-满足为数列的前n 项和,是否存在正整数m,()1m >,使得16,,m m T T T 成等比数列?若存在,求出所有m 的值;若不存在,请说明理由.【答案】解: (Ⅰ)40,103221=+=+c c c c ,所以公比4=q10411=+c c 得21=c121242--=⋅=n n n c所以212log 221n n a n -==-21()[1(21)]22n n n a a n n S n ++-=== (Ⅱ)由(Ⅰ)知211114122121n b n n n ⎛⎫==- ⎪--+⎝⎭于是11111112335212121n n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎣⎦ 假设存在正整数()1m m >,使得16,,m m T T T 成等比数列,则216213121m m m m ⎛⎫=⨯ ⎪++⎝⎭, 整理得24720m m --=,解得14m =-或 2m = 由,1m N m *∈>,得2m =, 因此,存在正整数2m =,使得16,,m m T T T 成等比数列。
高三巩固性训练文 科 数 学本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页. 考试时间120分钟,满分150分,考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:1.锥体的体积公式: Sh V 31=,其中S 是锥体的底面积,h 是锥体的高; 2. 统计中2χ的公式:21212211222112)(++++-=n n n n n n n n n χ,其中21111n n n +=+,22122n n n +=+,12111n n n +=+,22212n n n +=+,22122111n n n n n +++=.第I 卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1. 复数=-+2013)11(ii A. 1- B. 1 C. i - D. i2. 设集合{}1|(),|12x M y y N y y ⎧⎫===≥⎨⎬⎩⎭,则集合M ,N 的关系为A.M N =B.M N ⊆C.N M ≠⊂ D.N M ≠⊃3. 执行如图所示的程序框图,则输出的n 的值为 A.5 B.6 C.7 D.84. 已知圆04222=-+-+my x y x 上两点M 、N 关于直线2x +y =0对称,则圆的半径为5. 第3题图6. 设变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数z =x +2y 的最大值为A.1B.4C.5D.6 7. 在等比数列{}n a 中,531=+a a ,1042=+a a ,则=7aA .64B .32C .16D .128 8. 为了解疾病A 是否与性别有关,在一医院随机的对入院50人进行了问卷调查得到了如下的列联表:请计算出统计量,你有多大的把握认为疾病A 与性别有关下面的临界值表供参考:A. 95% 99.9%9. 函数)22sin(2x y -=π是A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数10. 设,m n 是空间两条直线,α,β是空间两个平面,则下列选项中不正确...的是 A .当α⊂m 时,“//n α”是“n m //”的必要不充分条件 B .当α⊂m 时,“m ⊥β”是“βα⊥”的充分不必要条件C .当n ⊥α时,“n ⊥β”是“α∥β”成立的充要条件D .当α⊂m 时,“α⊥n ”是“n m ⊥”的充分不必要条件11. 函数sin x xy e-=的图象大致为A. B. C. D.12. 已知函数⎩⎨⎧>+-≤<-=0,1)1(01,)(3x x f x x x f ,若函数x x f x g -=)()(的零点按从小到大的顺序排列成一个数列,则该数列的通项公式为A .2)1(-=n n a n B .)1(-=n n a n C .1-=n a n D .22-=n n a 第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题4分,共16分.13. 若向量)3,2(-=a ,),4(m b =, //a b ,则实数=m .14. 已知双曲线)0,0(12222>>=-b a b y a x 的焦点F 到一条渐近线的距离为||23OF ,点O 为坐标原点,则此双曲线的离心率为 .15. 在ABC ∆中,1=AB ,2=AC ,21=∆ABC S ,则=BC .16. 对大于或等于2的自然数m 的n 次方幂有如下分解方式:2213=+ 3235=+ 23135=++ 337911=++241357=+++ 3413151719=+++2513579=++++ 292725232153++++=根据上述分解规律,若3*()m m N ∈的分解中最小的数是73,则m 的值为 .三、解答题:本大题共6小题,共74分. 17. (本小题满分12分)设函数()sin()sin()33f x x x x ππωωω=++- (其中ω>0),且函数f (x )图象的两条相邻的对称轴间的距离为2π.(1)求ω的值;(2)将函数)(x f y =的图象上各点横坐标伸长到原来的2倍,纵坐标不变,得到函数)(x g y =的图象,求函数)(x g 在区间[0,]2π的最大值和最小值.18. (本小题满分12分)为了宣传今年10月在济南市举行的“第十届中国艺术节”, “十艺节”筹委会举办了“十艺节”知识有奖问答活动,随机对市民15~65岁的人群抽样n 人,回答问题统计结果如下图表所示:(1)分别求出a ,x 的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,“十艺节”筹委会决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.19. (本小题满分12分)如图,斜三棱柱111A B C ABC -中,侧面11AA C C ⊥底面ABC ,底面ABC 是边长为2的等边三角形,侧面11AA C C 是菱形,160A AC ∠=,E 、F 分别是11AC 、AB 的中点. 求证:(1)EC ABC ⊥平面;(2)求三棱锥1A EFC -的体积.20. (本小题满分12分)已知数列{}n a 的前n 项和为n S ,且22n n S a =-,数列{}n b 满足11b =,且12n n b b +=+. (1)求数列{}n a ,{}n b 的通项公式;(2)设1(1)1(1)22n nn n n c a b --+-=-,求数列{}n c 的前2n 项和2n T . 21.(本小题满分13分) 已知函数31()(2)3f x ax a x c =+-+的图象如右图所示. (1)求函数)(x f y =的解析式; (2)若()()2l n k f x g x x x'=-在其定义域内为增函数,求实数k 的取值范围.22. (本小题满分13分)已知点F 1)0,3(-和F 2)0,3(是椭圆M :)0(12222>>=+b a by a x 的两个焦点,且椭圆M经过点)21,3(.(1)求椭圆M 的方程;(2)过点P (0,2)的直线l 和椭圆M 交于A 、B 两点,且53=,求直线l 的方程; (3)过点P (0,2)的直线和椭圆M 交于A 、B 两点,点A 关于y 轴的对称点C ,求证:直线CB 必过y 轴上的定点,并求出此定点坐标.12013年4月济南市高三巩固性训练文科数学参考答案1.D2.D3.C4.B5.A6.D7.A8. C9.B 10. A 11.B 12.C 13. 6- 14.2 15. 1或5 16.917.解:(1)()sin f x x x ωω==2sin()3x πω+. ………………………………3分∵函数f (x )图象的两条相邻的对称轴间的距离为2π, ∴2T ππω==. ………………………………5分∴2ω=. ………………………………6分 (2)由(1)得()f x =2sin(2)3x π+,∴()g x =2sin()3x π+. ………………………………8分 由x ∈[0,]2π可得5336x πππ≤+≤, ……………………………10分 ∴当=32x ππ+,即x =6π时,()g x 取得最大值()2sin 262g ππ==;当5=36x ππ+,即x =2π时,()g x 取得最小值5()2sin126g ππ==. …………12分 18. 解:(1)由频率表中第1组数据可知,第1组总人数为5100.5=, 再结合频率分布直方图可知1001001.010=⨯=n . ………………………………2分 ∴a =100×0.020×10×0.9=18, ………………………………4分270.91000.0310x ==⨯⨯, ………………………………6分(2)第2,3,4组中回答正确的共有54人.∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:618254⨯=人,第3组:627354⨯=人,第4组:69154⨯=人. ………………………………8分设第2组的2人为1A 、2A ,第3组的3人为1B 、2B 、B 3,第4组的1人为C ,则从6人中抽2人所有可能的结果有:()12,A A ,()11,A B ,()12,A B ,()13,A B ,()1,A C ,()21,A B ,()22,A B ,()23,A B ,()2,A C ,()12,B B ,()13,B B ,()1,B C ,()23,B B ,()2,B C ,()3,B C ,共15个基本事件, ………………………………10分 其中第2组至少有1人被抽中的有()12,A A ,()11,A B ,()12,A B ,()13,A B ,()1,A C ,()21,A B ,()22,A B ,()23,A B ,()2,A C 这9个基本事件.∴第2组至少有1人获得幸运奖的概率为93155=. ………………………………12分 19. 证明:(1) 在平面11AA C C 内,作1AO AC ⊥,O 为垂足. 因为0160A AC ∠=,所以11122AO AA AC ==,即O 为AC 的中点,所以1OC A E ∥.……3分因而1EC AO ∥.因为侧面11AA C C ⊥底面ABC ,交线为AC ,1AO AC ⊥,所以1AO ⊥底面ABC . 所以EC ⊥底面ABC . ……6分(2)F 到平面1A EC 的距离等于B 点到平面1A EC 距离BO 的一半,而BO ……8分所以111111111113232324A EFC F A EC A EC V V S BO A E EC --=====V g g g g g . ……12分20.解:(1)当1=n ,21=a ; …………………………1分当2≥n 时,1122n n n n n a S S a a --=-=- ,∴ 12n n a a -=. ……………2分 ∴{}n a 是等比数列,公比为2,首项12a =, ∴2n n a =. ………3分 由12n n b b +=+,得{}n b 是等差数列,公差为2. ……………………4分又首项11=b ,∴ 21n b n =-. ………………………………6分(2)2(21)n n c n ⎧=⎨--⎩ 为偶数为奇数n n ……………………8分3212222[37(41)]n n T n -=+++-+++- ……………10分2122223n n n +-=--. ……………………………12分21.解:(1)∵()22f x ax a '=+-, …………………………………………2分由图可知函数)(x f 的图象过点()0,3,且()10f '=. 得3220c a =⎧⎨-=⎩ , 即31c a =⎧⎨=⎩. ………………………………………………4分∴31()33f x x x =-+. ………………………………………………5分(2)∵()()2ln 2ln kf x kg x x kx x x x'=-=--, ………………………………6分 ∴ ()22222k kx k xg x k x x x+-'=+-=. …………………………………………8分 ∵ 函数()y g x =的定义域为),0(+∞, …………………………………………9分 ∴若函数()y g x =在其定义域内为单调增函数,则函数()0g x '≥在),0(+∞上恒成立,即220kx k x +-≥在区间),0(+∞上恒成立. ……………………………10分 即122+≥x xk 在区间),0(+∞上恒成立. 令22()1xh x x =+,),0(+∞∈x , 则222()111x h x x x x==≤++(当且仅当1=x 时取等号). …………………12分 ∴ 1≥k . …………………………………………………………………………13分22.解:(1)由条件得:c =3,设椭圆的方程132222=-+a y a x ,将)21,3(代入得 1)3(41322=-+a a ,解得42=a ,所以椭圆方程为1422=+y x . --------4分 (2)斜率不存在时,31=不适合条件;----------------------5分 设直线l 的方程2+=kx y ,点B (x 1,y 1), 点A (x 2,y 2), 代入椭圆M 的方程并整理得:01216)41(22=+++kx x k .0)34(16)41(48)16(222>-=+-=∆k k k ,得432>k . 且1412,1416221221+=+-=+k x x k k x x . -------------------7分因为53=,即)2,(53)2,(2211-=-y x y x ,所以2153x x =.代入上式得1420,141022222+=+-=k x k k x ,解得1±=k , 所以所求直线l 的方程:2+±=x y . --------------------9分(3)设过点P (0,2)的直线AB 方程为:2+=kx y ,点B (x 1,y 1), 点 A (x 2,y 2), C (-x 2,y 2).将直线AB 方程代入椭圆M : 1422=+y x ,并整理得: 01216)41(22=+++kx x k ,0)34(16)41(48)16(222>-=+-=∆k k k ,得432>k . 且1412,1416221221+=+-=+k x x k kx x .设直线CB 的方程为:)(212122x x x x y y y y +---=-,令x =0得:2221212121122112222++=++=+--=x x x kx x x y x y x x x y x x y y y .----------11分将1412,1416221221+=+-=+k x x k kx x 代入上式得: 21223214161412222=+-=++-+=k k k ky . 所以直线CB 必过y 轴上的定点,且此定点坐标为)21,0(. ---------12分 当直线斜率不存在时,也满足过定点的条件。
山东省2013届高三高考模拟卷(二)数学(文科)一、选择题:本大题共12个小题;每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.已知集合{2,0}x M y y x ==>,{N y y ==,则M N 等于A .∅B .{1}C .{1}y y >D .{1}y y ≥2.已知复数2ii ia b -=+(a ,b ∈R ,i 为虚数单位),则2a b -= A. 1 B. 2 C. 3 D.43.下列函数中,在其定义域内既是奇函数又是增函数的是A. 3,y x x R =∈ B. sin ,y x x R =∈ C. lg ,0y x x => D. 3(),2x y x R =∈4.命题“对任意的01,23≤+-∈x x x R ”的否定是 A .不存在01,23≤+-∈x x x R B .存在01,23≤+-∈x x x RC .存在01,23>+-∈x x x RD .对任意的01,23>+-∈x x x R5.向量a ,b 的夹角为60︒,且||1a =,||2b =,则|2|a b -等于A.1D.2 6.如图,在边长为2的菱形ABCD 中,∠BAD =60︒,E 为BC 的中点, 则AE BD =A .3-B .1-C .0D .17.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为A .13422=+y xB .16822=+y xC .1222=+y xD .1422=+y x 8.等比数列{}n a 的各项均为正数,且21813a a =,则313335319log log log log a a a a +++⋅⋅⋅+=A. 5B. 5-C. 53D.1039.把函数)2,0(),sin(πφωφω<>+=x y 的图像向左平移3π个单位,所得曲线的一部分如图示,则,ωϕ的值分别为 A .3,1πB .3,1π-C .3,2πD . 3,2π-10.已知()f x '是函数()f x 的导函数,如果()f x '(1,1),那么曲线()f x 上任一点处的切线的倾斜角α的取值范围是A. (1,]4πB. [,)42ππC. 3(,]24ππD.[,)4ππ 11.若0,0>>b a 且4=+b a ,则下列不等式恒成立的是A .211>abB .111≤+ba C .2≥ab D .81122≤+ba12.已知函数()f x 对定义域R 内的任意x 都有()f x =(4)f x -,且当2x ≠时,其导函数()f x '满足()2()xf x f x ''>,若24a <<,则有A. 2(2)(3)(l o g )af f f a << B. 2(3)(log )(2)af f a f <<C. 2(l o g )(3)(2)af a f f<< D. 2(log )(2)(3)af a f f <<第二部分 非选择题(共90分)二、填空题:本大题共4个小题,每小题4分,满分16分.13.直线0323=-+y x 截圆422=+y x 所得的弦长是 .14.已知:l m ,是不同的直线,βα,是不同的平面,给出下列五个命题: ①若l 垂直于α内的两条直线,则α⊥l ; ②若α//l ,则l 平行于α内的所有直线; ③若,,βα⊂⊂l m 且,m l ⊥则βα⊥; ④若,β⊂l 且,α⊥l 则βα⊥;⑤若βα⊂⊂l m ,且,//βα则l m //.其中正确命题的序号是15.已知,x y 满足约束条件224200x y x y y ⎧+≤⎪-+≥⎨⎪≥⎩,则目标函数2z x y =+的最大值是 .16.已知偶函数()y f x =(x R ∈),满足:(1)(1)f x f x +=-,且[]0,1x ∈时,()f x x =,则函数()y f x =与函数3|log |y x =图象的交点个数为 .三、解答题:本大题共6小题,共76分.解答须写出文字说明、证明过程或演算步骤.17.(本题满分12分)在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,3cos 5B =,且符合21AB BC ⋅=-. (Ⅰ)求ABC ∆的面积;(Ⅱ)若7a =,求角C .18.(本小题满分12分) 从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195],右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(Ⅰ)求第七组的频率;(Ⅱ)估计该校的800名男生的身高的中位数以及身高在180cm 以上(含180cm )的人数; (Ⅲ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,x y ,事件=E {5x y -≤},事件F ={15->x y },求()P E F .19.(本小题满分12分)数列}{n a 是首项14a =的等比数列,且3S ,2S ,4S 成等差数列. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)若2log n n b a =,设n T 为数列⎭⎬⎫⎩⎨⎧+11n n b b 的前n 项和,若1n n T b λ+≤对一切*n ∈N 恒成立,求实数λ的最小值. 20.(本题满分12分)如图,四边形ABCD 中,AB ⊥AD ,AD ∥BC ,AD =6,BC =4,AB =2,E 、F 分别在BC 、AD 上,EF ∥AB .现将四边形ABEF 沿EF 折起,使得平面ABEF ⊥平面EFDC .(Ⅰ) 当1BE =,是否在折叠后的AD 上存在一点P ,且AP PD λ=,使得CP ∥平面ABEF ?若存在,求出λ的值;若不存在,说明理由;(Ⅱ) 设BE =x ,问当x 为何值时,三棱锥A -CDF 的体积有最大值?并求出这个最大值.21.(本题满分13分)已知椭圆2222:1(0)x y C a b a b+=>>.(Ⅰ)设椭圆的半焦距1c =,且222,,a b c 成等差数列,求椭圆C 的方程;(Ⅱ)设(1)中的椭圆C 与直线1y kx =+相交于P Q 、两点,求OP OQ 的取值范围.22.(本小题满分13分)已知函数2()8ln f x x x =-,2()14g x x x =-+. (Ⅰ) 求函数()f x 在点(1,(1))f 处的切线方程;(Ⅱ) 若函数()f x 与()g x 在区间(),1a a +上均为增函数,求a 的取值范围; (Ⅲ) 若方程()()f x g x m =+有唯一解,试求实数m 的值.数学(文科)参考答案一、选择题:1.A 2.C 3. A 4.C 5. D 6. C 7. A 8 .B 9. D10. B 11. D 12. C二、填空题:A B C D E F E F A B C D13. 2 14.④ 15.16. 3三、解答题:17.【解析】(Ⅰ)21cos()21AB BC AB BC B π⋅=-⇒⋅⋅-=- ………………2分 cos 21c a B ⇒⋅⋅=. …………………………………………………………… 3分又3cos 5B =,故35ac =. ………………………………………………4分由3cos 5B =可推出4sin 5B == ………………………………………5分1sin 14.2ABC S ac B ∆∴== ………………………………………6分(Ⅱ)7,35a ac ==由,可得5c=, ………………………………………7分又2223cos 2cos 325B b a c ac B b =∴=+-=⇒= ………………8分cos 2C ∴==, ………………10分 又(0,)C π∈ ,4C ∴=. ………………12分18.【解析】(Ⅰ)第六组的频率为40.0850=,所以第七组的频率为 10.085(0.00820.0160.0420.06)0.06--⨯⨯++⨯+=; ……………………………4分 (Ⅱ)身高在第一组[155,160)的频率为0.00850.04⨯=, 身高在第二组[160,165)的频率为0.01650.08⨯=, 身高在第三组[165,170)的频率为0.0450.2⨯=, 身高在第四组[170,175)的频率为0.0450.2⨯=,由于0.040.080.20.320.5++=<,0.040.080.20.20.520.5+++=> 估计这所学校的800名男生的身高的中位数为m ,则170175<<m 由0.040.080.2(170)0.040.5+++-⨯=m 得174.5=m所以可估计这所学校的800名男生的身高的中位数为174.5 …………………………6分由直方图得后三组频率为0.060.080.00850.18++⨯=,所以身高在180cm 以上(含180cm )的人数为0.18800144⨯=人. ………………8分(Ⅲ)第六组[180,185)的人数为4人,设为,,,a b c d ,第八组[190,195]的人数为2人, 设为,A B ,则有,,,,,,ab ac ad bc bd cd ,,,,,,,,aA bA cA dA aB bB cB dB AB 共15种情况,因事件=E {5x y -≤}发生当且仅当随机抽取的两名男生在同一组,所以事件E 包含的基本事件为,,,,,,ab ac ad bc bd cd AB 共7种情况,故7()15P E =. ……………………10分 由于max 19518015x y -=-=,所以事件F ={15->x y }是不可能事件,()0P F =, 由于事件E 和事件F 是互斥事件,所以7()()()15P EF P E P F =+=………12分 19.【解析】(Ⅰ)当1q =时,32412816S S S ===,,,不成等差数列……………1分当1q ≠时,234111(1)(1)(1)2111a q a q a q q q q---=+--- ,∴2342q q q =+ ,…………3分∴220q q +-=,∴2q =-, …………………………………………………………4分∴114(2)(2)n n n a -+=-=-.………………………………………………………………5分(Ⅱ)122log log (2)1n n n b a n +==-=+,………………………………………… 6分11111(1)(2)12n n b b n n n n +==-++++, ………………………………………… 7分 11111111233412222(2)n n T n n n n =-+-+⋅⋅⋅⋅⋅⋅+-=-=++++, ………………8分1n n T b λ+≤,∴(2)2(2)n n n λ≤++,∴22(2)nn λ≥+, …………………… 10分又211142(2)2(44)162(4)n n n n=≤=++++,∴λ的最小值为116. ……… 12分 20.【解析】(Ⅰ)存在P 使得满足条件CP ∥平面ABEF ,且此时32λ=.…………… 2分下面证明:当32λ=时,即此时32AP PD =,可知35AP AD =,过点P 作MP ∥FD ,与AF 交于点M ,则有35MP FD =,又FD =5,故MP =3,又因为EC =3,MP ∥FD ∥EC ,故有MP //=EC ,故四边形MPCE 为平行四边形,所以PC ∥ME ,又CP ⊄平面ABEF ,ME ⊂平面ABEF ,故有CP ∥平面ABEF 成立.……………………… 6分(Ⅱ)因为平面ABEF ⊥平面EFDC ,平面ABEF 平面EFDC =EF ,又AF ⊥EF ,所以AF ⊥平面EFDC .由已知BE =x ,,所以AF =x (0<x …4),FD =6-x .故222111112(6)(6)[(3)9](3)332333A C D F V x x x x x x -=⋅⋅⋅-⋅=-=--+=--+.所以,当x =3时,A CDF V -有最大值,最大值为3. ……………………… 12分21.【解析】(Ⅰ)由已知:221a b =+,且2221b a =+,解得223,2a b ==, ……4分所以椭圆C 的方程是22132x y +=. …………………………5分 (Ⅱ)将1y kx =+代入椭圆方程,得22(1)132x kx ++=, …………………………6分 化简得,()2232630k x kx ++-= …………………………7分设()()1122,,,P x y Q x y ,则12122263,3232k x x x x k k +=-=-++, …………………8分 所以,()()()()21212121212121111OP OQ x x y y x x kx kx k x x k x x =+=+++=++++EFA B C D M P()22222223166131232323232k k k k k k k -+--=-+==-+++++, ………………………10分 由222233310,322,0,22322322k k k k ≥+≥<≤-<-+≤-++,…………………12分所以OP OQ 的取值范围是1(2,]2--. …………………………13分22.【解析】(Ⅰ)因为8()2f x x x'=-,所以切线的斜率(1)6k f '==- …………2分又(1)1f =,故所求切线方程为16(1)y x -=--,即67y x =-+ …………4分 (Ⅱ)因为2(2)(2)()x x f x x+-'=,又x >0,所以当x >2时,()0f x '>;当02x <<时, ()0f x '<.即()f x 在(2,)+∞上递增,在(0,2)上递减 ……………………………………………5分又2()(7)49g x x =--+,所以()g x 在(,7)-∞上递增,在(7,)+∞上递减 ………6分欲()f x 与()g x 在区间(),1a a +上均为增函数,则217a a ≥⎧⎨+≤⎩,解得26a ≤≤ ……8分(Ⅲ) 原方程等价于228ln 14x x x m --=,令2()28ln 14h x x x x =--,则原方程即为()h x m =. ……………………9分 因为当0>x 时原方程有唯一解,所以函数()y h x =与y m =的图象在y 轴右侧有唯一的交点……………………10分又82(4)(21)()414x x h x x x x-+'=--=,且0x >, 所以当4x >时,()0h x '>,函数()h x 单调递增;当04x <<时, ()0h x '<,函数()h x 单调递减. 故()h x 在4x =处取得最小值. ……………12分 从而当0>x 时原方程有唯一解的充要条件是(4)16ln 224m h ==--. ………13分0z =。
济南外国语学校2012—2013学年度第一学期高三质量检测数学试题(文科)本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟。
第I 卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的)1.设集合U={1,2,3,4,5},A={1,3,5},B={2,5},则A ∩(C U B)等于( ) A.{2} B.{2,3} C.{3} D.{1,3} 【答案】D 【解析】{134}UB =,,,所以{134}{1,3,5}={1,3}U A B =(),,,选D.2. 复数512ii-=( ) A.2i - B.12i - C.2i -+ D.12i -+ 【答案】C 【解析】55(12)510212(12)(12)5i i i i i i i i +-===-+--+,选C. 3. "1""||1"x x >>是的( )A .充分不必要条件 B.必要不充分条件C .充分必要条件 D .既不充分又不必要条件 【答案】A【解析】11x x >⇒>或1x <-,所以"1""||1"x x >>是充分不必要条件,选A.4. 已知函数⎪⎩⎪⎨⎧<+=>=)0(1)0()0(0)(2x x x x f ππ,则)))1(((-f f f 的值等于( )A.12-πB.12+π C.π D.0 【答案】C【解析】2(1)=1f π-+,所以2(((1)))=((1))=(0)=f f f f f f ππ-+,选C. 5.下列函数中既是偶函数又在(0,+∞)上是增函数的是( )A.3x y =B.1||+=x yC.12+-=x yD.||2x y -=【答案】B【解析】函数3x y =为奇函数,排除A.当0x >时,函数12+-=x y 和||2x y -=为减函数,排除C,D,选B.6. 函数23)(3+-=x x x f 的零点为( )A.1,2B. ±1,-2C.1,-2D.±1, 2 【答案】C【解析】由3()320f x x x =-+=得3(22)0x x x ---=,即2(1)(2)0x x -+=,解得1x =或2x =-,选C.7. 若点(,9)a 在函数3xy =的图象上,则tan6πa 的值为( )【答案】D【解析】因为点(,9)a 在函数3xy =的图象上,所以39a =,解得2a =,所以2tantan 33a ππ== D. 8. 已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k=( ) A. -12 B. -6 C. 6 D. 12 【答案】D【解析】因为(2)0a a b -=,即(2,1)(5,2)0k -=,所以10+20k -=,即12k =,选D. 9. 某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。
2013济南二模文 科 数 学一、选择题:本大题共12个小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1. 复数=-+2013)11(ii A. 1- B. 1 C. i - D. i2. 设集合{}1|(),|12x M y y N y y ⎧⎫===≥⎨⎬⎩⎭,则集合M ,N 的关系为A.M N =B.M N ⊆C.N M ≠⊂ D.N M ≠⊃3. 执行如图所示的程序框图,则输出的n 的值为 A.5 B.6 C.7 D.84. 已知圆04222=-+-+my x y x 上两点M 、N 关于直线2x +y =0对称,则圆的半径为A .9B .3C .23D .25. 一空间几何体的三视图如图所示,则此几何体的直观图为6. 设变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数z =x +2y 的最大值为A.1B.4C.5D.6 7. 在等比数列{}n a 中,531=+a a ,1042=+a a ,则=7aA .64B .32C .16D .128 8. 为了解疾病A 是否与性别有关,在一医院随机的对入院50人进行了问卷调查得到了如下的列联表:请计算出统计量,你有多大的把握认为疾病A 与性别有关下面的临界值表供参考:第3题图A. 95%9. 函数)22sin(2x y -=π是A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数10. 设,m n 是空间两条直线,α,β是空间两个平面,则下列选项中不正确...的是 A .当α⊂m 时,“//n α”是“n m //”的必要不充分条件 B .当α⊂m 时,“m ⊥β”是“βα⊥”的充分不必要条件 C .当n ⊥α时,“n ⊥β”是“α∥β”成立的充要条件 D .当α⊂m 时,“α⊥n ”是“n m ⊥”的充分不必要条件 11. 函数sin x xy e-=的图象大致为A. B. C. D.12. 已知函数⎩⎨⎧>+-≤<-=0,1)1(01,)(3x x f x x x f ,若函数x x f x g -=)()(的零点按从小到大的顺序排列成一个数列,则该数列的通项公式为A .2)1(-=n n a n B .)1(-=n n a n C .1-=n a n D .22-=n n a 二、填空题:本大题共4个小题,每小题4分,共16分.13. 若向量)3,2(-=a ,),4(m b =, //a b ,则实数=m .14. 已知双曲线)0,0(12222>>=-b a by a x 的焦点F 到一条渐近线的距离为||23OF ,点O 为坐标原点,则此双曲线的离心率为 . 15. 在ABC ∆中,1=AB ,2=AC ,21=∆ABC S ,则=BC .16. 对大于或等于2的自然数m 的n 次方幂有如下分解方式:2213=+ 3235=+ 23135=++ 337911=++241357=+++ 3413151719=+++2513579=++++ 292725232153++++=根据上述分解规律,若3*()m m N ∈的分解中最小的数是73,则m 的值为 .三、解答题:本大题共6小题,共74分. 17. (本小题满分12分)设函数()sin()sin()33f x x x x ππωωω=++-+ (其中ω>0),且函数f (x )图象的两条相邻的对称轴间的距离为2π. (1)求ω的值;(2)将函数)(x f y =的图象上各点横坐标伸长到原来的2倍,纵坐标不变,得到函数)(x g y =的图象,求函数)(x g 在区间[0,]2π的最大值和最小值.18. (本小题满分12分)为了宣传今年10月在济南市举行的“第十届中国艺术节”, “十艺节”筹委会举办了“十艺节”知识有奖问答活动,随机对市民15~65岁的人群抽样n 人,回答问题统计结果如下图表所示:(1)分别求出a ,x 的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,“十艺节”筹委会决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.19. (本小题满分12分)如图,斜三棱柱111A B C ABC -中,侧面11AAC C ⊥底面ABC ,底面ABC 是边长为2的等边三角形,侧面11AAC C 是菱形,160A AC ∠= ,E 、F 分别是11AC 、AB 的中点. 求证:(1)EC ABC ⊥平面;(2)求三棱锥1A EFC -的体积.20. (本小题满分12分)已知数列{}n a 的前n 项和为n S ,且22n n S a =-,数列{}n b 满足11b =,且12n n b b +=+. (1)求数列{}n a ,{}n b 的通项公式;(2)设1(1)1(1)22n nn n n c a b --+-=-,求数列{}n c 的前2n 项和2n T .A121.(本小题满分13分) 已知函数31()(2)3f x ax a x c =+-+的图象如右图所示. (1)求函数)(x f y =的解析式; (2)若()()2l nk f x g x xx'=-在其定义域内为增函数,求实数k的取值范围.22. (本小题满分13分)已知点F 1)0,3(-和F 2)0,3(是椭圆M :)0(12222>>=+b a by a x 的两个焦点,且椭圆M经过点)21,3(.(1)求椭圆M 的方程;(2)过点P (0,2)的直线l 和椭圆M 交于A 、B 两点,且53=,求直线l 的方程; (3)过点P (0,2)的直线和椭圆M 交于A 、B 两点,点A 关于y 轴的对称点C ,求证:直线CB 必过y 轴上的定点,并求出此定点坐标.2013年4月济南市高三巩固性训练文科数学参考答案1.D2.D3.C4.B5.A6.D7.A8. C9.B 10. A 11.B 12.C 13. 6- 14.2 15. 1或5 16.917.解:(1)()sin f x x x ωω=+=2sin()3x πω+. ………………………………3分∵函数f (x )图象的两条相邻的对称轴间的距离为2π, ∴2T ππω==. ………………………………5分∴2ω=. ………………………………6分 (2)由(1)得()f x =2sin(2)3x π+,∴()g x =2sin()3x π+. ………………………………8分 由x ∈[0,]2π可得5336x πππ≤+≤, ……………………………10分 ∴当=32x ππ+,即x =6π时,()g x 取得最大值()2sin 262g ππ==;当5=36x ππ+,即x =2π时,()g x 取得最小值5()2sin 126g ππ==. …………12分18. 解:(1)由频率表中第1组数据可知,第1组总人数为5100.5=,再结合频率分布直方图可知1001001.010=⨯=n . ………………………………2分∴a =100×0.020×10×0.9=18, ………………………………4分270.91000.0310x ==⨯⨯, ………………………………6分(2)第2,3,4组中回答正确的共有54人.∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:618254⨯=人,第3组:627354⨯=人,第4组:69154⨯=人. ………………………………8分 设第2组的2人为1A 、2A ,第3组的3人为1B 、2B 、B 3,第4组的1人为C ,则从6人中抽2人所有可能的结果有:()12,A A ,()11,A B ,()12,A B ,()13,A B ,()1,A C ,()21,A B ,()22,A B ,()23,A B ,()2,A C ,()12,B B ,()13,B B ,()1,B C ,()23,B B ,()2,B C ,()3,B C ,共15个基本事件, ………………………………10分 其中第2组至少有1人被抽中的有()12,A A ,()11,A B ,()12,A B ,()13,A B ,()1,A C ,()21,A B ,()22,A B ,()23,A B ,()2,A C 这9个基本事件.∴第2组至少有1人获得幸运奖的概率为93155=. ………………………………12分 19. 证明:(1) 在平面11AAC C 内,作1AO AC ⊥,O 为垂足. 因为0160A AC ∠=,所以11122AO AA AC ==,即O 为AC 的中点,所以1OC A E ∥.……3分因而1EC AO ∥.因为侧面11AA C C ⊥底面ABC ,交线为AC ,1AO AC ⊥,所以1AO ⊥底面ABC . 所以EC ⊥底面ABC . ……6分(2)F 到平面1A EC 的距离等于B 点到平面1A EC 距离BO 的一半,而BO ……8分所以111111111113232324A EFC F A EC A EC V V S BO A E EC --=====V g g g g . ……12分20.解:(1)当1=n ,21=a ; …………………………1分当2≥n 时,1122n n n n n a S S a a --=-=- ,∴ 12n n a a -=. ……………2分 ∴{}n a 是等比数列,公比为2,首项12a =, ∴2nn a =. ………3分 由12n n b b +=+,得{}n b 是等差数列,公差为2. ……………………4分又首项11=b ,∴ 21n b n =-. ………………………………6分(2)2(21)n n c n ⎧=⎨--⎩ 为偶数为奇数n n ……………………8分3212222[37(41)]n n T n -=+++-+++- ……………10分2122223n n n +-=--. ……………………………12分21.解:(1)∵()22f x ax a '=+-, …………………………………………2分由图可知函数)(x f 的图象过点()0,3,且()10f '=. 得3220c a =⎧⎨-=⎩ , 即31c a =⎧⎨=⎩. ………………………………………………4分 ∴31()33f x x x =-+. ………………………………………………5分(2)∵()()2ln 2ln kf x kg x x kx x xx'=-=--, ………………………………6分 ∴ ()22222k kx k xg x k x x x+-'=+-=. …………………………………………8分 ∵ 函数()y g x =的定义域为),0(+∞, …………………………………………9分 ∴若函数()y g x =在其定义域内为单调增函数,则函数()0g x '≥在),0(+∞上恒成立,即220kx k x +-≥在区间),0(+∞上恒成立. ……………………………10分 即122+≥x xk 在区间),0(+∞上恒成立. 令22()1xh x x =+,),0(+∞∈x , 则222()111x h x x x x==≤++(当且仅当1=x 时取等号). …………………12分 ∴ 1≥k . …………………………………………………………………………13分22.解:(1)由条件得:c =3,设椭圆的方程132222=-+a y a x ,将)21,3(代入得 1)3(41322=-+a a ,解得42=a ,所以椭圆方程为1422=+y x . --------4分 (2)斜率不存在时,PA PB 31=不适合条件;----------------------5分 设直线l 的方程2+=kx y ,点B (x 1,y 1), 点A (x 2,y 2), 代入椭圆M 的方程并整理得:01216)41(22=+++kx x k .0)34(16)41(48)16(222>-=+-=∆k k k ,得432>k . 且1412,1416221221+=+-=+k x x k k x x . -------------------7分 因为PA PB 53=,即)2,(53)2,(2211-=-y x y x ,所以2153x x =.代入上式得1420,141022222+=+-=k x k k x ,解得1±=k , 所以所求直线l 的方程:2+±=x y . --------------------9分(3)设过点P (0,2)的直线AB 方程为:2+=kx y ,点B (x 1,y 1), 点 A (x 2,y 2), C (-x 2,y 2).将直线AB 方程代入椭圆M : 1422=+y x ,并整理得:01216)41(22=+++kx x k ,0)34(16)41(48)16(222>-=+-=∆k k k ,得432>k . 且1412,1416221221+=+-=+k x x k kx x .设直线CB 的方程为:)(212122x x x x y y y y +---=-,令x =0得:2221212121122112222++=++=+--=x x x kx x x y x y x x x y x x y y y .----------11分将1412,1416221221+=+-=+k x x k k x x 代入上式得: 212232141412222=+-=+++=k k ky . 所以直线CB 必过y 轴上的定点,且此定点坐标为)21,0(. ---------12分 当直线斜率不存在时,也满足过定点的条件。
2013年1月高三教学质量调研考试文科数学本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页. 训练时间120分钟,满分150分,考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:柱体的体积公式:V S h =,其中S 是柱体的底面积,h 是柱体的高.第I 卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1.复数31ii+=+ A .i 21+ B .i 21- C .i +2 D .i -2 2.已知集合{}320A x x =+>,()(){}130B x x x =+->,则A B =A .(),1-∞- B. 21,3⎛⎫--⎪⎝⎭ C. 2,33⎛⎫- ⎪⎝⎭D .()3,+∞ 3.设()2,02,0x x x f x x ⎧<=⎨≥⎩,则()1f f -⎡⎤⎣⎦= A. 1B. 2 C4 D. 84.已知数列{}n a 的前n 项和为n S ,且122-=n S n , 则=3aA. -10B. 6C. 10D. 145.在ABC ∆中,若ab b c a 3222=+-,则C=A. 30° B . 45° C. 60° D. 120° 6.如图在程序框图中,若输入6n =, 则输出k 的值是A .2B .3C .4D .57.设a R ∈,则“1a =”是“直线1:210l ax y +-=与直线()2:140l x a y +++=平行”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 8.把函数sin y x =的图象上所有的点向左平行移动6π个单位长度,再把所得图象上所有点的横 坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数解析式是 A .sin 23y x π⎛⎫=-⎪⎝⎭ B .sin 26x y π⎛⎫=+ ⎪⎝⎭C .sin(2)6y x π=-D .sin(2)6y x π=+ 9.已知变量,x y 满足约束条件⎪⎩⎪⎨⎧≤-≥-+≤-+01033032y y x y x , 则目标函数y x z +=2的最大值是A .6B .3C .23D .1 10.若某几何体的三视图 (单位:cm) 如图所示,则此几何体的体积是A. 36 cm 3B. 48 cm 3C. 60 cm 3D. 72 cm 311.已知函数()22x f x =-,则函数()y f x =的图象可能是12.已知椭圆方程22143x y +=,双曲线的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲线的离心率 23 第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题4分,共16分.13.某单位青年、中年、老年职员的人数之比为11:8:6,从中抽取200名职员作为样本,则应抽取青年职员的人数为____________. 14.若()()1,2,,1a b x =-=,且a b ⊥,则x = .15.圆心在原点,并与直线34100x y --=相切的圆的方程为 .16.定义在R 上的函数()f x 满足()()()(),22f x f x f x f x -=--=+,且()2,0x ∈- 时,()122x f x =+,则()2013f = . 三、计算题:本大题共6小题,共74分. 17.(本小题满分12分)已知向量31sin ,,,cos 22x x ⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭a =b ,()f x =⋅a b . (1)求函数()y f x =的解析式; (2)求函数()y f x =的单调递增区间.18. (本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且满足24a =,3417a a +=. (1)求{}n a 的通项公式; (2)设22n a n b +=,证明数列{}n b 是等比数列并求其前n 项和n T .19. (本小题满分12分)如图,已知三棱柱111ABC A B C -中,1AA ⊥底面ABC ,AC BC =,,M N 分别是棱1,CC AB 中点.(1)求证:CN ⊥平面11ABB A ; (2)求证://CN 平面1AMB .20. (本小题满分12分)某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组[13,14),第二组[14,15),…,第五组[]17,18,下图是按上述分组方法得到的频率分布直方图.(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;(2)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1的概率.21.(本小题满分13分)如图,椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知点2(3,)2M 在椭圆上, 且点M 到两焦点距离之和为4.(1)求椭圆的方程; (2)设与MO (O 为坐标原点)垂直的直线交椭圆于,A B (,A B 不重合),求OB OA ⋅的取值范围.频率/组距0.08 0.240.28 0.36 0.04秒13 14 15 16 17 18 (第20题)(第19题)MxyO AB(第21题)22. (本小题满分13分)已知函数()()12ln 2(0)f x a x ax a x=-++≤. (1)当0a =时,求()f x 的极值; (2)当0a <时,讨论()f x 的单调性;(3)若对任意的()[]123,2,,1,3,a x x ∈--∈恒有()()()12ln32ln3m a f x f x +->-成立,求实数m 的取值范围.2013 届高三教学质量调研考试文科数学参考答案一、选择题1.D2. D3. B4.C5.A6.B7. A8.D9. A 10. B 11. B 12. C 二、填空题13.88 14.2 15. 224x y += 16. 1- 三、解答题17. 解:(1)()f x =⋅ab 1sin 2x x =……………………… 2分 sin coscos sin33x x ππ=+ ……………………… 4分sin()3x π=+. ……………………… 6分 (2)由22232k x k πππππ-+≤+≤+,k Z ∈ ……………………… 8分得52266k x k ππππ-+≤≤+,k Z ∈ ……………………… 10分 ∴函数()y f x =的单调递增区间是5[2,2]66k k ππππ-++,k Z ∈ ……12分18. 解:(1)设等差数列{}n a 的公差为d .由题意知3411212317,4,a a a d a d a a d +=+++=⎧⎨=+=⎩ ……………………… 4分解得,11a =,3d =,∴32n a n =-(n N *∈) ……………………… 6分(2)由题意知, 2322n a n n b +==(n N *∈),3(1)33122n n n b ---==(,2n N n *∈≥) ……………………… 8分 ∴333312282nn n n b b --===(,2n N n *∈≥),又18b =∴{}n b 是以18b =,公比为8的等比数列. ……………………… 10分()()818881187n nn T -==--. ……………………… 12分19. (1)证明:∵三棱柱111ABC A B C -中,1AA ⊥底面ABC .又CN ⊂平面ABC , ∴1AA CN ⊥. ………………………………… 2分 ∵AC BC =,N 是AB 中点, ∴CN AB ⊥. …………………………………………………… 4分∵1AA AB A =,1AA ⊂平面11ABB A ,AB ⊂平面11ABB A∴CN ⊥平面11ABB A . ……………………………………………………… 6分 (2)证明:取1AB 的中点G ,连结MG ,NG ,∵N ,G 分别是棱AB ,1AB 中点,∴1//NG BB ,112NG BB =. ………………… 8分 又∵1//CM BB ,112CM BB =,∴//CM NG ,CM NG =. ∴四边形CNGM 是平行四边形.∴//CN MG . …………………………………………………………… 10分 ∵CN ⊄平面1AMB ,GM ⊂平面1AMB ,∴//CN 平面1AMB . ……………………………………………………… 12分20. 解:(1)由频率分布直方图知,成绩在[14,16)内的人数为:500.28500.3632⨯+⨯=(人)… 3分所以该班成绩良好的人数为32人. ……………………… 5分 (2)由频率分布直方图知,成绩在[13,14)的人数为500.042⨯=人,设为x 、y ;… 6分成绩在[17,18) 的人数为500.084⨯=人,设为A 、B 、C 、D …… 7分 若,[13,14)m n ∈时,有xy 1种情况; ……………………… 8分 若,[17,18)m n ∈时,有,,,,,AB AC AD BC BD CD 6种情况; …………… 9分 若,m n 分别在[13,14)和[17,18)内时,共有种情况. ……………………… 10分 所以基本事件总数为15种,事件“||1m n ->”所包含的基本事件个数有8种. ∴P (||1m n ->)158=. ……………………… 12分21.解:(1)∵2a =4, ∴a =2. ………… 2分又2M 在椭圆上,∴231142b+= ………… 4分 解得:22=b ,∴所求椭圆方程12422=+y x . ……………………… 6分 (2)66=MO k ,∴6-=AB k . 设直线AB 的方程:m x y +-=6,联立方程组⎪⎩⎪⎨⎧+-==+m x y y x 612422消去y 得:042641322=-+-m mx x .……………… 8分 0)261312(8)42(134)64(2222>+-=-⨯-=∆m m m m ,∴262<m .136421mx x =+,1342221-=m x x . ……………………… 10分设),(),,(2211y x B y x A ,则13283)(672221212121-=++-=+=⋅m m x x m x x y y x x OB OA . ………………… 12分∴OB OA ⋅的取值范围2850[,)1313-. ……………………… 13分22.解:(1)当0a =时,()()22121212ln ,(0).x f x x f x x x x x x-'=+=-=>……… 1分 由()2210x f x x -'=>,解得12x >. ……………………… 2分 ∴()f x 在10,2⎛⎫ ⎪⎝⎭上是减函数,在1,2⎛⎫+∞⎪⎝⎭上是增函数. ……………………… 3分 ∴()f x 的极小值为122ln 22f ⎛⎫=-⎪⎝⎭,无极大值. ……………………… 4分 (2)()()()()2222221121212(0)ax a x ax x a f x a x x x x x +--+--'=-+==>. …… 6分 ①当20a -<<时,()f x 在10,2⎛⎫ ⎪⎝⎭和1,a ⎛⎫-+∞ ⎪⎝⎭上是减函数,在11,2a ⎛⎫- ⎪⎝⎭上是增函数;………7分 ②当2a =-时,()f x 在()0,+∞上是减函数; ……………………… 8分 ③当2a <-时,()f x 在1,2⎛⎫+∞⎪⎝⎭和10,a ⎛⎫- ⎪⎝⎭上是减函数,在11,2a ⎛⎫- ⎪⎝⎭上是增函数.…… 9分(3)当32a -<<-时,由(2)可知()f x 在[]1,3上是减函数, ∴()()()()()1221342ln 33f x f x f f a a -≤-=-+-. ……………………… 10分 由()()()12ln32ln3m a f x f x +->-对任意的()[]123,2,,1,3a x x ∈--∈恒成立, ∴()()()12maxln32ln3m a f x f x +->- ……………………… 11分即()()2ln 32ln 342ln 33m a a a +->-+-对任意32a -<<-恒成立, 即243m a<-+对任意32a -<<-恒成立, ……………………… 12分 由于当32a -<<-时,132384339a -<-+<-,∴133m ≤-. ……………………… 13分。
2013年山东省高考数学试卷(文科)参考答案与试题解析一.选择题:本题共12个小题,每题5分,共60分.1.(5分)(2013•山东)复数z=(i为虚数单位),则|z|()=,.2.(5分)(2013•山东)已知集合A、B全集U={1、2、3、4},且∁U(A∪B)={4},B={1,3.(5分)(2013•山东)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)4.(5分)(2013•山东)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示该四棱锥侧面积和体积分别是()4S=V=5.(5分)(2013•山东)函数f(x)=的定义域为()=6.(5分)(2013•山东)执行两次如图所示的程序框图,若第一次输入的a的值为﹣1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为()7.(5分)(2013•山东)△ABC的内角A、B、C的对边分别是a、b、c,若B=2A,a=1,Bb==得:===cosA=8.(5分)(2013•山东)给定两个命题p,q.若¬p是q的必要而不充分条件,则p是¬q....x=时,10.(5分)(2013•山东)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为()B=91(.11.(5分)(2013•山东)抛物线C1:的焦点与双曲线C2:的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,B求出函数在,得),得,则抛物线的焦点与双曲线的右焦点的连线所在直线方程为处的切线的斜率为由题意可知,得).p=12.(5分)(2013•山东)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,代入=+,求得二.填空题:本大题共4小题,每小题4分,共16分13.(4分)(2013•山东)过点(3,1)作圆(x﹣2)2+(y﹣2)2=4的弦,其中最短的弦长为2.=,2=214.(4分)(2013•山东)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线|OM|的最小值为.=的最小值等于故答案为:15.(4分)(2013•山东)在平面直角坐标系xOy中,已知,,若∠ABO=90°,则实数t的值为5.利用已知条件求出解:因为知,=,所以16.(4分)(2013•山东)定义“正对数”:ln+x=,现有四个命题:①若a>0,b>0,则ln+(a b)=bln+a;②若a>0,b>0,则ln+(ab)=ln+a+ln+b;③若a>0,b>0,则;④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2.其中的真命题有①③④(写出所有真命题的序号),,.时,此时lnb=,此时则,此时,,<三.解答题:本大题共6小题,共74分,17.(12分)(2013•山东)某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)2(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.p=p=18.(12分)(2013•山东)设函数f(x)=﹣sin2ωx﹣sinωxcosωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为,(Ⅰ)求ω的值(Ⅱ)求f(x)在区间[]上的最大值和最小值.[]﹣,故周期为,所以)时,,,[]上的最大值和最小值分别为:19.(12分)(2013•山东)如图,四棱锥P﹣ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB、AB、BC、PD、PC的中点.(Ⅰ)求证:CE∥平面PAD(Ⅱ)求证:平面EFG⊥平面EMN.AB CD=20.(12分)(2013•山东)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足=1﹣,n∈N*,求{b n}的前n项和T n.,+++,++时,=时,=)﹣(==,+++,T++T+++)﹣﹣﹣21.(12分)(2013•山东)已知函数f(x)=ax2+bx﹣lnx(a,b∈R)(Ⅰ)设a≥0,求f(x)的单调区间(Ⅱ)设a>0,且对于任意x>0,f(x)≥f(1).试比较lna与﹣2b的大小.时,.可得出﹣<)上是减函数,在(),单调递增区间是(,,)上,导数小于在区间(,),单调递增区间是(,,),单调递增区间是(,)知,是函数的唯一极小值点故=1==0x=<<(22.(14分)(2013•山东)在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为(Ⅰ)求椭圆C的方程(Ⅱ)A,B为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C与点P,设,求实数t的值.(Ⅰ)设椭圆的标准方程为的关系,再利用(Ⅰ)由题意设椭圆的标准方程为,焦距为,解得,∴椭圆的方程为.,另一方面,==,∴,,∴,,解得,或,∴综上可得:。
高三数学(文史类)试题第页(共8页)2013年5月本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.共150分.测试时间120分钟.第Ⅰ卷(选择题共60分)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.不能答在测试卷上.一、选择题:本大题共12个小题.每小题5分;共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数21+i的虚部是A. 1B. -iC. iD. -12. 若全集U=R,集合M={x|-2≤x≤2},N={x|x2-3x≤0},则M∩(CUN)=A. \[-2,0\]B. \[-2,0)C. \[0,2\]D. (0,2]3. 下列函数,在其定义域内既是奇函数又是增函数的是A. y=x+x3(x∈R)B. y=3x(x∈R)C. y=-log2x(x>0,x∈R)D. y=-1x(x∈R,x≠0)4. 设a>0,b>0,则以下不等式中不一定成立的是A. ab+b a≥2B. ln(ab+1)≥0C. a2+b2+2≥2a+2bD. a3+b3≥2ab25. 已知一空间几何体的三视图如右图所示,它的表面积是A. 4+2B. 2+2C. 3+2D. 36. 若sinα=35,α∈-π2,π2,则cosα+5π4=A. -7210B. -210C. 210D. 72107. 已知点A(2,1),B(0,2),C(-2,1),O(0,0).给出下面的结论:①OC∥BA;② OA⊥AB;③ OA+OC=OB;④ AC=OB-2OA.其中正确结论的个数是A. 0个B. 1个C. 2个D. 3个第5题图8. 函数y=x|x|·ax(a>1)的图象的基本形状是9. 设a,b是两条不同的直线,α、β是两个不同的平面,则能得出a⊥b的是A. a⊥α,b∥β,α⊥βB. a⊥α,b⊥β,α∥βC. a α,b⊥β,α∥βD. a α,b∥β,α⊥β10. 过椭圆x2a2+y2b2=1(a>b>0)的焦点垂直于x轴的弦长为12a,则双曲线x2a2-y2b2=1的离心率e的值是A. 54B. 52C. 32D. 5411. 观察图中各正方形图案,每条边上有n(n≥2)个圆点,第n个图案中圆点的个数是an,按此规律推断出所有圆点总和Sn与n的关系式为A. Sn=2n2-2nB. Sn=2n2C. Sn=4n2-3nD. Sn=2n2+2n12. 图1是某市参加2008年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1,A2,…,A10(如A2表示身高(单位:cm)在\[150,155)内的学生人数). 图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180 cm(含160 cm,不含180 cm)的学生人数,那么在流程图中的“?”所代表的数与判断框内应填写的条件分别是A. 4,i<9B. 4,i<8C. 3,i<9D. 3,i<8图1 图2第12题图绝密★启用前高三数学(文史类)试题(非选择题共90分)注意事项:1. 第Ⅱ卷共4页,必须使用0.5毫米的的黑色墨水签字笔书写,作图时,可用2B铅笔,要字体工整,笔迹清晰.在草稿纸上答题无效.2. 答卷前将密封线内的项目填写清楚.得分评卷人二、填空题:本大题共4个小题;每小题4分;共16分.把答案填在题中横线上.13. 抛物线y2=4x上一点A的横坐标为4,则点A与抛物线焦点的距离为.14. 等差数列{an}中,若a1+a4+a7=9,a3+a6+a9=3,则{an}的前9项的和S9=.15. 设变量x,y满足约束条件x-y≥0x+y≤1,x+2y≥1则目标函数z=2x+y的最大值为.16. 有以下四个命题:①函数y=sin2x的图象可以由y=sin2x+π4向右平移π4个单位而得到;②在△ABC中,若bcosB=ccosC,则△ABC一定是等腰三角形;③函数y=log2x+x2-2在(1,2)内只有一个零点;④ |x|>3是x>4的必要条件.其中真命题的序号是(写出所有真命题的序号).三、解答题:本大题共6个小题.共74分.解答应写出文字说明,证明过程或演算步骤.得分评卷人17. (本小题满分12分)已知{an}是正数组成的数列,a1=1,且点(an,an+1)(n∈N*)在函数y=x2+2的图象上.(1) 求数列{an}的通项公式;(2) 若数列{bn}满足b1=2,bn+1=bn+2an+1,求bn.得分评卷人18. (本小题满分12分)已知函数f(x)=(3sinωx+cosωx)cosωx-12(ω>0)的最小正周期为4π.(1)求ω的值;(2)求f(x)的单调递增区间.得分评卷人19. (本小题满分12分)某校要从艺术节活动中所产生的4名书法比赛一等奖的同学和2名绘画比赛一等奖的同学中选出2名志愿者,参加2009年在济南市举行的“第11届全国运动会”志愿服务工作.(1) 求选出的两名志愿者都是获得书法比赛一等奖的同学的概率;(2) 求选出的两名志愿者中一名是获得书法比赛一等奖,另一名是获得绘画比赛一等奖的同学的概率.得分评卷人20. (本小题满分12分)如图所示,△ABC是正三角形,AE和CD都垂直于平面ABC,且AE=AB=2a,CD=a,F是BE的中点.(1) 求证:DF∥平面ABC;(2) 求证:AF⊥BD.得分评卷人21. (本小题满分12分)已知圆O:x2+y2=1,点O为坐标原点,一条直线l:y=kx+b(b>0)与圆O相切并与椭圆x22+y2=1交于不同的两点A、B.(1)设b=f(k),求f(k)的表达式;(2)若OA·OB=23,求直线l的方程;(3)在(2)的条件下,求三角形OAB面积.得分评卷人22. (本小题满分14分)设函数f(x)是定义在\[-1,0)∪(0,1\]上的奇函数,当x∈\[-1,0)时,f(x)=2ax+1x2(a∈R).(1) 求函数f(x)的解析式;(2) 若a>-1,试判断f(x)在(0,1]上的单调性;(3) 是否存在a,使得当x∈(0,1]时,f(x)有最大值-6.高三数学(文史类)试题参考答案第页(共4页)高三数学(文史类)试题参考答案第页(共4页)高三数学(文史类)参考答案及评分标准一、选择题:1. D2. B3. A4. D5. C6. B7. D8. A9. C10. B11. A12. B二、填空题:13. 514. 1815. 216. ③④三、解答题:17. 解:(1)由已知得an+1=an+2,即an+1-an=2,a1=12分所以数列{an}是以1为首项,公差2的等差数列.4分故an=2n-1,5分(2) 由(1)知:an=2n-1,从而bn+1-bn=22n+1.7分∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b19分=22n-1+22n-3+…+23+2=2(4n-1)4-1=2(4n-1)312分18. 解:(1)f(x)=3sinωxcosωx+cos2ωx-12=32sin2ωx+12cos2ωx+12-122分=sin2ωx+π64分∵T=2π2ω=4π∴ω=146分(2)∵f(x)=sin12x+π6∴-π2+2kπ≤12x+π6≤π2+2kπ;k∈Z8分∴-43π+4kπ≤x≤23π+4kπ;k∈Z10分∴f(x)的单调递增区间为-4π3+4kπ,2π3+4kπ(k∈Z)12分19. 解:把4名获书法比赛一等奖的同学编号为1,2,3,4,2名获绘画比赛一等奖的同学编号为5,6.从6名同学中任选两名的所有可能结果如下:(1,2),(1,3),(1,4),(1,5), (1,6),(2,3),(2,4),(2,5), (2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个.4分(1) 从6名同学中任选两名,都是书法比赛一等奖的所有可能是:(1,2),(1,3),(1,4), (2,3),(2,4),(3,4),共6个.6分∴选出的两名志愿者都是书法比赛一等奖的概率p1=615=25.8分(2) 从6名同学中任选两名,一名是书法比赛一等奖,另一名是绘画比赛一等奖的所有可能是:(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8个.10分∴选出的两名志愿者一名是书法比赛一等奖,另一名是绘画比赛一等奖的概率是p2=815.12分20. 解:(1) 取AB的中点G,连FG,可得FG∥AE,FG=12AE,又CD⊥平面ABC,AE⊥平面ABC,∴CD∥AE,CD=12AE2分∴FG∥CD,FG=CD,∵FG⊥平面ABC4分∴四边形CDFG是矩形,DF∥CG,CG 平面ABC,DF 平面ABC∴DF∥平面ABC6分(2) Rt△ABE中,AE=2a,AB=2a,F为BE中点,∴AF⊥BE∵△ABC是正三角形,∴CG⊥AB,∴DF⊥AB9分又DF⊥FG,∴DF⊥平面ABE,DF⊥AF,∴AF⊥平面BDF,∴AF⊥BD.12分21. 解:(1)y=kx+b(b>0)与圆x2+y2=1相切,则|b|1+k2=1,即b2=k2+1,所以,b=1+k23分则由y=kx+bx22+y2=1,消去y得:(2k2+1)x2+4kbx+2b2-2=0(*)由Δ=8k2>0得k≠0∴b=1+k2,k≠04分(2)设A(x1,y1),B(x2,y2),由(*)得x1+x2=-4kb2k2+1,x1x2=2b2-22k2+1.5分则OA·OB=x1x2+y1y2=x1x2+(kx1+1+k2)(kx2+1+k2)=(1+k2)x1x2+k1+k2(x1+x2)+1+k2=k2+12k2+1.6分由OA·OB=23,所以k2=1.∴k=±1.b2=2.b>0,∴b=2,7分∴l∶y=x+2,y=-x+2.8分(3)由(2)知:(*)为3x2±42x+2=0由弦长公式得|AB|=1+k2·(x1+x2)2-4x1x2=24232-4×23=2·223=43 … 10分所以S=12|AB|=2312分22. (1) 解:设x∈(0,1\],则-x∈\[-1,0),∴f(-x)=-2ax+1x21分∵f(x)是奇函数.∴f(x)=-f(-x)2分∴当x∈(0,1]时,f(x)=2ax-1x2,3分∴f(x)=2ax-1x2x∈(0,1\]2ax+1x2x∈\[-1,0)4分(2) 当x∈(0,1\]时,∵f′(x)=2a+2x3=2a+1x36分∵a>-1,x∈(0,1],1x3≥1,∴a+1x3>0.7分即f′(x)>0.8分∴f(x)在(0,1\]上是单调递增函数.9分(3) 解:当a>-1时,f(x)在(0,1]上单调递增.f(x)max=f(1)=-6, ∴a=-52(不合题意,舍之),10分当a≤-1时,由f′(x)=0,得x=3-1a.11分如下表:fmax(x)=f3-1a=-6,解出a=-22.12分x-∞,3-1a3-1a3-1a,+∞f′(x)+0-f(x) 最大值此时x=22∈(0,1)13分∴存在a=-22,使f(x)在(0,1]上有最大值-6.14分。
(第5题图)山东省济南市2013届高三5月针对训练(文)本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页. 考试时间120分钟,满分150分,考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第I 卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的. 1.在复平面内,复数134iz i+=-的共轭复数z 对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限2.已知全集U R =,集合{}1,0,1-=A , {}02|2=-=x x x B ,则图中的阴影部分表示的集合为A.{}1-B.{}2C.{}2,1D. {}2,03.函数21lg)(--=xx x f 的零点所在区间为 A .(0,1) B .(1,2) C .(2,3) D .(3,4) 4.若△ABC 的三个内角满足sin :sin :sin 4:5:7A B C =,则△ABC A.一定是锐角三角形 B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形 5.一个几何体的三视图如图所示,则该几何体的体积为 A .4 B .24π+C .8π+D .24π+6.在边长为a 的正方形内随机取一个点,则此点落在该正方形的内切圆内部 的概率为 A .4πB .6πC .π2D .π3(第2题图)7.函数()33xx f x e -=的图象大致是A. B. C. D. 8.将参加公务员上岗前培训的600名学员编号为:001,002,…,600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学员分住在三个校区,从001到300在第Ⅰ校区,从301到495住在第Ⅱ校区,从496到600在第III 校区,三个校区被抽中的人数依次为A .26,16,8B .25,17,8C .25,16,9D .24,17,9 9.命题:p ∃,α∈R ααπcos )cos(=+ ;命题:q 0,m ∀> 21≥+mm . 则下面结论正确的是A. p 是假命题B.q ⌝是真命题C. p ∧q 是假命题D. p ∨q 是真命题10.若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当实数a 从-2连续变化到0时,动直线x y a +=扫过A 中部分的区域面积为A.34 B.12C. 2D. 1 11.已知双曲线22221(0,0)x y a b a b-=>>与抛物线28y x =有一个公共的焦点F ,且两曲线的一个交点为P ,若5PF =,则双曲线的离心率为A .2 B. CD12.给定两个长度为1的平面向量OA 和OB ,它们的夹角为60. 如图所示,点C 在以O 为圆心的圆弧上变动. 若,OC xOA yOB =+其中,x y R ∈,则2x y+的最大值是 A .2B.3(第15题图)CD .1第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题4分,共16分.13.等差数列}{n a 中,若468101260a a a a a ++++=, 则15S 的值为 . 14.若直线x y a 3++=0过圆x y x y 22++2-4=0的圆心, 则a 的值为 . 15.如图所示程序框图若输入x 的值为2013,则输出s 的结果为 . 16.给出定义:若11(,]22x m m ∈-+ (其中m 为整数),则m 叫做与实数x “亲密的整数”, 记作{}x m =,在此基础上给出下列关于函数(){}f x x x =-的四个命题:①函数()y f x =在(0,1)x ∈上是增函数;②函数()y f x =的图象关于直线()2kx k Z =∈对称;③函数()y f x =是周期函数,最小正周期为1;④当(0,2]x ∈时,函数()()ln g x f x x =-有两个零点. 其中正确命题的序号是____________. 三、计算题:本大题共6小题,共74分. 17.(本小题满分12分)已知函数()sin()(0,0,0)f x A x A ωϕωϕπ=+>><<的部分图象如图所示. (1)求()f x 的解析式;(2)求()()sin 2g x f x x =+的单调递增区间.18. (本小题满分12分)今年10月在济南举办第十届中国艺术节,届时有很多国际友人参加活动. 现有8名“十艺节”志愿者,其中志愿者123A A A ,,通晓英语,123B B B ,,通晓俄语,12C C ,通晓韩语. 从中选出通晓英语、俄语和韩语的志愿者各1名,组成一个小组. (1)求1A 被选中的概率; (2)求1B 和1C 不全被选中的概率.19.(本小题满分12分)如图,在四棱锥P ABCD -中,平面PAC ⊥平面A B C D ,且P A A C ⊥, 22PA AD AB BC ===.//BC AD ,AB AD ⊥. (1)若点E 为PD 的中点,求证://CE 平面P AB .(2)在平面PAC 内,PC AF ⊥. 求证:⊥AF 平面PCD20.(本小题满分12分)某高校有奖励基金本金1000万元,此基金每年购买银行的两种风险和收益不同的理财产品A 和B ,把每年产生的收益用来奖励品学兼优的大学生,本金继续购买这两种理财产品.第一年购买理财产品A 和B 各500万元,为了规避风险以后规定:上一年购买产品A 的本金,下一年会有20%购买产品B ,而上一年购买产品B 的本金,下一年会有30%购买产品A .用n a ,n b ()n N *∈分别表示在第n 年购买理财产品A 和B 的本金数(单位:万元).(1)分别求出223,,a b a ;(2)①证明数列{}600-n a 是等比数列,并求n a ; ②求数列{n b }的前n 项和n T . 21.(本小题满分13分)已知函数()()ln ,R f x ax x b a b =+∈的图象过点)0,1(,且在此点处的切线斜率为1. (1)求()f x 的单调递减区间; (2)若()21322g x x mx =-+,()00,x ∃∈+∞使得()()00f x g x ≥成立,求实数m 的取值范围.22.(本小题满分13分)已知椭圆()2222:10x y C a b a b+=>>的两个焦点12,F F 和上下两个顶点12,B B 是一个BDCAFPE (第19题图)边长为2且∠F 1B 1F 2为60的菱形的四个顶点. (1)求椭圆C 的方程;(2)过右焦点F 2斜率为k (0k ≠)的直线l 与椭圆C 相交于,E F 两点,A 为椭圆的右顶点,直线AE ,AF 分别交直线3x = 于点M ,N ,线段MN 的中点为P ,记直线2PF 的斜率为k '.求证:k k '⋅为定值.文科数学参考答案及评分标准一、选择题1.C2.B3.B4.C5.B6.A7.C8.B9.D 10.D 11.A 12. A 二、填空题13.180 14.1 15. 1816. ②③④三、解答题17. 解:(1)由图知,A =1,T =π,所以2πω=π,解得ω=2. ----------------------------------------3分又因为函数f (x )过⎝⎛⎭⎫π12,1代入得 sin ⎝⎛⎭⎫2×π12+φ=1, 所以π6+φ=2kπ+π2(k ∈Z ).又因为0<φ<π,所以φ=π3. ----------------------------------------5分所以f (x )=sin ⎝⎛⎭⎫2x +π3. ----------------------------------------6分 (2) g (x )=f (x )+sin2x =sin ⎝⎛⎭⎫2x +π3+sin2x =12sin2x +32cos2x +sin2x =32sin2x +32cos2x =3⎝⎛⎭⎫32sin2x +12cos2x =3sin ⎝⎛⎭⎫2x +π6.--------------------------------9分 由2kπ-π2≤2x +π6≤2kπ+π2,k ∈Z , --------------------------------10分解得kπ-π3≤x ≤kπ+π6,k ∈Z .所以g (x )的单调递增区间为⎣⎡⎦⎤kπ-π3,kπ+π6(k ∈Z ). --------------------12分 18. 解:(1)从8人中选出英语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2)} ,共18个基本事件. 由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的. ----------------------------------------4分用M 表示事件“A 1恰被选中”,则M ={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2)} ,共有6个基本事件.因此P(M)=618=13. ----------------------------------------6分(2)用N 表示事件“B 1,C 1不全被选中”,则其对立事件N 表示事件“B 1,C 1全被选中”,由于N ={(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1)},事件N 包含3个基本事件, 9分所以P (N )=318=16, 由对立事件的概率公式得P(N)=1-P(N )=1-16=56. ----------------12分19. 证明:(1)取P A 的中点为G ,连接BG 、EG ,则1//2EG AD =, ------------1分 又1//2BC AD =,所以//EG BC =,四边形BGEC 为平行四边形. ----------2分所以EC //BG . -------------------------------------3分 又EC ⊄平面P AB , BG ⊂平面P AB ,故EC //平面P AB . ----------------------------------------5分 (2)因为AB ⊥AD ,BC //AD ,AB =BC ,AD =2BC ,易证得CD ⊥AC . -----------------------8分 因为P A ⊥平面ABCD ,所以P A ⊥CD ,因为P A ∩AC =A ,所以CD ⊥平面P AC . ----10分 而AF ⊂平面P AC ,所以CD ⊥AF .又已知AF ⊥PC 又因为CD ∩PC =C ,所以AF ⊥平面PCD . 12分 20. 解:(1)由已知a n +b n =1 000,又a 1=500,b 1=500, ∴a 2=0.8a 1+0.3b 1=550, --------------2分 ∴b 2=450, ∴a 3=0.8a 2+0.3b 2=440+135=575.-----------------------4分(2)①由题意得a n +1=0.8a n +0.3b n ,∴a n +1=0.8a n +0.3(1000-a n )=0.5a n +300, ------------------------------5分∴a n +1-600=12(a n -600), ----------------------------------------6分∴数列{a n -600}是首项为-100,公比为12的等比数列, --------------------7分∴a n -600=-100×⎝⎛⎭⎫12n -1,得a n =600-100×⎝⎛⎭⎫12n -1. ----------------------8分 ②由①知,a n +b n =1 000 所以b n =400+100×1)21(-n ----------------------------------------10分前n 项和T n =b 1+b 2+…+b n =400n +100⎣⎡⎦⎤1+12+…+⎝⎛⎭⎫12n -1 =400n +100⎝⎛⎭⎫1-12n 1-12=400n +200-200×12n .∴T n =400n +200-3225-n . -----------12 分21.解:(1)∵f ′(x )=a ln x +a , ∴f ′(1)=a ln1+a =a =1. -------------------2分 ∵f (1)=0, ∴b =0, ∴f (x )=x ln x . ------------------------------4分由f ′(x )=ln x +1<0,得0<x <1e .∴f (x )的单调递减区间是(0,1e). ----------------------------------6分(2)∵x ln x ≥12x 2-mx +32(x >0),∴m ≥12x -ln x +32x . ----------------------7分设h (x )=12x -ln x +32x(x >0),则h ′(x )=12-1x -32x 2=x 2-2x -32x 2=()x -3()x +12x 2. ------------------------9分∵当x ∈()0,3时,h ′()x <0,函数h ()x 单调递减;当x ∈()3,+∞时,h ′()x >0,函数h ()x 单调递增. -----------------------11分 ∴h min ()x =h ()3=2-ln3, -------------------------------------12分 ∴m ≥2-ln3. ------------------------------------13分22.解:(1)由条件知a =2,b =3, --------------------------------------2分故所求椭圆方程为x 24+y 23=1. ----------------------------------------4分(2)设过点P (1,0)的直线l 方程为:y =k(x -1),设点E (x 1,y 1),点F (x 2,y 2), 5分 将直线l 方程y =k(x -1)代入椭圆C : x 24+y 23=1,整理得:(4k 2+3)x 2-8k 2x +4k 2-12=0, ----------------------------------------6分 因为点P 在椭圆内,所以直线l 和椭圆都相交,Δ>0恒成立,且x 1+x 2=8k 24k 2+3, x 1x 2=4k 2-124k 2+3.---------------------------7分直线AE 的方程为:y =y 1x 1-2(x -2),直线AF 的方程为:y =y 2x 2-2(x -2),令x =3,得点M (3,y 1x 1-2),N(3,y 2x 2-2),所以点P 的坐标(3,12(y 1x 1-2+y 2x 2-2)).----9分直线PF 2的斜率为k /=12(y 1x 1-2+y 2x 2-2)-03-1=14(y 1x 1-2+y 2x 2-2)=14·y 2x 1+x 2y 1-2(y 1+y 2)x 1x 2-2(x 1+x 2)+4=14·2kx 1x 2-3k (x 1+x 2)+4k x 1x 2-2(x 1+x 2)+4. ------------------ 11分将x 1+x 2=8k 24k 2+3, x 1x 2=4k 2-124k 2+3代入上式得:k /=14·2·4k 2-124k 2+3-3k ·8k 24k 2+3+4k4k 2-124k 2+3-2·8k 24k 2+3=-34k . 所以k ·k ′为定值-34. -----------------------------13分。
(第5题图)高三针对训练文科数学一、选择题:本大题共12个小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1.在复平面内,复数134izi+=-的共轭复数z对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限2.已知全集U R=,集合{}1,0,1-=A, {}02|2=-=xxxB,则图中的阴影部分表示的集合为A.{}1-B.{}2C.{}2,1D. {}2,03.函数21lg)(--=xxxf的零点所在区间为A.(0,1)B.(1,2)C.(2,3)D.(3,4)4.若△ABC的三个内角满足sin:sin:sin4:5:7A B C=,则△ABCA.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形5.一个几何体的三视图如图所示,则该几何体的体积为A.4 B.24π+C.8π+D.24π+6.在边长为a的正方形内随机取一个点,则此点落在该正方形的内切圆内部的概率为A.4πB.6πC.π2D.π37.函数()33xxf xe-=的图象大致是A. B. C. D.8.将参加公务员上岗前培训的600名学员编号为:001,002,…,600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学员分住在三个校区,从001到300在第Ⅰ校区,从301到495住在第Ⅱ校区,从496到600在第III校区,三个校区被抽中的人数依次为A.26,16,8 B.25,17,8 C.25,16,9 D.24,17,99.命题:p∃,α∈Rααπcos)cos(=+;命题:q0,m∀>21≥+mm. 则下面结论正确的是A. p是假命题B.q⌝是真命题 C. p∧q是假命题 D. p∨q是真命题(第2题图)(第15题图)10.若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当实数a 从-2连续变化到0时,动直线x y a +=扫过A 中部分的区域面积为A.34 B.12C. 2D. 1 11.已知双曲线22221(0,0)x y a b a b-=>>与抛物线28y x =有一个公共的焦点F ,且两曲线的一个交点为P ,若5PF =,则双曲线的离心率为A .2B .22C .51+ D .6 12.给定两个长度为1的平面向量OA 和OB ,它们的夹角为60. 如图所示,点C 在以O 为圆心的圆弧上变动. 若,OC xOA yOB =+其中,x y R ∈,则2x y +的最大值是A .2B 23C 3D .1第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题4分,共16分.13.等差数列}{n a 中,若468101260a a a a a ++++=, 则15S 的值为 . 14.若直线x y a 3++=0过圆x y x y 22++2-4=0的圆心, 则a 的值为 . 15.如图所示程序框图若输入x 的值为2013,则输出s 的结果为 . 16.给出定义:若11(,]22x m m ∈-+ (其中m 为整数),则m 叫做与实数x “亲密的整数”, 记作{}x m =,在此基础上给出下列关于函数(){}f x x x =-的四个命题:①函数()y f x =在(0,1)x ∈上是增函数;②函数()y f x =的图象关于直线()2kx k Z =∈对称;③函数()y f x =是周期函数,最小正周期为1;④当(0,2]x ∈时,函数()()ln g x f x x =-有两个零点. 其中正确命题的序号是____________.三、计算题:本大题共6小题,共74分.已知函数()sin()(0,0,0)f x A x A ωϕωϕπ=+>><<的部分图象如图所示. (1)求()f x 的解析式;(2)求()()sin 2g x f x x =+的单调递增区间.18. (本小题满分12分)今年10月在济南举办第十届中国艺术节,届时有很多国际友人参加活动. 现有8名“十艺节”志愿者,其中志愿者123A A A ,,通晓英语,123B B B ,,通晓俄语,12C C ,通晓韩语. 从中选出通晓英语、俄语和韩语的志愿者各1名,组成一个小组. (1)求1A 被选中的概率; (2)求1B 和1C 不全被选中的概率.19.(本小题满分12分)如图,在四棱锥P ABCD -中,平面PAC ⊥平面ABCD ,且PA AC ⊥, 22PA AD AB BC ===.//BC AD ,AB AD ⊥. (1)若点E 为PD 的中点,求证://CE 平面PAB.(2)在平面PAC 内,PC AF ⊥. 求证:⊥AF 平面PCDBDCAFPE(第19题图)某高校有奖励基金本金1000万元,此基金每年购买银行的两种风险和收益不同的理财产品A 和B ,把每年产生的收益用来奖励品学兼优的大学生,本金继续购买这两种理财产品.第一年购买理财产品A 和B 各500万元,为了规避风险以后规定:上一年购买产品A 的本金,下一年会有20%购买产品B ,而上一年购买产品B 的本金,下一年会有30%购买产品A .用n a ,n b ()n N *∈分别表示在第n 年购买理财产品A 和B 的本金数(单位:万元).(1)分别求出223,,a b a ;(2)①证明数列{}600-n a 是等比数列,并求n a ; ②求数列{n b }的前n 项和n T . 21.(本小题满分13分)已知函数()()ln ,R f x ax x b a b =+∈的图象过点)0,1(,且在此点处的切线斜率为1. (1)求()f x 的单调递减区间; (2)若()21322g x x mx =-+,()00,x ∃∈+∞使得()()00f x g x ≥成立,求实数m 的取值范围. 22.(本小题满分13分)已知椭圆()2222:10x y C a b a b+=>>的两个焦点12,F F 和上下两个顶点12,B B 是一个边长为2且∠F 1B 1F 2为60的菱形的四个顶点. (1)求椭圆C 的方程;(2)过右焦点F 2斜率为k (0k ≠)的直线l 与椭圆C 相交于,E F 两点,A 为椭圆的右顶点,直线AE ,AF 分别交直线3x = 于点M ,N ,线段MN 的中点为P ,记直线2PF 的斜率为k '.求证:k k '⋅为定值.高三针对训练文科数学参考答案及评分标准一、选择题1.C2.B3.B4.C5.B6.A7.C8.B9.D 10.D 11.A 12. A 二、填空题13.180 14.1 15. 1816. ②③④三、解答题17. 解:(1)由图知,A =1,T =π,所以2πω=π,解得ω=2. ----------------------------------------3分又因为函数f(x)过⎝⎛⎭⎫π12,1代入得 sin ⎝⎛⎭⎫2×π12+φ=1, 所以π6+φ=2kπ+π2(k ∈Z).又因为0<φ<π,所以φ=π3. ----------------------------------------5分所以f(x)=sin ⎝⎛⎭⎫2x +π3. ----------------------------------------6分 (2) g(x)=f(x)+sin2x =sin ⎝⎛⎭⎫2x +π3+sin2x =12sin2x +32cos2x +sin2x =32sin2x +32cos2x=3⎝⎛⎭⎫32sin2x +12cos2x =3sin ⎝⎛⎭⎫2x +π6.--------------------------------9分 由2kπ-π2≤2x +π6≤2kπ+π2,k ∈Z , --------------------------------10分解得kπ-π3≤x ≤kπ+π6,k ∈Z.所以g(x)的单调递增区间为⎣⎡⎦⎤kπ-π3,kπ+π6(k ∈Z). --------------------12分 18. 解:(1)从8人中选出英语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间 Ω={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2)} ,共18个基本事件. 由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的. ----------------------------------------4分用M 表示事件“A 1恰被选中”,则M ={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2)} ,共有6个基本事件.因此P(M)=618=13. ----------------------------------------6分(2)用N 表示事件“B 1,C 1不全被选中”,则其对立事件N 表示事件“B 1,C 1全被选中”,由于N ={(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1)},事件N 包含3个基本事件, 9分所以P(N )=318=16, 由对立事件的概率公式得P(N)=1-P(N )=1-16=56. ----------------12分19. 证明:(1)取PA 的中点为G ,连接BG 、EG ,则1//2EG AD =, ------------1分 又1//2BC AD =,所以//EG BC =,四边形BGEC 为平行四边形. -------------2分所以EC//BG .----------------------------------------3分又EC ⊄平面PAB , BG ⊂平面PAB , 故EC//平面PAB.----------------------------------------5分(2)因为AB ⊥AD ,BC//AD ,AB =BC ,AD =2BC ,易证得CD ⊥AC. -----------------------8分因为PA ⊥平面ABCD ,所以PA ⊥CD ,因为PA∩AC =A ,所以CD ⊥平面PAC. ----10分 而AF ⊂平面PAC ,所以CD ⊥AF.又已知AF ⊥PC 又因为CD∩PC =C ,所以AF ⊥平面PCD. 12分 20. 解:(1)由已知a n +b n =1 000,又a 1=500,b 1=500, ∴a 2=0.8a 1+0.3b 1=550, --------------2分 ∴b 2=450,∴a 3=0.8a 2+0.3b 2=440+135=575. -----------------------------------4分 (2)①由题意得a n +1=0.8a n +0.3b n ,∴a n +1=0.8a n +0.3(1000-a n )=0.5a n +300, ------------------------------5分∴a n +1-600=12(a n -600), ----------------------------------------6分∴数列{a n -600}是首项为-100,公比为12的等比数列, --------------------7分∴a n -600=-100×⎝⎛⎭⎫12n -1,得a n =600-100×⎝⎛⎭⎫12n -1. ----------------------8分 ②由①知,a n +b n =1 000 所以b n =400+100×1)21(-n ----------------------------------------10分前n 项和T n =b 1+b 2+…+b n =400n +100⎣⎡⎦⎤1+12+…+⎝⎛⎭⎫12n -1 =400n +100⎝⎛⎭⎫1-12n 1-12=400n +200-200×12n .∴T n =400n +200-3225-n . -----------12 分21.解:(1)∵f′(x)=alnx +a , ∴f′(1)=aln1+a =a =1. ----------------------2分 ∵f(1)=0, ∴b =0, ∴f(x)=xlnx. -----------------------------------4分由f′(x)=lnx +1<0,得0<x<1e .∴f(x)的单调递减区间是(0,1e). ----------------------------------------6分(2)∵xlnx ≥12x 2-mx +32(x>0),∴m ≥12x -lnx +32x . -------------------------7分设h(x)=12x -lnx +32x(x>0),则h′(x)=12-1x -32x 2=x 2-2x -32x 2=()x -3()x +12x 2. ------------------------9分∵当x ∈()0,3时,h′()x <0,函数h ()x 单调递减;当x ∈()3,+∞时,h′()x >0,函数h ()x 单调递增. -------------------------11分 ∴h min ()x =h ()3=2-ln3, ----------------------------------------12分 ∴m ≥2-ln3. ----------------------------------------13分 22.解:(1)由条件知a =2,b =3, --------------------------------------2分故所求椭圆方程为x 24+y 23=1. ----------------------------------------4分(2)设过点P(1,0)的直线l方程为:y=k(x-1),设点E(x1,y1),点F(x2,y2),5分将直线l方程y=k(x-1)代入椭圆C:x24+y23=1,整理得:(4k2+3)x2-8k2x+4k2-12=0,----------------------------------------6分因为点P在椭圆内,所以直线l和椭圆都相交,Δ>0恒成立,且x1+x2=8k24k2+3,x1x2=4k2-124k2+3.---------------------------------------7分直线AE的方程为:y=y1x1-2(x-2),直线AF的方程为:y=y2x2-2(x-2),令x=3,得点M(3,y1x1-2),N(3,y2x2-2),所以点P的坐标(3,12(y1x1-2+y2x2-2)).----9分直线PF2的斜率为k/=12(y1x1-2+y2x2-2)-03-1=14(y1x1-2+y2x2-2)=14·y2x1+x2y1-2(y1+y2)x1x2-2(x1+x2)+4=14·2kx1x2-3k(x1+x2)+4kx1x2-2(x1+x2)+4. ------------------ 11分将x1+x2=8k24k2+3,x1x2=4k2-124k2+3代入上式得:k/=14·2·4k2-124k2+3-3k·8k24k2+3+4k4k2-124k2+3-2·8k24k2+3=-34k.所以k·k′为定值-34. -----------------------------13分。
绝密★启用并使用完毕前高三巩固性训练文 科 数 学本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页. 考试时间120分钟,满分150分,考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:1.锥体的体积公式: Sh V 31=,其中S 是锥体的底面积,h 是锥体的高; 2. 统计中2χ的公式:21212211222112)(++++-=n n n n n n n n n χ,其中21111n n n +=+,22122n n n +=+,12111n n n +=+,22212n n n +=+,22122111n n n n n +++=.第I 卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1. 复数=-+2013)11(ii A. 1- B. 1 C. i - D. i2. 设集合{}1|(),|12x M y y N y y ⎧⎫===≥⎨⎬⎩⎭,则集合M ,N 的关系为A.M N =B.M N ⊆C.N M ≠⊂ D.N M ≠⊃3. 执行如图所示的程序框图,则输出的n 的值为 A.5 B.6 C.7 D.84. 已知圆04222=-+-+my x y x 上两点M 、N 关于直线2x +y =0对称,则圆的半径为A .9B .3 C.23 D .25. 一空间几何体的三视图如图所示,则此几何体的直观图为第3题图6. 设变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数z =x +2y 的最大值为A.1B.4C.5D.6 7. 在等比数列{}n a 中,531=+a a ,1042=+a a ,则=7aA .64B .32C .16D .128 8. 为了解疾病A 是否与性别有关,在一医院随机的对入院50人进行了问卷调查得到了如下的列联表:请计算出统计量,你有多大的把握认为疾病A 与性别有关下面的临界值表供参考:A. 95% 99.9%9. 函数)22sin(2x y -=π是A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数10. 设,m n 是空间两条直线,α,β是空间两个平面,则下列选项中不正确...的是 A .当α⊂m 时,“//n α”是“n m //”的必要不充分条件 B .当α⊂m 时,“m ⊥β”是“βα⊥”的充分不必要条件 C .当n ⊥α时,“n ⊥β”是“α∥β”成立的充要条件 D .当α⊂m 时,“α⊥n ”是“n m ⊥”的充分不必要条件 11. 函数sin x xy e-=的图象大致为A. B. C. D.12. 已知函数⎩⎨⎧>+-≤<-=0,1)1(01,)(3x x f x x x f ,若函数x x f x g -=)()(的零点按从小到大的顺序排列成一个数列,则该数列的通项公式为A .2)1(-=n n a n B .)1(-=n n a n C .1-=n a n D .22-=n n a 第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题4分,共16分.13. 若向量)3,2(-=a ,),4(m b =, //a b ,则实数=m .14. 已知双曲线)0,0(12222>>=-b a b y a x 的焦点F 到一条渐近线的距离为||23OF ,点O 为坐标原点,则此双曲线的离心率为 .15. 在ABC ∆中,1=AB ,2=AC ,21=∆ABC S ,则=BC .16. 对大于或等于2的自然数m 的n 次方幂有如下分解方式:2213=+ 3235=+ 23135=++ 337911=++241357=+++ 3413151719=+++2513579=++++ 292725232153++++=根据上述分解规律,若3*()m m N ∈的分解中最小的数是73,则m 的值为 .三、解答题:本大题共6小题,共74分. 17. (本小题满分12分)设函数()sin()sin()33f x x x x ππωωω=++- (其中ω>0),且函数f (x )图象的两条相邻的对称轴间的距离为2π. (1)求ω的值;(2)将函数)(x f y =的图象上各点横坐标伸长到原来的2倍,纵坐标不变,得到函数)(x g y =的图象,求函数)(x g 在区间[0,]2π的最大值和最小值.18. (本小题满分12分)为了宣传今年10月在济南市举行的“第十届中国艺术节”, “十艺节”筹委会举办了“十艺节”知识有奖问答活动,随机对市民15~65岁的人群抽样n 人,回答问题统计结果如下图表所示:(1)分别求出a ,x 的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,“十艺节”筹委会决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.19. (本小题满分12分)如图,斜三棱柱111A B C ABC -中,侧面11AA C C ⊥底面ABC ,底面ABC 是边长为2的等边三角形,侧面11AA C C 是菱形,160A AC ∠= ,E 、F 分别是11AC 、AB 的中点. 求证:(1)EC ABC ⊥平面;(2)求三棱锥1A EFC -的体积.20. (本小题满分12分)已知数列{}n a 的前n 项和为n S ,且22n n S a =-,数列{}n b 满足11b =,且12n n b b +=+. (1)求数列{}n a ,{}n b 的通项公式;(2)设1(1)1(1)22n nn n n c a b --+-=-,求数列{}n c 的前2n 项和2n T . 21.(本小题满分13分) 已知函数31()(2)3f x ax a x c =+-+的图象如右图所示. (1)求函数)(x f y =的解析式; (2)若()()2l n k f x g x x x'=-在其定义域内为增函数,求实数k 的取值范围.22. (本小题满分13分)已知点F 1)0,3(-和F 2)0,3(是椭圆M :)0(12222>>=+b a by a x 的两个焦点,且椭圆M经过点)21,3(.(1)求椭圆M 的方程;(2)过点P (0,2)的直线l 和椭圆M 交于A 、B 两点,且53=,求直线l 的方程; (3)过点P (0,2)的直线和椭圆M 交于A 、B 两点,点A 关于y 轴的对称点C ,求证:直线CB 必过y 轴上的定点,并求出此定点坐标.12013年4月济南市高三巩固性训练文科数学参考答案1.D2.D3.C4.B5.A6.D7.A8. C9.B 10. A 11.B 12.C 13. 6- 14.2 15. 1或5 16.917.解:(1)()sin f x x x ωω==2sin()3x πω+. ………………………………3分∵函数f (x )图象的两条相邻的对称轴间的距离为2π, ∴2T ππω==. ………………………………5分∴2ω=. ………………………………6分 (2)由(1)得()f x =2sin(2)3x π+,∴()g x =2sin()3x π+. ………………………………8分 由x ∈[0,]2π可得5336x πππ≤+≤, ……………………………10分 ∴当=32x ππ+,即x =6π时,()g x 取得最大值()2sin 262g ππ==;当5=36x ππ+,即x =2π时,()g x 取得最小值5()2sin126g ππ==. …………12分 18. 解:(1)由频率表中第1组数据可知,第1组总人数为5100.5=, 再结合频率分布直方图可知1001001.010=⨯=n . ………………………………2分 ∴a =100×0.020×10×0.9=18, ………………………………4分270.91000.0310x ==⨯⨯, ………………………………6分(2)第2,3,4组中回答正确的共有54人.∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:618254⨯=人,第3组:627354⨯=人,第4组:69154⨯=人. ………………………………8分 设第2组的2人为1A 、2A ,第3组的3人为1B 、2B 、B 3,第4组的1人为C ,则从6人中抽2人所有可能的结果有:()12,A A ,()11,A B ,()12,A B ,()13,A B ,()1,A C ,()21,A B ,()22,A B ,()23,A B ,()2,A C ,()12,B B ,()13,B B ,()1,B C ,()23,B B ,()2,B C ,()3,B C ,共15个基本事件, ………………………………10分 其中第2组至少有1人被抽中的有()12,A A ,()11,A B ,()12,AB ,()13,A B ,()1,AC ,()21,A B ,()22,A B ,()23,A B ,()2,A C 这9个基本事件.∴第2组至少有1人获得幸运奖的概率为93155=. ………………………………12分 19. 证明:(1) 在平面11AA C C 内,作1AO AC ⊥,O 为垂足. 因为0160A AC ∠=,所以11122AO AA AC ==,即O 为AC 的中点,所以1OC A E ∥.……3分因而1EC AO ∥.因为侧面11AA C C ⊥底面ABC ,交线为AC ,1AO AC ⊥,所以1AO ⊥底面ABC . 所以EC ⊥底面ABC . ……6分(2)F 到平面1A EC 的距离等于B 点到平面1A EC 距离BO 的一半,而BO ……8分所以111111111113232324A EFC F A EC A EC V V S BO A E EC --=====V g g g g g . ……12分20.解:(1)当1=n ,21=a ; …………………………1分当2≥n 时,1122n n n n n a S S a a --=-=- ,∴ 12n n a a -=. ……………2分 ∴{}n a 是等比数列,公比为2,首项12a =, ∴2n n a =. ………3分 由12n n b b +=+,得{}n b 是等差数列,公差为2. ……………………4分又首项11=b ,∴ 21n b n =-. ………………………………6分(2)2(21)n n c n ⎧=⎨--⎩ 为偶数为奇数n n ……………………8分3212222[37(41)]n n T n -=+++-+++- ……………10分2122223n n n +-=--. ……………………………12分21.解:(1)∵()22f x ax a '=+-, …………………………………………2分由图可知函数)(x f 的图象过点()0,3,且()10f '=. 得3220c a =⎧⎨-=⎩ , 即31c a =⎧⎨=⎩. ………………………………………………4分∴31()33f x x x =-+. ………………………………………………5分(2)∵()()2ln 2ln kf x kg x x kx x x x'=-=--, ………………………………6分 ∴ ()22222k kx k xg x k x x x+-'=+-=. …………………………………………8分 ∵ 函数()y g x =的定义域为),0(+∞, …………………………………………9分 ∴若函数()y g x =在其定义域内为单调增函数,则函数()0g x '≥在),0(+∞上恒成立,即220kx k x +-≥在区间),0(+∞上恒成立. ……………………………10分 即122+≥x xk 在区间),0(+∞上恒成立. 令22()1xh x x =+,),0(+∞∈x , 则222()111x h x x x x==≤++(当且仅当1=x 时取等号). …………………12分 ∴ 1≥k . …………………………………………………………………………13分22.解:(1)由条件得:c =3,设椭圆的方程132222=-+a y a x ,将)21,3(代入得 1)3(41322=-+a a ,解得42=a ,所以椭圆方程为1422=+y x . --------4分 (2)斜率不存在时,31=不适合条件;----------------------5分 设直线l 的方程2+=kx y ,点B (x 1,y 1), 点A (x 2,y 2), 代入椭圆M 的方程并整理得:01216)41(22=+++kx x k .0)34(16)41(48)16(222>-=+-=∆k k k ,得432>k . 且1412,1416221221+=+-=+k x x k k x x . -------------------7分因为53=,即)2,(53)2,(2211-=-y x y x ,所以2153x x =.代入上式得1420,141022222+=+-=k x k k x ,解得1±=k , 所以所求直线l 的方程:2+±=x y . --------------------9分(3)设过点P (0,2)的直线AB 方程为:2+=kx y ,点B (x 1,y 1), 点 A (x 2,y 2), C (-x 2,y 2).将直线AB 方程代入椭圆M : 1422=+y x ,并整理得: 01216)41(22=+++kx x k ,0)34(16)41(48)16(222>-=+-=∆k k k ,得432>k . 且1412,1416221221+=+-=+k x x k kx x .设直线CB 的方程为:)(212122x x x x y y y y +---=-,令x =0得:2221212121122112222++=++=+--=x x x kx x x y x y x x x y x x y y y .----------11分将1412,1416221221+=+-=+k x x k kx x 代入上式得: 21223214161412222=+-=++-+=k k k ky . 所以直线CB 必过y 轴上的定点,且此定点坐标为)21,0(. ---------12分 当直线斜率不存在时,也满足过定点的条件。
山东省济南市2013年高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1.(5分)(2013•济南一模)已知全集∪={0,1,2,3,4,5,6},集合A={1,2},B={0,2,5},则集合(∁U A)∩B=()A.{3,4,6} B.{3,5} C.{0,5} D. {0,2,4}考点:交、并、补集的混合运算.专题:计算题.分析:直接利用补集和交集的运算进行求解,即可得到答案.解答:解:由∪={0,1,2,3,4,5,6},集合A={1,2},∴∁U A={0,3,4,5,6},又B={0,2,5},∴(∁U A)∩B={0,3,4,5,6}∩{0,2,5}={0,5}.故选C.点评:本题考查了交、并、补集的混合运算,是基础的题.2.(5分)(2013•济南一模)设复数z=(3﹣4i)(1+2i)(i是虚数单位),则复数z的虚部为()A.﹣2 B. 2 C.﹣2i D. 2i考点:复数代数形式的乘除运算.专题:计算题.分析:熟练掌握复数的运算法则和虚部的意义即可得出.解答:解:∵复数z=(3﹣4i)(1+2i)=11+2i,∴复数z的虚部为2.故选B.点评:正确理解复数的运算法则和虚部的意义是解题的关键.3.(5分)(2013•济南一模)若a=30.6,b=log30.2,c=0.63,则()A.a>c>b B.a>b>c C.c>b>a D. b>c>a考点:有理数指数幂的化简求值.专题:计算题.分析:利用指数函数与对数函数的性质可知,a>1,b<0,0<c<1.从而可得答案.解答:解:∵a=30.6>a=3°=1,b=log30.2<log31=0,0<c=0.63<0.60=1,∴a>c>b.故选A.点评:本题考查指数函数与对数函数的性质,考查有理数指数幂的化简求值,掌握指数函数与对数函数的性质是解决问题的关键,属于基础题.4.(5分)(2013•济南一模)设x∈R,则“x2﹣3x>0”是“x>4”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:解不等式可得x<0或x>3,由集合{x|x>4}是集合{x|x<0或x>3}的真子集可得答案.解答:解:由x2﹣3x>0可解得x<0或x>3,因为集合{x|x>4}是集合{x|x<0或x>3}的真子集,故“x2﹣3x>0”是“x>4”的必要不充分条件,故选B点评:本题考查充要条件的判断,转化为集合与集合的关系是解决问题的关键,属基础题.5.(5分)(2013•济南一模)若某程序框图如图所示,则该程序运行后输出的值是()A. 2 B. 3 C. 4 D. 5考点:程序框图.专题:图表型.分析:根据所给数值判定是否满足判断框中的条件,然后执行循环语句,一旦不满足条件就退出循环,执行语句输出i,从而到结论.解答:解:当输入的值为n=6时,n不满足上判断框中的条件,n=3,i=2,n不满足下判断框中的条件,n=3,n满足上判断框中的条件,n=4,i=3,n不满足下判断框中的条件,n=4,n不满足上判断框中的条件,n=2,i=4,n满足下面一个判断框中的条件,退出循环,即输出的结果为i=4,故选C.点评:本题主要考查了循环结构,是当型循环,当满足条件,执行循环,属于基础题.6.(5分)(2013•济南一模)已知两条直线l1:(a﹣1)x+2y+1=0,l2:x+ay+3=0平行,则a=()A.﹣1 B. 2 C.0或﹣2 D.﹣1或2考点:直线的一般式方程与直线的平行关系.专题:计算题.分析:由两直线平行,且直线的斜率存在,所以,他们的斜率相等,解方程求a.解答:解:因为直线l1:(a﹣1)x+2y+1=0的斜率存在,又∵l1∥l2,∴,∴a=﹣1或a=2,两条直线在y轴是的截距不相等,所以a=﹣1或a=2满足两条直线平行.故选D.点评:本题考查两直线平行的性质,当两直线的斜率存在且两直线平行时,他们的斜率相等,注意截距不相等.7.(5分)(2013•济南一模)若抛物线y2=2px(p>0)的焦点在直线x﹣2y﹣2=0上,则该抛物线的准线方程为()A.x=﹣2 B.x=4 C.x=﹣8 D. y=﹣4考点:抛物线的标准方程.专题:圆锥曲线的定义、性质与方程.分析:先根据抛物线是标准方程可确定焦点的位置,再由直线x﹣2y﹣2=0与坐标轴的交点可得到焦点坐标,根据抛物线的焦点坐标和抛物线的标准形式可得到标准方程.解答:解:因为抛物线标准方程是y2=2px(p>0),所以其焦点在x轴的正半轴上,故其焦点坐标即为直线x﹣2y﹣2=0与坐标轴的交点,所以其焦点坐标为(2,0)和(0,﹣1)又抛物线y2=2px(p>0)的焦点在x轴上,故焦点为(2,0),可知=2,p=4,所以抛物线方程为y2=8x,其准线方程为:x=﹣2故选A.点评:本题主要考查抛物线的标准方程.抛物线的标准方程的焦点一定在坐标轴上且定点一定在原点.8.(5分)(2013•济南一模)等差数列{a n}中,a2+a8=4,则它的前9项和S9=()A.9 B.18 C.36 D.72考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由等差数列的性质可得a 5=2,而S9==9a5,代入计算可得答案.解答:解:由等差数列的性质可得2a5=a2+a8=4,解得a5=2,而S 9===9a5=9×2=18故选B点评:本题考查等差数列的前n项和公式和性质,属基础题.9.(5分)(2013•济南一模)已知函数f(x)=2sin(ωx﹣)(ω>0)的最小正周期为π,则f(x)的单调递增区间()A.[kπ+,kπ+](k∈Z]B. [2kπ﹣,2kπ+](k∈Z)C.[kπ﹣,kπ+](k∈Z)D. [kπ﹣,kπ+](k∈Z)考点:三角函数的周期性及其求法;正弦函数的单调性.专题:三角函数的图像与性质.分析:由函数的周期求得ω=2,可得函数f(x)=2sin(2x﹣),令2kπ﹣≤2x﹣≤2kπ+,k∈z,求得x的范围,即可得到f(x)的单调递增区间.解答:解:∵函数f(x)=2sin(ωx﹣)(ω>0)的最小正周期为π,∴=π,解得ω=2.故函数f(x)=2sin(2x﹣).令2kπ﹣≤2x﹣≤2kπ+,k∈z,求得kπ﹣≤x≤kπ+,k∈z,故函数的单调递增区间是[kπ﹣,kπ+](k∈Z),故选D.点评:本题主要考查函数y=Asin(ωx+φ)周期性和单调性,属于中档题.10.(5分)(2013•济南一模)函数y=x﹣x的图象大致为()A.B.C.D.考点:函数的图象.专题:计算题.分析:利用y=x﹣x为奇函数可排除C,D,再利用x>1时,y=x﹣x>0再排除一个,即可得答案.解答:解:令y=f(x)=x﹣x,∵f(﹣x)=﹣x+=﹣(x﹣)=﹣f(x),∴y=f(x)=x﹣x为奇函数,∴其图象关于原点成中心对称,故可排除C,D;又x=1时,y=1﹣1=0,当x>1时,不妨令x=8,y=8﹣8=6>0,可排除B,故选A.点评:本题考查函数的图象,着重考查函数的奇偶性与单调性,考查识图能力,属于中档题.11.(5分)(2013•济南一模)一个几何体的三视图如图所示,则它的体积为()A.B.C.20 D.40考点:由三视图求面积、体积.分析:三视图的俯视图是等腰直角三角形,结合主视图和左视图得到原几何体,该几何体是以直角梯形ABEF为底面,以CA为高的四棱锥的侧放图,所以其体积为.解答:解:由俯视图看出原几何体的底面是边长为4的等腰直角三角形,结合主视图和左视图看出几何体有两条棱和底面垂直,所以,由三视图还原原几何体如图,其中ABC为等腰直角三角形,AB=AC=4,∠BAC=90°,FA⊥底面ABC,FA=4,EB⊥底面ABC,EB=1,四边形ABEF为直角梯形,所以该几何体的体积为=.故选B.点评:该题考查了由几何体的三视图求几何体的体积,解答的关键是正确还原原几何体,还原的方法是先看俯视图,结合主视图和左视图,此题是基础题.12.(5分)(2013•海口二模)若函数f(x)=2sin()(﹣2<x<10)的图象与x轴交于点A,过点A的直线l与函数的图象交于B、C两点,则(+)•=()A.﹣32 B.﹣16 C.16 D. 32考点:平面向量数量积的运算;正弦函数的图象.专题:计算题;三角函数的图像与性质;平面向量及应用.分析:由f(x)=2sin()=0,结合已知x的范围可求A,设B(x 1,y1),C(x2,y2),由正弦函数的对称性可知B,C 两点关于A对称即x1+x2=8,y1+y2=0,代入向量的数量积的坐标表示即可求解解答:解:由f(x)=2sin()=0可得∴x=6k﹣2,k∈Z∵﹣2<x<10∴x=4即A(4,0)设B(x1,y1),C(x2,y2)∵过点A的直线l与函数的图象交于B、C两点∴B,C 两点关于A对称即x1+x2=8,y1+y2=0则(+)•=(x1+x2,y1+y2)•(4,0)=4(x1+x2)=32故选D点评:本题主要考查了向量的数量积的坐标表示,解题的关键正弦函数对称性质的应用.二、填空题:本大题共4个小题,每小题4分,共16分.13.(4分)(2013•济南一模)为了均衡教育资源,加大对偏远地区的教育投入,调查了某地若干户家庭的年收入x(单位:万元)和年教育支出y(单位:万元),调查显示年收入x 与年教育支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:y=0.15x+0.2.由回归直线方程可知,家庭年收入每增加1万元,年教育支出平均增加0.15万元.考点:线性回归方程.专题:应用题.分析:写出当自变量增加1时的预报值,用这个预报值去减去自变量x对应的值,得到家庭年收入每增加1万元,年教育支出平均增加的数字,得到结果.解答:解:∵对x的回归直线方程y=0.15x+0.2.∴y1=0.15(x+1)+0.2,∴y1﹣y=0.15(x+1)+0.2﹣0.15x﹣0.2=0.15,故答案为:0.15.点评:本题考查线性回归方程,考查线性回归方程的应用,用来预报当自变量取某一个数值时对应的y的值,注意本题所说的是平均增,注意叙述正确.14.(4分)(2013•济南一模)已知实数x,y满足,则Z=x﹣3y的最小值是﹣21.考点:简单线性规划.专题:不等式的解法及应用.分析:画出满足约束条件表示的平可行域,然后分析平面区域里各个角点,然后将其代入z=x ﹣3y中,求出z=x﹣3y的最小值.解答:解:满足约束条件的可行域如下图示:z=x﹣3y的最小值就是直线在y轴上的截距的﹣倍,由图可知,z=x﹣3y经过的交点A(3,8)时,Z=x﹣3y有最小值﹣21.故答案为:﹣21.点评:在解决线性规划的小题时,常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.15.(4分)(2013•济南一模)下列命题正确的序号为③④.①函数y=ln(3﹣x)的定义域为(﹣∞,3];②定义在[a,b]上的偶函数f(x)=x2+(a+5)x+b最小值为5;③若命题P:对∀x∈R,都有x2﹣x+2≥0,则命题¬P:∃x∈R,有x2﹣x+2<0;④若a>0,b>0,a+b=4,则+的最小值为1.考点:命题的真假判断与应用.专题:函数的性质及应用.分析:①由对数函数y=lnx的定义域为{x∈R|x>0}可求出本题的答案.②直接利用偶函数的定义域关于原点对称,可得a与b互为相反数,即可得到答案.③利用全称命题的否定是特称命题,直接写出命题的否定即可.④题目给出了两个正数a、b的和是定值1,求+的最小值,直接运用基本不等式不能得到要求的结论,可想着把要求最值的式子的分子的1换成a+b,或整体乘1,然后换成a+b,采用多项式乘多项式展开后再运用基本不等式.解答:解:①∵3﹣x>0,即x<3,∴函数y=ln(3﹣x)的定义域为(﹣∞,3),故不正确;②∵函数f(x)=x2+(a+5)x+b是定义在[a,b]上的偶函数,∴其定义域关于原点对称,既[a,b]关于原点对称.所以a与b互为相反数即a+b=0.∴f(x)=x2+(a+5)x﹣a,f(x)=x2+(a+5)x+b最小值与a有关,故②错;③:因为全称命题的否定是特称命题,所以命题对∀x∈R,都有x2﹣x+2≥0,则命题¬P:∃x∈R,有x2﹣x+2<0,正确;④+=(+)(a+b)=(++2)≥(2+2)=1,当且仅当a=b时取等号.所以+的最小值为1.正确.故答案为:③④.点评:本题考查判断命题的真假及复合命题与简单命题真假的关系;函数定义域、奇偶性的判断、命题的否定、利用基本不等式求最值等问题.16.(4分)(2013•济南一模)若双曲线﹣=1渐近线上的一个动点P总在平面区域(x ﹣m)2+y2≥16内,则实数m的取值范围是{m|m>5或m<﹣5}.考点:圆锥曲线的综合;双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:求出双曲线的渐近线方程,由题意画出图形,即可求解m的取值范围.解答:解:双曲线﹣=1渐近线为:y=,因为双曲线﹣=1渐近线上的一个动点P总在平面区域(x﹣m)2+y2≥16内,如图:只需圆心到直线的距离大于半径即可,圆的圆心坐标(m,0)圆的半径为:4,所以,解得:m>5或m<﹣5.实数m的取值范围是:{m|m>5或m<﹣5}.故答案为:{m|m>5或m<﹣5}.点评:本题考查双曲线的简单性质的应用,圆的方程的应用以及线性规划的应用,考查分析问题解决问题的能力.三、解答题:本大题共6小题,共74分.17.(12分)(2013•济南一模)在△ABC中,边a、b、c分别是角A、B、C的对边,且满足bcosC=(3a﹣c)cosB.(1)求cosB;(2)若•=4,b=4,求边a,c的值.考点:正弦定理;平面向量数量积的运算;余弦定理.专题:解三角形.分析:(1)利用正弦定理把题设等式中的边换成角的正弦,进而利用两角和公式化简整理求得cosB的值.(2)由•=4 可得ac=12,再由余弦定理可得a2+c2=40,由此求得边a,c的值.解答:解:(1)在△ABC中,∵bcosC=(3a﹣c)cosB,由正弦定理可得sinBcosC=(3sinA ﹣sinC)cosB,∴3sinA•cosB﹣sinC•cosB=sinBcosC,化为:3sinA•cosB=sinC•cosB+sinBcosC=sin(B+C)=sinA.∵在△ABC中,sinA≠0,故cosB=.(2)由•=4,b=4,可得,a•c•cosB=4,即ac=12.…①.再由余弦定理可得b2=32=a2+c2﹣2ac•cosB=a2+c2﹣,即a2+c2=40,…②.由①②求得a=2,c=6;或者a=6,c=2.综上可得,,或.点评:本题以三角形为载体,主要考查了正弦定理、余弦定理的运用,考查两角和公式.考查了学生综合分析问题和解决问题的能力,属于中档题.18.(12分)(2013•济南一模)以下茎叶图记录了甲组3名同学寒假假期中去图书馆A学习的次数和乙组4名同学寒假假期中去图书馆B学习的次数.乙组记录中有一个数据模糊,无法确认,在图中以x表示.(1)如果x=7,求乙组同学去图书馆学习次数的平均数和方差;(2)如果x=9,从学习次数大于8的学生中选两名同学,求选出的两名同学恰好分别在两个图书馆学习且学习的次数和大于20的概率.考点:茎叶图;古典概型及其概率计算公式.专题:图表型.分析:(1)如果x=7,直接利用平均数和方差的定义求出乙组同学去图书馆学习次数的平均数和方差.(2)求出所有的基本事件共有4×3个,满足这两名同学分别在两个图书馆学习且学习的次数和大于20的基本事件有10个,根据古典概型概率计算公式求得结果.解答:解:(1)如果x=7,则乙组同学去图书馆学习次数的平均数为=9,方差为S2==3.5.(2)如果x=9,则所有的基本事件共有4×3=12个,满足这两名同学的去图书馆学习次数大于20的基本事件有:(9,12),(11,12),(12,9),(12,12),共有4个,故两名同学恰好分别在两个图书馆学习且学习的次数和大于20的概率为.点评:本题主要考查古典概型及其概率计算公式的应用,茎叶图的应用,属于基础题.19.(12分)(2013•济南一模)正项等比数列{a n}的前n项和为S n,a4=16,且a2,a3的等差中项为S2.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.考点:数列的求和;等比数列的通项公式;等比数列的前n项和.专题:计算题;等差数列与等比数列.分析:(1)由题意可得,结合已知q>0可求a 1,q,进而可求通项2)由b n==,考虑利用错位相减求和即可求解解答:解:(1)由题意可得,a2+a3=2S2=2a1+2a2∴∵q>0解方程可得,a1=2,q=2∴(2)∵b n==∴T n==两式相减可得,===∴T n=点评:本题主要考查了等比数列的通项公式及求和公式的简单应用及数列的错位相减求和方法的应用,还考查了一定的运算能力20.(12分)(2013•济南一模)已知在如图的多面体中,AE⊥底面BEFC,AD∥EF∥BC,BE=AD=EF=BC,G是BC的中点.(1)求证:AB∥平面DEG;(2)求证:EG⊥平面BDF.考点:直线与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离.分析:(1)利用平行四边形的判定定理即可得到四边形ADGB是平行四边形,利用其性质即可得到AB∥DG,再利用线面平行的判定定理即可证明;(2)利用平行四边形的判定定理可得四边形AEFD是平行四边形,得到DF∥AE,由AE⊥底面BEFC,利用线面垂直的性质可得DF⊥底面BEFC.得到DF⊥EG.再证明四边形BEFG 是菱形,即可得到EG⊥BF,利用线面垂直的判定即可得到结论.解答:证明:(1)∵AD∥EF∥BC,AD=EF=BC,G是BC的中点.∴AD BG,∴四边形ADGB是平行四边形,∴AB∥DG,∵AB⊄平面DEG,DG⊂平面DEG.∴AB∥平面DEG;(2)∵AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∴DF∥AE,∵AE⊥底面BEFC,∴DF⊥底面BEFC.∴DF⊥EG.连接FG,∵EF=BC,G是BC的中点,EF∥BC,∴四边形BEFG是平行四边形,又∵BE=EF,∴四边形BEFG是菱形,∴BF⊥EG.∵DF∩BF=F,∴EG⊥平面BDF.点评:熟练掌握平行四边形的判定与性质定理、线面平行的判定与性质定理、线面垂直的判定与性质定理、菱形的判定与性质定理是解题的关键.21.(12分)(2013•济南一模)已知椭圆+=1(a>b>0)的左右焦点分别为F 1和F2,由4个点M(﹣a,b)、N(a,b)、F 2和F1组成了一个高为,面积为3的等腰梯形.(1)求椭圆的方程;(2)过点F1的直线和椭圆交于两点A、B,求△F2AB面积的最大值.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:综合题;圆锥曲线的定义、性质与方程.分析:解:(1)由题意知b=,=3,即a+c=3①,又a2=3+c2②,联立①②解得a,c,;(2)设A(x1,y1),B(x2,y2),过点F1的直线方程为x=ky﹣1,代入椭圆方程消掉x得y的二次方程,△F 2AB的面积S==|y1﹣y2|=,由韦达定理代入面积表达式变为k的函数,适当变形借助函数单调性即可求得S的最大值;解答:解:(1)由题意知b=,=3,所以a+c=3①,又a2=b2+c2,即a2=3+c2②,联立①②解得a=2,c=1,所以椭圆方程为:;(2)由(1)知F1(﹣1,0),设A(x1,y1),B(x2,y2),过点F1的直线方程为x=ky﹣1,由得(3k2+4)y2﹣6ky﹣9=0,△>0成立,且,,△F 2AB的面积S==|y1﹣y2|===12=,又k2≥0,所以递增,所以9+1+6=16,所以≤=3,当且仅当k=0时取得等号,所以△F2AB面积的最大值为3.点评:本题考查直线与圆锥曲线的位置关系、椭圆方程的求解,考查函数思想,解决(2)问的关键是合理表示三角形面积并对表达式恰当变形.22.(14分)(2013•济南一模)已知函数f(x)=(ax2+x﹣1)e x,其中e是自然对数的底数,a∈R.(1)若a=1,求曲线f(x)在点(1,f(1)处的切线方程;(2)若a<0,求f(x)的单调区间;(3)若a=﹣1,函数f(x)的图象与函数g(x)=x3+x2+m的图象有3个不同的交点,求实数m的取值范围.考点:利用导数研究曲线上某点切线方程;根的存在性及根的个数判断.专题:导数的综合应用.分析:(1)把a=1代入,可求得f(1)=e,f′(1)=4e,由点斜式可得方程;(2)求导数,分a=,,<a<0,三种情况讨论;(3)原问题等价于f(x)﹣g(x)的图象与x轴有3个不同的交点,即y=m与y=(﹣x2+x﹣1)e x﹣x3﹣x2的图象有3个不同的交点,构造函数F(x)=(﹣x2+x﹣1)e x﹣x3﹣x2,求导数可得极值点,数形结合可得答案.解答:解:∵f(x)=(ax2+x﹣1)e x,∴f′(x)=(2ax+1)e x+(ax2+x﹣1)e x=(ax2+2ax+x)e x,(1)当a=1时,f(1)=e,f′(1)=4e,故切线方程为y﹣e=4e(x﹣1),化为一般式可得4ex﹣y﹣3e=0;(2)当a<0时,f′(x)=(ax2+2ax+x)e x=[x(ax+2a+1)]e x,若a=,f′(x)=﹣x2e x<0,函数f(x)在R上单调递减,若,当x∈(﹣∞,﹣2﹣)和(0,+∞)时,f′(x)<0,函数f(x)单调递减,当x∈(﹣2﹣,0)时,f′(x)>0,函数f(x)单调递增;若<a<0,当x∈(﹣∞,0)和(﹣2﹣,+∞)时,f′(x)<0,函数f(x)单调递减,当x∈(0,﹣2﹣)时,f′(x)>0,函数f(x)单调递增;(3)若a=﹣1,f(x)=(﹣x2+x﹣1)e x,可得f(x)﹣g(x)=(﹣x2+x﹣1)e x﹣x3﹣x2﹣m,原问题等价于f(x)﹣g(x)的图象与x轴有3个不同的交点,即y=m与y=(﹣x2+x﹣1)e x﹣x3﹣x2的图象有3个不同的交点,构造函数F(x)=(﹣x2+x﹣1)e x﹣x3﹣x2,则F′(x)=(﹣2x+1)e x+(﹣x2+x﹣1)e x﹣x2﹣x=(﹣x2﹣x)e x﹣x2﹣x=﹣x(x+1)(e x+1),令F′(x)=0,可解得x=0或﹣1,且当x∈(﹣∞,﹣1)和(0,+∞)时,F′(x)<0,F(x)单调递减,当x∈(﹣1,0)时,F′(x)>0,F(x)单调递增,故函数F(x)在x=﹣1处取极小值F(﹣1)=,在x=0处取极大值F(0)=﹣1,要满足题意只需∈(,﹣1)即可.故实数m的取值范围为:(,﹣1)点评:本题考查函数与导数的综合应用,涉及根的个数的判断,属中档题.。
2013年山东省济南市高考数学二模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1.(5分)(2013•济南二模)复数=()A.﹣1 B.1C.﹣i D.i考点:复数代数形式的乘除运算.专题:计算题.分析:首先把括号内部的复数化简,然后利用i2=﹣1,进行化简运算.解答:解:==(i2)1006i=i.故选D.点评:本题考查了复数代数形式的乘除运算,考查了复数的概念,解答此题的关键是运用i2=﹣1,是基础题.2.(5分)(2013•济南二模)设集合,则集合M,N的关系为()A.M=N B.M⊆N C.M⊊N D.M⊋N考点:子集与交集、并集运算的转换.专题:函数的性质及应用.分析:利用指数函数的值域求得集合M,即可得到集合M与集合N的关系.解答:解:∵y=,∴y>0,即M={y|y>0},又N={y|y≥1}∴M⊋N.故选D.点评:本题考查集合之间的关系,以及指数函数的值域问题,属基础题.3.(5分)(2013•济南二模)执行如图所示的程序框图,则输出的n的值为()考点:程序框图.分析:先要通读程序框图,看到程序中有循环结构,然后代入初值,看是否进入循环体,是就执行循环体,写清每次循环的结果;不是就退出循环,看清要输出的是何值.解答:解:∵n=1,s=0,由于s=0>60为否,∴s=s+4n,所以s=4,n=2;又∵n=2,s=4,由于s=4>60为否,∴s=s+4n,所以s=12,n=3;又∵n=3,s=12,由于s=12>60为否,∴s=s+4n,所以s=24,n=4;又∵n=4,s=24,由于s=24>60为否,∴s=s+4n,所以s=40,n=5;又∵n=5,s=40,由于s=40>60为否,∴s=s+4n,所以s=60,n=6;又∵n=6,s=60,由于s=60>60为否,∴s=s+4n,所以s=84,n=7;又∵n=7,s=84,由于s=84>60为是,∴输出n,此时n=7.故答案选C.点评:本题考查程序框图.要掌握常见的当型、直到型循环结构;以及会判断条件结构,并得到条件结构的结果;在已知框图的条件下,可以得到框图的结果.4.(5分)(2013•济南二模)已知圆x2+y2﹣2x+my﹣4=0上两点M、N关于直线2x+y=0对称,则圆的半径为()A.9B.3C.2D.2考点:直线与圆的位置关系.专题:计算题.分析:求出圆的圆心,代入直线方程即可求出m的值,然后求出圆的半径.解答:解:因为圆x2+y2﹣2x+my﹣4=0上两点M、N关于直线2x+y=0对称,所以直线经过圆的圆心,圆x2+y2﹣2x+my﹣4=0的圆心坐标(1,﹣),所以2×1﹣=0,m=4.所以圆的半径为:=3故选B点评:本题考查直线与圆的位置关系,求出圆的圆心坐标代入直线方程,是解题的关键.5.(5分)(2013•济南二模)空间几何体的三视图如图所示,则此空间几何体的直观图为()考点:由三视图还原实物图.专题:作图题.分析:根据已知中的三视图,结合三视图几何体由两部分组成,上部是锥体,下部为柱体,将几何体分解为简单的几何体分析后,即可得到答案.解答:解:由已知中三视图的上部分是锥体,是三棱锥,满足条件的正视图的选项是A与D,由左视图可知,选项D不正确,由三视图可知该几何体下部分是一个四棱柱选项都正确,故选A.点评:本题考查的知识点是由三视图还原实物图,如果三视图均为三角形,则该几何体必为三棱锥;如果三视图中有两个三角形和一个多边形,则该几何体为N棱锥(N值由另外一个视图的边数确定);如果三视图中有两个为矩形和一个多边形,则该几何体为N棱柱(N值由另外一个视图的边数确定);如果三视图中有两个为梯形和一个多边形,则该几何体为N棱柱(N 值由另外一个视图的边数确定);如果三视图中有两个三角形和一个圆,则几何体为圆锥.如果三视图中有两个矩形和一个圆,则几何体为圆柱.如果三视图中有两个梯形和一个圆,则几何体为圆台.6.(5分)(2013•济南二模)设变量x,y满足约束条件,则目标函数z=x+2y的最大值为()A.1B.4C.5D.6考点:简单线性规划.专题:不等式的解法及应用.分析:先根据约束条件画出可行域,再利用几何意义求最值,只需求出直线z=x+2y过点A(1,2.5)时,z最大值即可.解答:解:作出可行域如图,由z=x+2y知,y=﹣x+z,所以动直线y=﹣x+z的纵截距z取得最大值时,目标函数取得最大值.由得A(1,2.5).结合可行域可知当动直线经过点A(1,2.5)时,。
山东省济南市 2013届高三针对训练
数学(文)试题
本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页. 考试时间120分钟,满分150分,考试结束后,将本试卷和答题卡一并交回. 注意事项:
1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写
在答题卡和试卷规定的位置上.
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,
用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.
3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的
位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.
第I 卷(共60分)
一、选择题:本大题共12个小题,每小题5分,共60分.每小题给出的四个选项中只有一
项是符合 题目要求的.
1.在复平面内,复数134i
z i
+=-的共轭复数z 对应的点位于
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2.已知全集U R =,集合{}1,0,1-=A , {}
02|2
=-=x x x B ,则图中的阴影部分表示的集
合为 A.{}1- B.{}2
C.{}2,1
D. {}2,0
3.函数21
lg )(--=x
x x f 的零点所在区间为 A .(0,1)
B .(1,2)
C .(2,3)
D .(3,4)
4.若△ABC 的三个内角满足sin :sin :sin 4:5:7A B C =,则△ABC A.一定是锐角三角形 B.一定是直角三角形 C.一定是钝角三角形 D.可能是锐角三角形,也可能是钝角三角形
5.一个几何体的三视图如图所示,则该几何体的体积为
(第2题图)
A .4
B .2
4π
+
C .8π+
D .24
π
+
6.在边长为a 的正方形内随机取一个点,则此点落在该正方形的内切圆内部的概率为
A .
4
π
B .
6π
C .
π
2
D .
π
3
7.函数()33
x
x f x e -=的图象大致是
A. B. C. D.
8.将参加公务员上岗前培训的600名学员编号为:001,002,…,600,采用系统抽样方法
抽取一个容量为50的样本,且随机抽得的号码为003.这600名学员分住在三个校区,从001到300在第Ⅰ校区,从301到495住在第Ⅱ校区,从496到600在第III 校区,三个校区被抽中的人数依次为 A .26,16,8 B .25,17,8 C .25,16,9 D .24,17,9 9.命题:p ∃,α∈R ααπcos )cos(=+ ;命题:q 0,m ∀> 21
≥+
m
m . 则下面结论正确的是 A. p 是假命题 B.q ⌝是真命题
C. p ∧q 是假命题
D. p ∨q 是真命题
10.若A 为不等式组002x y y x ≤⎧⎪
≥⎨⎪-≤⎩
表示的平面区域,则当实数a 从-2连续变化到0时,动直
线x y a +=扫过A 中部分的区域面积为
A.
34 B.1
2
C. 2
D. 1
11.已知双曲线2
2
2
21(0,0)x y a b a b
-=>>与抛物线28y x =有一个公共的焦点F ,且两曲线的一个交点为P ,若5
PF =,则双曲线的离心率为
A .2
B
.
(第15题图)
C
D
12.给定两个长度为1的平面向量OA 和OB ,它们的夹角为60. 如图所示,点C 在以O
为圆心的圆弧
上变动. 若,OC xOA yOB =+其中,x y R ∈,则2x y +的最大值是
A .2 B
C
D .1
第Ⅱ卷(非选择题 共90分)
二、填空题:本大题共4个小题,每小题4分,共16分.
13.等差数列}{n a 中,若468101260a a a a a ++++=, 则15S 的值
为 .
14.若直线x y a 3++=0过圆x y x y 22++2-4=0的圆心, 则a 的值为 . 15.如图所示程序框图若输入x 的值为2013,则输出s 的结果为 . 16.给出定义:若11
(,]22
x m m ∈-
+ (其中m 为整数),则m 叫做与实数x “亲密的整数”, 记作{}x m =,在此基础上给出下列关于函数
(){}f x x x =-的四个命题:①函数()y f x =在(0,1)x ∈上是增函
数;②函数()y f x =的图象关于直线()2
k
x k Z =
∈对称;③函数()y f x =是周期函数,最小正周期为1;④当(0,2]x ∈时,函数()()ln g x f x x =-有两
个零点. 其中正确命题的序号是____________. 三、计算题:本大题共6小题,共74分. 17.(本小题满分12分)
已知函数()sin()(0,0,0)f x A x A ωϕωϕπ=+>><<的部分图象如图所示. (1)求()f x 的解析式;
(2)求()()sin 2g x f x x =+的单调递增区间.
18. (本小题满分12分) 今年10月在济南举办第十届中国艺术节,届时有很多国际友人参加活动. 现有8名“十艺节”志愿者,其中志愿者123A A A ,,通晓英语,123B B B ,,通晓俄语,12C C ,通晓韩语.
从中选出通晓英语、俄语和韩语的志愿者各1名,组成一个小组.
(1)求1A 被选中的概率; (2)求
1B 和1C 不全被选中的概率.
19.(本小题满分12分) 如图,在四棱锥P ABCD -中,平面PAC ⊥平面A B C D ,且P A A C ⊥, 22PA AD AB BC ===.//BC AD ,AB AD ⊥. (1)若点E 为PD 的中点,求证://CE 平面PAB .
(2)在平面PAC 内,PC AF ⊥. 求证:⊥AF 平面PCD
20.(本小题满分12分) 某高校有奖励基金本金1000万元,此基金每年购买银行的两种风险和收益不同的理财产品A 和B ,把每年产生的收益用来奖励品学兼优的大学生,本金继续购买这两种理财产品.第一年购买理财产品A 和B 各500万元,以后规定:上一年购买产品A 的本金,下一年会有20%购买产品B ,而上一年购买产品B 的本金,下一年会有30%购买产品
A .用n a ,n b ()n N *
∈分别表示在第n 年购买理财产品A 和B 的本金数(单位:万元). (1)分别求出223,,a b a ;
(2)①证明数列
{}600-n a 是等比数列,并求n a ;
B D
C A
F P
E
(第19题图)
②求数列{n b }的前n 项和n T .
21.(本小题满分13分)
已知函数()()ln ,R f x ax x b a b =+∈的图象过点)0,1(,且在此点处的切线斜率为1. (1)求()f x 的单调递减区间; (2)若()213
22
g x x mx =
-+,()00,x ∃∈+∞使得()()00f x g x ≥成立,求实数m 的取值范围.
22.(本小题满分13分)
已知椭圆()22
22:10x y C a b a b
+=>>的两个焦点12,F F 和上下两个顶点12,B B 是一个边
长为2且∠F 1B 1F 2为60的菱形的四个顶点.
(1)求椭圆C 的方程;
(2)过右焦点F 2斜率为k (0k ≠)的直线l 与椭圆C 相交于,E F 两点,A 为椭圆的
右顶点,直线AE ,AF 分别交直线3x = 于点M ,N ,线段MN 的中点为P ,记直线2PF 的斜率为k '.求证:k k '⋅为定值.。