四大寨乡初中2018-2019学年七年级下学期数学第一次月考试卷
- 格式:doc
- 大小:215.50 KB
- 文档页数:13
党寨镇初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)在,,,,,,7.010010001…(每两个“1”之间依次多一个“0”),这7个数中,无理数共有()A. 1个B. 2个C. 3个D. 4个【答案】C【考点】无理数的认识【解析】【解答】解:无理数有:,2 π,7.010010001…(每两个“1”之间依次多一个“0”)一共3个。
故答案为:C【分析】根据无限不循环的小数是无理数或开方开不尽的数是无理数,有规律但不循环的小数是无理数,就可得出无理数的个数。
2.(2分)下列各数中最小的是()A. -2018B.C.D. 2018【答案】A【考点】实数大小的比较【解析】【解答】解:∵-2018<-<<2018,∴最小的数为:-2018,故答案为:A.【分析】数轴左边的数永远比右边的小,由此即可得出答案.3.(2分)下列说法中,不正确的是().A. 3是(﹣3)2的算术平方根B. ±3是(﹣3)2的平方根C. ﹣3是(﹣3)2的算术平方根D. ﹣3是(﹣3)3的立方根【答案】C【考点】平方根,算术平方根,立方根及开立方【解析】【解答】解:A. (﹣3)2=9的算术平方根是3,故说法正确,故A不符合题意;B. (﹣3)2=9的平方根是±3,故说法正确,故B不符合题意;C. (﹣3)2=9的算术平方根是3,故说法错误,故C符合题意;D. (﹣3)3的立方根是-3,故说法正确,故D不符合题意;故答案为:C.【分析】一个正数的平方根有两个,且这两个数互为相反数.先计算(﹣3)2的得数,再得出平方根,且算术平方根是正的那个数;一个数的立方根,即表示这个立方根的立方得原数.4.(2分)如图,AB∥CD,CD∥EF,则∠BCE等于()A.∠2-∠1B.∠1+∠2C.180°+∠1-∠2D.180°-∠1+∠2【答案】C【考点】平行线的性质【解析】【解答】解:∵AB∥CD,∴∠BCD=∠1,又∵CD∥EF,∴∠2+∠DCE=180°,∴∠DCE=180°-∠2,∴∠BCE=∠BCD+∠DCE,=∠1+180°-∠2.故答案为:C.【分析】根据平行线的性质得∠BCD=∠1,∠DCE=180°-∠2,由∠BCE=∠BCD+∠DCE,代入、计算即可得出答案.5.(2分)已知等腰三角形的两边长x、y,满足方程组则此等腰三角形的周长为()A.5B.4C.3D.5或4【答案】A【考点】解二元一次方程组,三角形三边关系,等腰三角形的性质【解析】【解答】解:解方程组,得,所以等腰三角形的两边长为2,1.若腰长为1,底边长为2,由1+1=2知,这样的三角形不存在.若腰长为2,底边长为1,则三角形的周长为5.所以,这个等腰三角形的周长为5.故答案为:A【分析】首先解方程组得出x,y的值,由于x,y是等腰三角形的两条边,但没有明确的告知谁是等腰三角形的底边,谁是腰长,故需要分①若腰长为1,底边长为2,②若腰长为2,底边长为1,两种情况再根据三角形三边的关系判断能否围成三角形,能围成三角形的由三角形周长的计算方法算出答案即可。
下寨乡初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)有下列说法:①带根号的数是无理数;②不带根号的数一定是有理数;③负数没有立方根;④- 是17的平方根。
其中正确的有()A.0个B.1个C.2个D.3个【答案】B【考点】平方根,立方根及开立方,有理数及其分类,无理数的认识【解析】【解答】①带根号的数不一定是无理数,能够开方开得尽的并不是无理数,而是有理数,所以错误;②不带根号的数不一定是有理数,比如含有π的数,或者看似有规律实则没有规律的一些数,所以错误;③负数有一个负的立方根,所以错误;④一个正数有两个平方根,这两个平方根互为相反数,所以正确。
故答案为:B【分析】无限不循环小数是无理数,无理数包括开方开不尽的数,含有π的数,看似有规律实则没有规律的一些数,正数有一个正的平方根,负数有一个负的平方根,零的平方根是零,一个正数有两个平方根,这两个平方根互为相反数。
2.(2分)用不等式表示如图所示的解集,其中正确的是()A.x>-2B.x<-2C.x≥-2D.x≤-2【答案】C【考点】在数轴上表示不等式(组)的解集【解析】【解答】解:图中数轴上表达的不等式的解集为:.故答案为:C.【分析】用不等式表示如图所示的解集都在-2的右边且用实心的圆点表示,即包括-2,应用“ ≥ ”表示。
3.(2分)如图为某餐厅的价目表,今日每份餐点价格均为价目表价格的九折.若恂恂今日在此餐厅点了橙汁鸡丁饭后想再点第二份餐点,且两份餐点的总花费不超过200元,则她的第二份餐点最多有几种选择?()吻仔鱼养生粥番茄蛋炒饭凤梨蛋炒饭酥炸排骨饭和风烧肉饭蔬菜海鲜面香脆炸鸡饭清蒸鳕鱼饭香烤鲷鱼饭红烧牛腩饭橙汁鸡丁饭白酒蛤蜊面海鲜墨鱼面嫩烤猪脚饭60 元70元70元80元80元90元90元100元100元110元120元120元140元150元B.7C.9D.11【答案】C【考点】一元一次不等式的特殊解,一元一次不等式的应用【解析】【解答】解:设第二份餐的单价为x元,由题意得,(120+x)×0.9≤200,解得:x≤102 ,故前9种餐都可以选择.故答案为:C.【分析】设第二份餐的单价为x元,根据“ 两份餐点的总花费不超过200元”列不等式,求出解集,再根据表格可得答案.4.(2分)实数a在数轴上对应的点如图所示,则a,﹣a,1的大小关系正确的是()A. a<﹣a<1B. ﹣a<a<1C. 1<﹣a<aD. a<1<﹣a【答案】D【考点】实数在数轴上的表示,实数大小的比较【解析】【解答】解:由数轴上a的位置可知a<0,|a|>1;设a=﹣2,则﹣a=2,∵﹣2<1<2∴a<1<﹣a,故答案为:D.【分析】由数轴得:a<0,且大于1;所以,>1>a.又因为a<0,所以=-a.所以最终选D5.(2分)下列各式正确的是().A.B.C.D.【答案】A【考点】立方根及开立方【解析】【解答】A选项中表示为0.36的平方根,正数的平方根有两个,(±0.6)2=0.36,0.36的平方根为±0.6,所以正确;B选项中表示9的算术平方根,而一个数的算术平方根只有1个,是正的,所以错误;C选项中表示(-3)3的立方根,任何一个数只有一个立方根,(-3)3=-27,-27的立方根是-3,所以错误;D选项中表示(-2)2的算术平方根,一个正数的算术平方根只有1个,(-2)2=4,4的算术平方根是2,所以错误。
四寨镇初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC的度数是()A. 30°B. 45°C. 60°D. 75°【答案】B【考点】平行线的性质【解析】【解答】解:∵∠EAB=45°,∴∠BAD=180°-∠EAB=180°-45°=135°,∵AB∥CD,∴∠ADC =∠BAD =135°,∴∠FDC=180°-∠ADC=45°.故答案为:B【分析】利用两直线平行内错角相等即可知∠ADC=∠BAD,因为∠BAD与∠EAB是互为邻补角,所以即可知∠ADC的度数,从而求出∠CDF的值.2.(2分)下列调查方式,你认为正确的是()A. 了解我市居民日平均用水量采用抽查方式B. 要保证“嫦娥一号”卫星发射成功,对零部件采用抽查方式检查质量C. 了解北京市每天的流动人口数,采用普查方式D. 了解一批冰箱的使用寿命采用普查方式【答案】A【考点】全面调查与抽样调查【解析】【解答】解:A、了解我市居民日平均用水量,知道大概就可以,适合采用抽查方式;B、要保证“嫦娥一号”卫星发射成功,对零部件要求很精密,不能有点差错,所以适合采用普查方式检查质量;C、了解北京市每天的流动人口数,知道大概就可以,适合采用抽查方式;D、了解一批冰箱的使用寿命,具有破坏性,所以适合采用抽查方式.故答案为:A【分析】根据抽样调查和全面调查的特征进行判断即可确定正确的结论.3.(2分)关于x的不等式(a+2 014)x-a>2 014的解集为x<1,那么a的取值范围是()A. a>-2 014B. a<-2 014C. a>2 014D. a<2 014【答案】B【考点】不等式的解及解集,解一元一次不等式【解析】【解答】解:(a+2 014)x>a+2 014∵此不等式的解集为:x<1,∴a+2 014<0解之:a<-2 014故答案为:B【分析】先将不等式转化为(a+2 014)x>a+2 014,再根据它的解集为x<1,得出a+2 014<0,解不等式即可求解。
四大寨乡初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()A.25°B.35°C.45°D.50°【答案】D【考点】平行线的性质【解析】【解答】解:∵CD∥EF,AB∥EF∴∠C=∠CFE,∠A=∠AFE∵FC平分∠AFE∴∠AFE=50°,即∠A=50°故答案为:D。
【分析】根据平行线的性质,两直线平行,内错角相等以及角平分线的性质,进行求解即可。
2.(2分)把不等式x+1≤-1的解集在数轴上表示出来,下列正确的是()A. B.C. D.【答案】D【考点】在数轴上表示不等式(组)的解集,解一元一次不等式【解析】【解答】移项并合并得,x≤-2,故此不等式的解集为:x≤-2,在数轴上表示为:故答案为:D.【分析】先求出此不等式的解集,再将解集再数轴上表示出来。
3.(2分)如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是().A. △ABC与△DEF能够重合B. ∠DEF=90°C. AC=DFD. EC=CF【答案】D【考点】平移的性质【解析】【解答】解:由平移的特征,平移前后的两个图形的形状与大小都没有发生变化,故A,B,C均成立,所以只有D符合题意.故答案为:D【分析】因为平移后的图形与原图形形状大小都不变,对应边相等,对应角相等,所以只有D不正确. 4.(2分)若整数同时满足不等式与,则该整数x是()A.1B.2C.3D.2和3【答案】B【考点】解一元一次不等式组,一元一次不等式组的特殊解【解析】【解答】解:解不等式2x-9<-x得到x<3,解不等式可得x≥2,因此两不等式的公共解集为2≤x<3,因此符合条件的整数解为x=2.故答案为:B.【分析】解这两个不等式组成的不等式,求出解集,再求其中的整数.5.(2分)下列说法正确的是()A.如果一个数的立方根是这个数本身,那么这个数一定是0B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个不为零的数的立方根和这个数同号,0的立方根是0【答案】D【考点】立方根及开立方【解析】【解答】A选项中,一个数的立方根等于这个数本身的有1,-1和0,所以错误;B选项中,一个数的立方根不仅是正数或负数,还可能是零,所以错误;C选项中,负数的立方根是负数,所以错误;D选项中,正数的立方根是正的,负的的立方根是负的,0的立方根是零,所以正确。
王道寨乡初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)关于下列问题的解答,错误的是()A.x的3倍不小于y的,可表示为3x>yB.m的与n的和是非负数,可表示为+n≥0C.a是非负数,可表示为a≥0D.是负数,可表示为<0【答案】A【考点】不等式及其性质【解析】【解答】解:A、根据列不等式的意义,可知x的3倍不小于y的,可表示为3x≥y,故符合题意;B、由“m的与n的和是非负数”,表示为+n≥0,故不符合题意;C、根据非负数的性质,可知a≥0,故不符合题意;D、根据是负数,表示为<0,故不符合题意.故答案为:A.【分析】A 先表示x的3倍与y的,再根据“不小于”即“大于或等于” 列出不等式即可,再作出判断即可。
B 先表示m的与n的和(最后求的是和)是“是非负数”即正数和0,列出不等式,再注册判断。
C “ 非负数”即正数和0,D2.(2分)用加减法解方程组时,下列解法错误的是()A. ①×3-②×2,消去xB. ①×2-②×3,消去yC. ①×(-3)+②×2,消去xD. ①×2-②×(-3),消去y【答案】D【考点】解二元一次方程组【解析】【解答】解:A、①×3-②×2,可消去x,故不符合题意;B、①×2-②×3,可消去y,故不符合题意;C、①×(-3)+②×2,可消去x,故不符合题意;D、①×2-②×(-3),得13x-12y=31,不能消去y,符合题意.故答案为:D【分析】若要消去x,可将①×3-②×2或①×(-3)+②×2;若消去y,可将①×2-②×3,观察各选项,就可得出解法错误的选项。
山寨乡初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)下列方程组中,是二元一次方程组的是()A.B.C.D.【答案】B【考点】二元一次方程组的解【解析】【解答】解:A、方程6xy=7是二元二次方程,故A不符合题意;B、方程组是二元一次方程组,故B符合题意;C、方程3x2﹣x﹣3=0,是一元二次方程,故此C不符合题意;D、方程﹣1=y是分式方程,故D不符合题意.故答案为:B.【分析】二元一次方程组满足的条件:含有两个未知数;未知数的最高次数是1;是整式方程。
根据这三个条件即可判断。
2.(2分)某公司有员工700人,元旦要举行活动,如图是分别参加活动的人数的百分比,规定每人只允许参加一项且每人均参加,则不下围棋的人共有()A. 259人B. 441人C. 350人D. 490人【答案】B【考点】扇形统计图【解析】【解答】解:700×(1﹣37%)=700×63%=441(人),故答案为:B.【分析】不下围棋的人数的百分比是1﹣37%,不下围棋的人共有700×(1﹣37%)人,即可得解.3.(2分)下列不等式中,是一元一次不等式的是()A.x+1>2B.x2>9C.2x+y≤5D.>3【答案】A【考点】一元一次不等式的定义【解析】【解答】解:A.该不等式符合一元一次不等式的定义,符合题意;B.未知数的次数是2,不是一元一次不等式,不符合题意;C.该不等式中含有2个未知数,属于二元一次不等式,不符合题意;D.该不等式属于分式不等式,不符合题意;故答案为:A.【分析】根据一元一次不等式的定义判定.含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.4.(2分)不等式组的解集在数轴上表示为()A.B.C.D.【答案】C【考点】在数轴上表示不等式(组)的解集,解一元一次不等式组【解析】【解答】解:不等式组可得,AC项,x≤2,不符合题意;D项,x﹤1,x≤2,不符合题意。
万寨乡初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)在下列不等式中,是一元一次不等式的为()A. 8>6B. x²>9C. 2x+y≤5D. (x-3)<0【答案】D【考点】一元一次不等式的定义【解析】【解答】A、不含未知数,不是一元一次不等式,不符合题意;B、未知数的指数不是1,不是一元一次不等式,不符合题意;C、含有两个未知数,不是一元一次不等式,不符合题意;D、含有一个未知数,未知数的指数都为1,是一元一次不等式,符合题意.故答案为:D.【分析】根据一元一次不等式的定义,含有一个未知数,含未知数的最高次数是1的不等式,对各选项逐一判断。
2.(2分)如图,直线AB,CD相交于点O,下列描述:①∠1和∠2互为对顶角②∠1和∠3互为对顶角③∠1=∠2④∠1=∠3其中,正确的是()A. ①③B. ①④C. ②③D. ②④【答案】D【考点】对顶角、邻补角【解析】【解答】①∠1和∠2互为邻补角,②∠1和∠3互为对顶角,③∠1+∠2=180°,④∠1=∠3.故答案为:D.【分析】根据图形得到∠1和∠2互为邻补角,∠1+∠2=180°,∠1和∠3互为对顶角,∠1=∠3.3.(2分)若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3B.1C.-3或1D.-1【答案】C【考点】平方根【解析】【解答】解:当2m-4=3m-1时,则m=-3;当2m-4≠3m-1时,则2m-4+3m-1=0,∴m=1。
故答案为:C.【分析】分2m-4与3m-1相等、不相等两种情况,根据平方根的性质即可解答。
4.(2分)若关于x的方程ax=3x﹣1的解是负数,则a的取值范围是()A. a<1B. a>3C. a>3或a<1D. a<2【答案】B【考点】解一元一次方程,解一元一次不等式【解析】【解答】解:方程ax=3x﹣1,解得:x=﹣,由方程解为负数,得到﹣<0,解得:a>3,则a的取值范围是a>3.故答案为:B.【分析】根据题意用含有a的式子表示x,再解不等式求出a的取值范围5.(2分)下列各式中正确的是()A. B. C. D.【答案】A【考点】平方根,算术平方根,立方根及开立方【解析】【解答】解:A、,故A选项符合题意;B、,故B选项不符合题意;C、,故C选项不符合题意;D、,故D选项不符合题意;故答案为:A.【分析】一个正数的算数平方根是一个正数,一个正数的平方根有两个,它们互为相反数;任何数都只有一个立方根,正数的立方根是一个正数,根据定义即可一一判断。
大寨乡初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)若是方程组的解,则a、b值为()A.B.C.D.【答案】A【考点】二元一次方程组的解【解析】【解答】解:把代入得,,.故答案为:A.【分析】方程组的解,能使组成方程组中的每一个方程的右边和左边都相等,根据定义,将代入方程组即可得出一个关于a,b的二元一次方程组,求解即可得出a,b的值。
2.(2分)如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()A.25°B.35°C.45°D.50°【答案】D【考点】平行线的性质【解析】【解答】解:∵CD∥EF,AB∥EF∴∠C=∠CFE,∠A=∠AFE∵FC平分∠AFE∴∠AFE=50°,即∠A=50°故答案为:D。
【分析】根据平行线的性质,两直线平行,内错角相等以及角平分线的性质,进行求解即可。
3.(2分)二元一次方程x-2y=1 有无数多个解,下列四组值中不是该方程的解的是()A.B.C.D.【答案】B【考点】二元一次方程组的解【解析】【解答】解:二元一次方程x-2y=1 ,当时,,故A. 是方程 x-2y=1 的解;当时,,故B不是方程x-2y=1 的解;故C. 是方程x-2y=1的解;当x=-1 时,y=-1 ,故 D. 是方程 x-2y=1 的解,故答案为:B【分析】分别将各选项中的x、y的值代入方程x-2y=1,去判断方程的左右两边是否相等,即可作出判断。
4.(2分)如图,下列条件:①∠1=∠3;②∠2=∠3;③∠4=∠5;④∠2+∠4=180°中,能判断直线l1∥l2的有()A.1个B.2个C.3个D.4个【答案】C【考点】平行线的判定【解析】【解答】解:①∵∠1=∠3;,∴l1∥l2.故①正确;②由于∠2与∠3不是内错角也不是同位角,故∠2=∠3 不能判断l1∥l2.故②错误;③∵∠4=∠5 ,∴l1∥l2.故③正确;④∵∠2+∠4=180°∴l1∥l2.故④正确;综上所述,能判断l1∥l2有①③④3个.故答案为:C.【分析】①根据内错角相等,两直线平行;即可判断正确;②由于∠2与∠3不是内错角也不是同位角,故不能判断l1∥l2.③根据同位角相等,两直线平行;即可判断正确;④根据同旁内角互补,两直线平行;即可判断正确;5.(2分)下列运算正确的是()A. =±3B. (﹣2)3=8C. ﹣22=﹣4D. ﹣|﹣3|=3【答案】C【考点】绝对值及有理数的绝对值,算术平方根,实数的运算,有理数的乘方【解析】【解答】解:A、原式=2 ,不符合题意;B、原式=﹣8,不符合题意;C、原式=﹣4,符合题意;D、原式=﹣3,不符合题意,故答案为:C.【分析】做这种类型的选择题,我们只能把每个选项一个一个排除选择。
四族乡初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)设方程组的解是那么的值分别为()A.B.C.D.【答案】A【考点】解二元一次方程组【解析】【解答】解:解方程组,由①×3+②×2得19x=19解之;x=1把x=1代入方程①得3+2y=1解之:y=-1∴∵方程组的解也是方程组的解,∴,解之:故答案为:A【分析】利用加减消元法求出方程组的解,再将x、y的值分别代入第一个方程组,然后解出关于a、b的方程组,即可得出答案。
2.(2分)如图,直线AB,CD交于O,EO⊥AB于O,∠1与∠3的关系是()A. 互余B. 对顶角C. 互补D. 相等【答案】A【考点】余角、补角及其性质,对顶角、邻补角【解析】【解答】∵EO⊥AB于O,∴∠EOB=90°,∴∠1+∠3=90°,则∠1与∠3的关系是互余.故答案为:A.【分析】根据对顶角相等得到∠2=∠3,再由EO⊥AB于O,得到∠1与∠3的关系是互余.3.(2分)9的平方根是()A. B. C. D.【答案】B【考点】平方根【解析】【解答】∵(±3)2=9,∴9的平方根是3或-3.故答案为:B.【分析】根据平方根的定义可求得答案.一个正数有两个平方根,它们互为相反数.4.(2分)如图,点E在AB的延长线上,下列条件中能判断AD∥BC的是()A. ∠1=∠2B. ∠3=∠4C. ∠C=∠CBED. ∠C+∠ABC=180°【答案】B【考点】平行线的判定【解析】【解答】解:A、根据内错角相等,两直线平行可得AB∥CD,故此选项不正确;B、根据内错角相等,两直线平行可得AD∥BC,故此选项符合题意;C、根据内错角相等,两直线平行可得AB∥CD,故此选项不符合题意;D、根据同旁内角互补,两直线平行可得AB∥CD,故此选项不符合题意;故答案为:B【分析】判断AD∥BC,需要找到直线AD与BC被第三条直线所截形成的同位角、内错角相等,或同旁内角互补来判定.5.(2分)边长为2的正方形的面积为a,边长为b的立方体的体积为27,则a-b的值为()A. 29B. 7C. 1D. -2【答案】C【考点】立方根及开立方【解析】【解答】∵边长为2的正方形的面积为a,∴a=22=4,∵边长为b的立方体的体积为27,∴b3=27,∴b=3,∴a-b=1,故答案为:C.【分析】根据正方形的面积=边长的平方和算术平方根的意义可求解;根据立方体的体积=边长的立方和立方根的意义可求解。
大歇乡初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)如果方程组的解中与的值相等,那么的值是()A.1B.2C.3D.4【答案】C【考点】解二元一次方程组【解析】【解答】解:∵方程组的解中与的值相等,∴x=y∴3x+7x=10解之:x=1∴y=1∴a+a-1=5解之:a=3故答案为:C【分析】根据已知可得出x=y,将x=y代入第1个方程可求出x、y的值,再将x、y的值代入第2个方程,解方程求出a的值。
2.(2分)在,π,,1.5(。
)1(。
),中无理数的个数有()A. 2个B. 3个C. 4个D. 5个【答案】A【考点】无理数的认识【解析】【解答】解:∵无理数有:,故答案为:A.【分析】无理数:无限不循环小数,由此即可得出答案.3.(2分)是二元一次方程的一个解,则a的值为()A.1B.C.3D.-1【答案】B【考点】二元一次方程的解【解析】【解答】解:将x=1,y=3代入2x+ay=3得:2+3a=3,解得:a= .故答案为:B.【分析】方程的解就是能使方程的左边和右边相等的未知数的值,根据定义将将x=1,y=3代入2x+ay=3即可得出关于字母a的方程,求解即可得出a的值。
4.(2分)估计30的算术平方根在哪两个整数之间()A. 2与3B. 3与4C. 4与5D. 5与6【答案】D【考点】估算无理数的大小【解析】【解答】解:∵25<30<36,∴5<<6,故答案为:D.【分析】由25<30<36,根据算术平方根计算即可得出答案.5.(2分)下列各数中,属于无理数是()A. B. C. D.【答案】A【考点】无理数的认识【解析】【解答】解:A、为无理数,故A选项符合题意;B、为有理数,故B选项不符合题意;C、为有理数,故C选项不符合题意;D、为有理数,故D选项不符合题意;故答案为:A.【分析】无限不循环的小数就是无理数,常见的无理数有三类:①开方开不尽的数,②象0.1010010001…(两个1之间依次多一个0),③及含的式子,根据定义即可一一判断得出答案。
寺寨乡初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)如图,4根火柴棒形成象形“口”字,只通过平移火柴棒,原图形能变成的汉字是()A. B. C. D.【答案】B【考点】图形的平移【解析】【解答】解:观察可知,平移后的图形,上下火柴棒方向不变,位置改变;左右火柴棒,往中间移动,方向不变,位置改变.只有B符合.故答案为:B【分析】平移是由方向和距离决定的,不改变图形的形状和大小,所以选B.2.(2分)不等式的解集,在数轴上表示正确的是()A.B.C.D.【答案】C【考点】在数轴上表示不等式(组)的解集【解析】【解答】解:由得:1+2x≥5x≥2,因此在数轴上可表示为:故答案为:C.【分析】先解一元一次不等式(两边同乘以5去分母,移项,合并同类项,系数化为1),求出不等式的解集,再把不等式的解集表示在数轴上即可(x≥2在2的右边包括2,应用实心的圆点表示)。
3.(2分)若,,则b-a的值是()A. 31B. -31C. 29D. -30【答案】A【考点】实数的运算【解析】【解答】∵,,∴a=-27,b=4,则b-a=4+27=31,故答案为:A.【分析】由平方根的意义可得b=4,由立方根的意义可得a=-27,再将求得的a、b的值代入所求代数式即可求解。
4.(2分)如图,若AB∥CD,CD∥EF,那么AB和EF的位置关系是()A. 平行B. 相交C. 垂直D. 不能确定【答案】A【考点】平行线的判定与性质【解析】【解答】解:因为平行于同一条直线的两直线平行,所以AB∥EF.故答案为:A.【分析】若两直线同时平行于第三条直线,则这两条直线也平行.5.(2分)一元一次不等式的最小整数解为()A.B.C.1D.2【答案】C【考点】解一元一次不等式,一元一次不等式的特殊解【解析】【解答】解:∴最小整数解为1.故答案为:C.【分析】先求出不等式的解集,再求其中的最小整数.解一元一次不等式基本步骤:移项、合并同类项、系数化为1.6.(2分)x的5倍与它的一半之差不超过7,列出的关系式为()A.5x-x≥7B.5x-x≤7C.5x-x>7D.5x-x<7【答案】B【考点】一元一次不等式的应用【解析】【解答】解:根据题意,可列关系式为:5x-x≤7,故答案为:B.【分析】先求出x的5倍与它的一半,再求差,再根据题意列出不等式解答即可.注意“不超过”用数学符号表示为“≤”.7.(2分)-64的立方根是()A. ±8B. 4C. -4D. 16【答案】C【考点】立方根及开立方【解析】【解答】∵(-4)3=-64,∴-64的立方根是-4.故答案为:C.【分析】立方根是指如果一个数的立方等于a 那么这个数叫作a的立方根。
小寨乡初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)用适当的符号表示a的2倍与4的差比a的3倍小的关系式()A.2a+4<3aB.2a-4<3aC.2a-4≥3aD.2a+4≤3a【答案】B【考点】不等式及其性质【解析】【解答】解:根据题意,可由“a的2倍与4的差”得到2a-4,由“a的3倍”得到3a,然后根据题意可得:2a-4<3a故答案为:B.【分析】先表示出“a的2倍与4的差”,再表示出“a的3倍”,然后根据关键字"小"(差比a的3倍小)列出不等式即可。
2.(2分)下列图形中,∠1和∠2不是同位角的是()A. B.C. D.【答案】D【考点】同位角、内错角、同旁内角【解析】【解答】解:选项A、B、C中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;选项D中,∠1与∠2的两条边都不在同一条直线上,不是同位角.【分析】同位角是指位于两条直线的同旁,位于第三条直线的同侧。
根据同位角的构成即可判断。
3.(2分)已知是方程kx﹣y=3的解,那么k的值是()A. 2B. ﹣2C. 1D. ﹣1【答案】A【考点】二元一次方程的解【解析】【解答】解:把代入方程得:2k﹣1=3,解得:k=2,故答案为:A.【分析】利用二元一次方程租的解求另一个未知数的值,将x ,y的值带入到2K-1=3中即可.4.(2分)某校对全体学生进行体育达标检测,七、八、九三个年级共有800名学生,达标情况如表所示.则下列三位学生的说法中正确的是()甲:“七年级的达标率最低”;乙:“八年级的达标人数最少”;丙:“九年级的达标率最高”A. 甲和乙B. 乙和丙C. 甲和丙D. 甲乙丙【答案】C【考点】扇形统计图,条形统计图【解析】【解答】解:由扇形统计图可以看出:八年级共有学生800×33%=264人;七年级的达标率为×100%=87.8%;九年级的达标率为×100%=97.9%;八年级的达标率为.则九年级的达标率最高.则甲、丙的说法是正确的.【分析】先根据扇形统计图计算八年级的学生人数,然后计算三个年级的达标率即可确定结论.5.(2分)如图,已知OA⊥OB,直线CD经过顶点O,若∠BOD:∠AOC=5:2,则∠BOC=()A. 28°B. 30°C. 32°D. 35°【答案】B【考点】角的运算,余角、补角及其性质,对顶角、邻补角【解析】【解答】设∠BOD=5x°,∠AOC=2x°,∵OA⊥OB,∴∠AOB=90°,∴∠BOC=(90-2x)°,∵∠BOD+∠BOC=180°,∴90-2x+5x=180,解得:x=30,∴∠BOC=30°,故答案为:B【分析】根据图形得到∠BOD与∠BOC互补,∠BOC与∠AOC互余,再由已知列出方程,求出∠BOC的度数.6.(2分)下列各式中是二元一次方程的是()A.x+3y=5B.﹣xy﹣y=1C.2x﹣y+1D.【答案】A【考点】二元一次方程的定义【解析】【解答】解:A. x+3y=5,是二元一次方程,符合题意;B.﹣xy﹣y=1,是二元二次方程,不是二元一次方程,不符合题意;C. 2x﹣y+1,不是方程,不符合题意;D. ,不是整式方程,不符合题意,故答案为:A.【分析】含有两个未知数,未知数项的最高次数是1的整式方程,就是二元一次方程,根据定义即可一一判断:A、是二元一次方程符合题意;B、是二元二次方程,不符合题意;C、不是方程,不符合题意;D、是分式方程,不是整式方程,不符合题意。
沙寨乡初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)若a>-b>0,则关于x的不等式组的解集是()A. <x<B. 无解C. x>D. x>【答案】B【考点】不等式的解及解集,解一元一次不等式组【解析】【解答】解:原不等式组可化为因为a>-b>0,所以<0, <0.而= <1, = >1,所以< ,所以> ,所以原不等式组无解,故答案为:B.【分析】先求出不等式组中的每一个不等式的解集,再根据a>-b>0,确定不等式组的解集即可。
2.(2分)x的5倍与它的一半之差不超过7,列出的关系式为()A.5x-x≥7B.5x-x≤7C.5x-x>7D.5x-x<7【答案】B【考点】一元一次不等式的应用【解析】【解答】解:根据题意,可列关系式为:5x-x≤7,故答案为:B.【分析】先求出x的5倍与它的一半,再求差,再根据题意列出不等式解答即可.注意“不超过”用数学符号表示为“≤”.3.(2分)如果2x a﹣2b﹣3y a+b+1=0是二元一次方程,那么a,b的值分别是()A.1,0B.0,1C.﹣1,2D.2,﹣1【答案】A【考点】二元一次方程的定义【解析】【解答】解:∵2x a﹣2b﹣3y a+b+1=0是二元一次方程,∴a﹣2b=1,a+b=1,解得:a=1,b=0.故答案为:A【分析】根据二元一次方程的定义:含有两个未知数,且两个未知数的最高次数是1次的整式方程,就可建立关于a、b的二元一次方程组,解方程组求出a、b的值。
4.(2分)对于实数x,规定[x]表示不大于x的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x﹣2]=﹣1,则x 的取值范围为()A.0<x≤1B.0≤x<1C.1<x≤2D.1≤x<2【答案】A【考点】解一元一次不等式组,一元一次不等式组的应用【解析】【解答】解:由题意得解之得故答案为:A.【分析】根据[x]的定义可知,-2<[x-2]≤-1,然后解出该不等式即可求出x的范围.5.(2分)用加减法解方程组时,下列解法错误的是()A. ①×3-②×2,消去xB. ①×2-②×3,消去yC. ①×(-3)+②×2,消去xD. ①×2-②×(-3),消去y【答案】D【考点】解二元一次方程组【解析】【解答】解:A、①×3-②×2,可消去x,故不符合题意;B、①×2-②×3,可消去y,故不符合题意;C、①×(-3)+②×2,可消去x,故不符合题意;D、①×2-②×(-3),得13x-12y=31,不能消去y,符合题意.故答案为:D【分析】若要消去x,可将①×3-②×2或①×(-3)+②×2;若消去y,可将①×2-②×3,观察各选项,就可得出解法错误的选项。
户部寨乡初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)二元一次方程x-2y=1 有无数多个解,下列四组值中不是该方程的解的是()A.B.C.D.【答案】B【考点】二元一次方程组的解【解析】【解答】解:二元一次方程x-2y=1 ,当时,,故A. 是方程x-2y=1 的解;当时,,故B不是方程x-2y=1 的解;故C. 是方程x-2y=1的解;当x=-1 时,y=-1 ,故 D. 是方程x-2y=1 的解,故答案为:B【分析】分别将各选项中的x、y的值代入方程x-2y=1,去判断方程的左右两边是否相等,即可作出判断。
2.(2分)下列计算正确的是()A. B. C. D. (-2)3×(-3)2=72【答案】B【考点】实数的运算【解析】【解答】A、,A不符合题意;B、,B符合题意;C、,C不符合题意;D、(-2)3×(-3)2=-8×9=-72,D不符合题意.故答案为:B【分析】(1)由算术平方根的意义可得=3;(2)由立方根的意义可得=-2;(3)由立方根的意义可得原式=;(4)由平方和立方的意义可得原式=-89=-72.3.(2分)如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是()A.60°B.80°C.100°D.120°【答案】B【考点】平行线的性质【解析】【解答】解:∵DE∥OB∴∠ADE=∠AOB=40°,∠CDE+∠DCB=180°∵CD和DE为光线∴∠ODC=∠ADE=40°∴∠CDE=180°-40°-40°=100°∴∠BCD=180°-100°=80°。
四大寨乡初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________ 一、选择题1.(2分)如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()A.25°B.35°C.45°D.50°【答案】D【考点】平行线的性质【解析】【解答】解:∵CD∥EF,AB∥EF∴∠C=∠CFE,∠A=∠AFE∵FC平分∠AFE∴∠AFE=50°,即∠A=50°故答案为:D。
【分析】根据平行线的性质,两直线平行,内错角相等以及角平分线的性质,进行求解即可。
2.(2分)把不等式x+1≤-1的解集在数轴上表示出来,下列正确的是()A. B.C. D.【答案】D【考点】在数轴上表示不等式(组)的解集,解一元一次不等式【解析】【解答】移项并合并得,x≤-2,故此不等式的解集为:x≤-2,在数轴上表示为:故答案为:D.【分析】先求出此不等式的解集,再将解集再数轴上表示出来。
3.(2分)如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是().A. △ABC与△DEF能够重合B. ∠DEF=90°C. AC=DFD. EC=CF【答案】D【考点】平移的性质【解析】【解答】解:由平移的特征,平移前后的两个图形的形状与大小都没有发生变化,故A,B,C均成立,所以只有D符合题意.故答案为:D【分析】因为平移后的图形与原图形形状大小都不变,对应边相等,对应角相等,所以只有D不正确.4.(2分)若整数同时满足不等式与,则该整数x是()A.1B.2C.3D.2和3【答案】B【考点】解一元一次不等式组,一元一次不等式组的特殊解【解析】【解答】解:解不等式2x-9<-x得到x<3,解不等式可得x≥2,因此两不等式的公共解集为2≤x<3,因此符合条件的整数解为x=2.故答案为:B.【分析】解这两个不等式组成的不等式,求出解集,再求其中的整数.5.(2分)下列说法正确的是()A.如果一个数的立方根是这个数本身,那么这个数一定是0B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个不为零的数的立方根和这个数同号,0的立方根是0【答案】D【考点】立方根及开立方【解析】【解答】A选项中,一个数的立方根等于这个数本身的有1,-1和0,所以错误;B选项中,一个数的立方根不仅是正数或负数,还可能是零,所以错误;C选项中,负数的立方根是负数,所以错误;D选项中,正数的立方根是正的,负的的立方根是负的,0的立方根是零,所以正确。
故答案为:D【分析】正数有一个正的立方根,负数有一个负的立方根,零的立方根是零,1,-1和0的立方根都等于这个数本身。
6.(2分)若a>-b>0,则关于x的不等式组的解集是()A. <x<B. 无解C. x>D. x>【答案】B【考点】不等式的解及解集,解一元一次不等式组【解析】【解答】解:原不等式组可化为因为a>-b>0,所以<0, <0.而= <1, = >1,所以< ,所以> ,所以原不等式组无解,故答案为:B.【分析】先求出不等式组中的每一个不等式的解集,再根据a>-b>0,确定不等式组的解集即可。
7.(2分)关于x的不等式(a+2 014)x-a>2 014的解集为x<1,那么a的取值范围是()A. a>-2 014B. a<-2 014C. a>2 014D. a<2 014【答案】B【考点】不等式的解及解集,解一元一次不等式【解析】【解答】解:(a+2 014)x>a+2 014∵此不等式的解集为:x<1,∴a+2 014<0解之:a<-2 014故答案为:B【分析】先将不等式转化为(a+2 014)x>a+2 014,再根据它的解集为x<1,得出a+2 014<0,解不等式即可求解。
8.(2分)若方程ax-3y=2x+6是二元一次方程,则a必须满足()A.a≠2B.a≠-2C.a=2D.a=0【答案】A【考点】二元一次方程的定义【解析】【解答】解:先将方程移项整理可得: ,根据二元一次方程的定义可得:故答案为:A.【分析】首先将方程右边的2x改变符号后移到方程的左边,然后再合并同类项得出,根据二元一次方程的定义,方程必须含有两个未知数,从而得出不等式a-2≠0,求解即可得出a的取值范围。
9.(2分)小程对本班50名同学进行了“我最喜爱的运动项目”的调查,统计出了最喜爱跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目的人数,并根据调查结果绘制了如图所示的条形统计图.若将条形统计图转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为()A. 144°B. 75°C. 180°D. 150°【答案】A【考点】条形统计图【解析】【解答】解:20÷50×100%=40%.360°×40%=144°.故答案为:A【分析】先根据统计图计算喜爱打篮球的人数所占的百分比,然后乘以360°即可得出圆心角的度数.10.(2分)若m是9的平方根,n= ,则m、n的关系是()A.m=nB.m=-nC.m=±nD.|m|≠|n|【答案】C【考点】平方根【解析】【解答】因为(±3)2=9,所以m=±3;因为()2=3,所以n=3,所以m=±n故答案为:C【分析】由正数的平方根有两个,可以求得9的平方根,进而求得m的值,根据,可以求得n 的值,比较m与n的值即可得到它们的关系。
11.(2分)用加减法解方程组时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是()①②③④A. ①②B. ②③C. ③④D. ①④【答案】C【考点】解二元一次方程组【解析】【解答】解:试题分析:把y的系数变为相等时,①×3,②×2得,,把x的系数变为相等时,①×2,②×3得,,所以③④正确.故答案为:C.【分析】观察方程特点:若把y的系数变为相等时,①×3,②×2,就可得出结果;若把x的系数变为相等时,①×2,②×3,即可得出答案。
12.(2分)已知5x2m+3+ >1是关于x的一元一次不等式,则m的值为()A. B. - C. 1 D. -1【答案】D【考点】一元一次不等式的定义【解析】【解答】解:∵原不等式是关于x的一元一次不等式∴2m+3=1解之:m=-1故答案为:D【分析】根据一元一次不等式的定义,可得出x的次数是1,建立关于m的方程,求解即可。
二、填空题13.(1分)三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是________.【答案】【考点】解二元一次方程组【解析】【解答】解:方程整理得:,根据方程组解是,得到,解得:,故答案为:【分析】将方程组转化为,再根据题意可得出,然后求出x、y的值。
14.(1分)甲、乙两人玩摸球游戏,从放有足够多球的箱子中摸球,规定每人最多两种取法,甲每次摸4个或(3-k)个,乙每次摸5个或(5-k)个(k是常数,且0<k<3);经统计,甲共摸了16次,乙共摸了17次,并且乙至少摸了两次5个球,最终两人所摸出的球的总个数恰好相等,那么箱子中至少有球________个【答案】110【考点】二元一次方程的解【解析】【解答】解:设甲取了x次4个球,取了(16-x)次(3-k)个球,乙取了y次5个球,取了(17-y)次(5-k)个球,依题意k=1,2,当k=1时,甲总共取球的个数为4x+2(16-x)=2x+32,乙总共取球的个数为5y+4(17-y)=y+68,当k=2时,甲总共取球的个数为4x+(16-x)=3x+16,乙总共取球的个数为5y+3(17-y)=2y+51,根据最终两人所摸出的球的总个数恰好相等可得:①2x+32=y+68,即y=2x-34,由x≤16,2≤y≤17且x、y为正整数,不合题意,舍去;②2x+32=2y+51,即2x+2y=19,因x≤16,2≤y≤17且x、y为正整数,不合题意,舍去;③3x+16=y+68,即y=3x-52,因x≤16,2≤y≤17且x、y为正整数,不合题意,舍去;④3x+16=2y+51,即,因x≤16,2≤y≤17且x、y为正整数,可得x=13,y=2或x=15,y=5;所以当x=13,y=2,球的个数为3×13+16+2×2+51=110个;当x=15,y=5,球的个数为3×15+16+2×5+51=122个,所以箱子中至少有球110个.【分析】设甲取了x次4个球,取了(16-x)次(3-k)个球,乙取了y次5个球,取了(17-y)次(5-k)个球,又k是整数,且0<k<3 ,则k=1或者2,然后分别算出k=1与k=2时,甲和乙分别摸出的球的个数,根据最终两人所摸出的球的总个数恰好相等可得:①2x+32=y+68,②2x+32=2y+51,③3x+16=y+68,④3x+16=2y+51四个二元一次方程,再分别求出它们的正整数解再根据乙至少摸了两次5个球进行检验即可得出x,y的值,进而根据箱子中的球的个数至少等于两个人摸出的个数之和算出箱子中球的个数的所有情况,再比较即可算出答案。
15.(1分)的立方根是________.【答案】4【考点】立方根及开立方【解析】【解答】解:=64∴的立方根为=4.故答案为:4【分析】先求出的值,再求出64的立方根。
16.(1分)如图,在铁路旁边有一村庄,现要建一火车站,为了使该村人乘火车方便(即距离最短),请你在铁路旁选一点来建火车站(位置已选好),说明理由:________.【答案】垂线段最短【考点】垂线段最短【解析】【解答】解:依题可得:垂线段最短.故答案为:垂线段最短.【分析】根据垂线的性质:从直线外一点到这条直线上各点所连的线段中,垂线段最短.17.(1分)我们知道的整数部分为1,小数部分为,则的小数部分是________.【答案】【考点】估算无理数的大小【解析】【解答】解:∵,∴的整数部分为2,∴的小数部分为,故答案为:.【分析】由于的被开方数5介于两个相邻的完全平方数4与9之间,根据算数平方根的性质,被开方数越大,其算数平方根就越大即可得出,从而得出的整数部分是2,用减去其整数部分即可得出其小数部分。