2015年立体几何专题
- 格式:doc
- 大小:1.83 MB
- 文档页数:15
2015届高三数学立体几何专题训练1.(2013·高考新课标全国卷Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π解析:选A.原几何体为组合体:上面是长方体,下面是圆柱的一半(如图所示),其体积为V =4×2×2+12π×22×4=16+8π. 2.(2013·高考新课标全国卷Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器厚度,则球的体积为( )A.500π3 cm 3B.866π3 cm 3C.1 372π3cm 3D.2 048π3cm 3解析:选A.如图,作出球的一个截面,则MC =8-6=2(cm),BM =12AB =12×8=4(cm).设球的半径为R cm ,则R 2=OM 2+MB 2=(R -2)2+42,∴R =5,∴V 球=43π×53=500π3(cm 3).3.(2013·高考新课标全国卷Ⅱ)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( )A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l 解析:选D.根据所给的已知条件作图,如图所示.由图可知α与β相交,且交线平行于l ,故选D. 4.(2013·高考大纲全国卷)已知正四棱柱ABC D-A 1B 1C 1D 1中,AA 1=2AB ,则C D 与平面B D C 1所成角的正弦值等于( )A.23B.33C.23D.13 解析:选A.法一:如图,连接AC ,交B D 于点O ,由正四棱柱的性质,有AC ⊥B D.因为CC 1⊥平面ABC D ,所以CC 1⊥B D.又CC 1∩AC =C ,所以B D ⊥平面CC 1O .在平面CC 1O 内作CH ⊥C 1O ,垂足为H ,则B D ⊥CH .又B D ∩C 1O =O ,所以CH ⊥平面B D C 1,连接D H ,则D H 为C D 在平面B D C 1上的射影,所以∠C D H 为C D 与平面B D C 1所成的角.设AA 1=2AB =2.在Rt △COC 1中,由等面积变换易求得CH =23.在Rt △C D H 中,s in ∠C D H =CH CD =23.法二:以D 为坐标原点,建立空间直角坐标系,如图,设AA 1=2AB =2,则D(0,0,0),C (0,1,0),B (1,1,0),C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→=(0,1,2).设平面B D C 1的法向量为n =(x ,y ,z ),则n ⊥DB →,n ⊥DC 1→,所以有⎩⎪⎨⎪⎧x +y =0,y +2z =0,令y =-2,得平面B D C 1的一个法向量为n =(2,-2,1).设C D 与平面B D C 1所成的角为θ,则s in θ=|co s n ,DC →=⎪⎪⎪⎪⎪⎪n ·DC →|n ||DC →|=23.5.(2013·高考大纲全国卷)已知正四棱柱ABC D-A 1B 1C 1D 1中,AA 1=2AB ,则C D 与平面B D C 1所成角的正弦值等于( )A.23B.33C.23D.13解析:选A.法一:如图,连接AC ,交B D 于点O ,由正四棱柱的性质,有AC ⊥B D.因为CC 1⊥平面ABC D ,所以CC 1⊥B D.又CC 1∩AC =C ,所以B D ⊥平面CC 1O .在平面CC 1O 内作CH ⊥C 1O ,垂足为H ,则B D ⊥CH .又B D ∩C 1O =O ,所以CH ⊥平面B D C 1,连接D H ,则D H 为C D 在平面B D C 1上的射影,所以∠C D H 为C D 与平面B D C 1所成的角.设AA 1=2AB =2.在Rt △COC 1中,由等面积变换易求得CH =23.在Rt △C D H 中,s in ∠C D H =CH CD =23.法二:以D 为坐标原点,建立空间直角坐标系,如图,设AA 1=2AB =2,则D(0,0,0),C (0,1,0),B (1,1,0),C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→=(0,1,2).设平面B D C 1的法向量为n =(x ,y ,z ),则n ⊥DB →,n ⊥DC 1→,所以有⎩⎪⎨⎪⎧x +y =0,y +2z =0,令y =-2,得平面B D C 1的一个法向量为n =(2,-2,1).设C D 与平面B D C 1所成的角为θ,则s in θ=|co s n ,DC →=⎪⎪⎪⎪⎪⎪n ·DC →|n ||DC →|=23.6.(2013·高考山东卷)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,则该四棱锥侧面积和体积分别是( )A .45,8B .45,83C .4(5+1),83D .8,8解析:选B.由正视图知:四棱锥的底面是边长为2的正方形,四棱锥的高为2,∴V =13×22×2=83.四棱锥的侧面是全等的等腰三角形,底为2,高为5,∴S 侧=4×12×2×5=4 5.7.(2013·高考山东卷)已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为 ( )A.5π12B.π3C.π4D.π6 解析:选B.如图所示,P 为正三角形A 1B 1C 1的中心,设O 为△ABC 的中心,由题意知:PO ⊥平面ABC ,连接OA ,则∠P AO 即为P A 与平面ABC 所成的角.在正三角形ABC 中,AB =BC =AC =3,则S =34×(3)2=334,VABC -A 1B 1C 1=S ×PO =94,∴PO = 3.又AO =33×3=1,∴tan ∠P AO =POAO =3,∴∠P AO =π3.8.(2013·高考浙江卷)设m 、n 是两条不同的直线,α,β是两个不同的平面( ) A .若m ∥α,n ∥α,则m ∥n B .若m ∥α,m ∥β,则α∥β C .若m ∥n ,m ⊥α,则n ⊥α D .若m ∥α,α⊥β,则m ⊥β解析:选C.A 项,当m ∥α,n ∥α时,m ,n 可能平行,可能相交,也可能异面,故错误; B 项,当m ∥α,m ∥β时,α,β可能平行也可能相交,故错误; C 项,当m ∥n ,m ⊥α时,n ⊥α,故正确;D 项,当m ∥α,α⊥β时,m 可能与β平行,可能在β内,也可能与β相交,故错误.故选C.9.(2013·高考新课标全国卷Ⅱ)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )解析:选A.根据已知条件作出图形:四面体C 1-A 1D B ,标出各个点的坐标如图(1)所示,可以看出正视图是正方形,如图(2)所示.故选A.10.(2013·高考安徽卷)在下列命题中,不是公理的是( ) A .平行于同一个平面的两个平面相互平行B .过不在同一条直线上的三点,有且只有一个平面C .如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D .如果两个不重合的平面有一个公共点, 那么它们有且只有一条过该点的公共直线 解析:选A.A ,不是公理,是个常用的结论,需经过推理论证; B ,是平面的基本性质公理; C ,是平面的基本性质公理; D ,是平面的基本性质公理. 11.(2013·高考北京卷)如图,在正方体ABC D-A 1B 1C 1D 1中,P 为对角线B D 1的三等分点,P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个D .6个解析:选B.如图,取底面ABC D 的中心O ,连接P A ,PC ,PO . ∵AC ⊥平面DD 1B ,又PO ⊂平面DD 1B ,∴AC ⊥PO .又O 是B D 的中点,∴P A =PC .同理,取B 1C 与BC 1的交点H ,易证B 1C ⊥平面D 1C 1B ,∴B 1C ⊥PH . 又H 是B 1C 的中点,∴PB 1=PC ,∴P A =PB 1=PC . 同理可证P A 1=PC 1=P D. 又P 是B D 1的三等分点, ∴PB ≠P D 1≠PB 1≠P D ,故点P 到正方体的顶点的不同距离有4个. 12.(2013·高考辽宁卷)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210C.132D .310 解析:选C.因为直三棱柱中AB =3,AC =4,AA 1=12,AB ⊥AC ,所以BC =5,且BC 为过底面ABC 的截面圆的直径.取BC 中点D ,则O D ⊥底面ABC ,则O 在侧面BCC 1B 1内,矩形BCC 1B 1的对角线长即为球直径,所以2R =122+52=13,即R =132.13.(2013·高考浙江卷)在空间中,过点A 作平面π的垂线,垂足为B ,记B =f π(A ).设α,β是两个不同的平面,对空间任意一点P ,Q 1=f β[f α(P )],Q 2=f α[f β(P )],恒有PQ 1=PQ 2,则( )A .平面α与平面β垂直B .平面α与平面β所成的(锐)二面角为45°C .平面α与平面β平行D .平面α与平面β所成的(锐)二面角为60° 解析:选A.设P 1=f α(P ),P 2=f β(P ),则PP 1⊥α,P 1Q 1⊥β,PP 2⊥β,P 2Q 2⊥α. 若α∥β,则P 1与Q 2重合、P 2与Q 1重合,所以PQ 1≠PQ 2,所以α与β相交. 设α∩β=l ,由PP 1∥P 2Q 2,所以P ,P 1,P 2,Q 2四点共面. 同理P ,P 1,P 2,Q 1四点共面.所以P ,P 1,P 2,Q 1,Q 2五点共面,且α与β的交线l 垂直于此平面.又因为PQ 1=PQ 2,所以Q 1、Q 2重合且在l 上,四边形PP 1Q 1P 2为矩形.那么∠P 1Q 1P 2=π2为二面角α-l -β的平面角,所以α⊥β.14.(2013·高考湖南卷)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于( )A.32B .1C.2+12 D. 2 解析:选D.由于该正方体的俯视图是面积为1的正方形,侧视图是一个面积为2的矩形,因此该几何体的正视图是一个长为2,宽为1的矩形,其面积为 2.15.(2013·高考江西卷)一几何体的三视图如图所示,则该几何体的体积为( ) A .200+9π B .200+18π C .140+9π D .140+18π解析:选 A.由三视图可知该几何体的下面是一个长方体,上面是半个圆柱组成的组合体.长方体的长、宽、高分别为10、4、5,半圆柱底面圆半径为3,高为2,故组合体体积V =10×4×5+9π=200+9π.16.(2013·高考四川卷)一个几何体的三视图如图所示,则该几何体可以是( ) A .棱柱 B .棱台 C .圆柱 D .圆台解析:选D.由俯视图是圆环可排除A ,B ,由正视图和侧视图都是等腰梯形可排除C ,故选D.17.(2013·高考广东卷)某三棱锥的三视图如图所示,则该三棱锥的体积是( )A.16B.13C.23D .1解析:选B.如图,三棱锥的底面是一个直角边长为1的等腰直角三角形,有一条侧棱和底面垂直,且其长度为2,故三棱锥的高为2,故其体积V =13×12×1×1×2=13,故选B.18.(2013·高考广东卷)设l 为直线,α,β是两个不同的平面.下列命题中正确的是( ) A .若l ∥α,l ∥β,则α∥β B .若l ⊥α,l ⊥β,则α∥β C .若l ⊥α,l ∥β,则α∥β D .若α⊥β,l ∥α,则l ⊥β解析:选B.选项A ,若l ∥α,l ∥β,则α和β可能平行也可能相交,故错误; 选项B ,若l ⊥α,l ⊥β,则α∥β,故正确; 选项C ,若l ⊥α,l ∥β,则α⊥β,故错误;选项D ,若α⊥β,l ∥α,则l 与β的位置关系有三种可能:l ⊥β,l ∥β,l ⊂β,故错误.故选B.19.(2013·高考湖南卷)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于( )A .1 B. 2C.2-12D.2+12解析:选C.当正方体的俯视图是面积为1的正方形时,其正视图的最小面积为1,最大面积为 2.因为2-12<1,因此所给选项中其正视图的面积不可能为2-12,故选C.20.(2013·高考江西卷)如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥C D ,正方体的六个面所在的平面与直线C E ,E F 相交的平面个数分别记为m ,n ,那么m +n =( )A .8B .9C .10D .11解析:选A.取C D 的中点H ,连接E H ,HF .在四面体C DE F 中,C D ⊥E H ,C D ⊥FH ,所以C D ⊥平面E FH ,所以AB ⊥平面E FH ,所以正方体的左、右两个侧面与E F 平行,其余4个平面与E F 相交,即n =4.又因为C E 与AB 在同一平面内,所以C E 与正方体下底面共面,与上底面平行,与其余四个面相交,即m =4,所以m +n =4+4=8.21.(2013·高考重庆卷)某几何体的三视图如图所示,则该几何体的体积为( )A.5603B.5803 C .200 D .240解析:选C.由三视图知该几何体为直四棱柱,其底面为等腰梯形,上底长为2,下底长为8,高为4,故面积为S =(2+8)×42=20.又棱柱的高为10,所以体积V =Sh =20×10=200.22.(2013·高考广东卷)某四棱台的三视图如图所示,则该四棱台的体积是( )A .4 B.143 C.163D .6解析:选B.由三视图可还原出四棱台的直观图如图所示,其上底和下底都是正方形,边长分别是1和2,与底面垂直的棱为棱台的高,长度为2,故其体积为V =13×(12+1×4+22)×2=143,故选B.23.(2013·高考广东卷)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A .若α⊥β,m ⊂α,n ⊂β,则m ⊥ nB .若α∥β,m ⊂α,n ⊂β,则m ∥nC .若m ⊥n ,m ⊂α,n ⊂β,则α⊥βD .若m ⊥α,m ∥n ,n ∥β,则α⊥β 解析:选D.如图,在长方体ABC D-A 1B 1C 1D 1中,平面BCC 1B 1⊥平面ABC D ,BC 1⊂平面BCC 1B 1,BC ⊂平面ABC D ,而BC 1不垂直于BC ,故A 错误.平面A 1B 1C 1D 1∥平面ABC D ,B 1D 1⊂平面A 1B 1C 1D 1,AC ⊂平面ABC D ,但B 1D 1和AC 不平行,故B 错误.AB ⊥A 1D 1,AB ⊂平面ABC D ,A 1D 1⊂平面A 1B 1C 1D 1,但平面A 1B 1C 1D 1∥平面ABC D ,故C 错误.故选D.24.(2013·高考新课标全国卷Ⅰ)已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为________.解析:如图,设球O 的半径为R ,则 由AH ∶HB =1∶2得HA =13·2R =23R ,∴OH =R3.∵截面面积为π=π·(HM )2, ∴HM =1.在Rt △HMO 中,OM 2=OH 2+HM 2,∴R 2=19R 2+HM 2=19R 2+1,∴R =324.∴S 球=4πR 2=4π·(324)2=92π.答案:92π25.(2013·高考新课标全国卷Ⅱ)已知正四棱锥O -ABC D 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.解析:V 四棱锥O -ABC D =13×3×3h =322,得h =322, ∴OA 2=h 2+(AC 2)2=184+64=6.∴S 球=4πOA 2=24π. 答案:24π 26.(2013·高考浙江卷)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________cm 3.解析:由三视图可知该几何体为一个直三棱柱被截去了一个小三棱锥,如图所示.三棱柱的底面为直角三角形,且直角边长分别为3和4,三棱柱的高为5,故其体积V 1=12×3×4×5=30(cm 3),小三棱锥的底面与三棱柱的上底面相同,高为3,故其体积V 2=13×12×3×4×3=6(cm 3),所以所求几何体的体积为30-6=24(cm 3). 答案:24 27.(2013·高考大纲全国卷)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O的半径,OK =32,且圆O 与圆K 所在的平面所成的一个二面角为60°,则球O 的表面积等于________.解析:如图所示,公共弦为AB ,设球的半径为R ,则AB =R .取AB 中点M ,连接OM 、KM ,由圆的性质知OM ⊥AB ,KM ⊥AB ,所以∠KMO 为圆O 与圆K 所在平面所成的一个二面角的平面角,则∠KMO =60°.在Rt △KMO 中,OK =32,所以OM =OKsin 60°= 3.在Rt △OAM 中,因为OA 2=OM 2+AM 2,所以R 2=3+14R 2,解得R 2=4,所以球O 的表面积为4πR 2=16π.答案:16π 28.(2013·高考江苏卷)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点.设三棱锥F -A DE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=________.解析:设三棱柱的底面ABC 的面积为S ,高为h ,则其体积为V 2=Sh .因为D ,E 分别为AB ,AC 的中点,所以△A DE 的面积等于14S .又因为F 为AA 1的中点,所以三棱锥F -A DE 的高等于12h ,于是三棱锥F -A DE 的体积V 1=13×14S ·12h =124Sh =124V 2,故V 1∶V 2=1∶24.答案:1∶24 29.(2013·高考北京卷)某四棱锥的三视图如图所示,该四棱锥的体积为________.解析:由几何体的三视图可知该几何体是一个底面是正方形的四棱锥,其底面边长为3,且该四棱锥的高是1,故其体积为V =13×9×1=3.答案:3 30.(2013·高考北京卷)如图,在棱长为2的正方体ABC D-A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为________.解析:如图,过点E 作EE 1⊥平面A 1B 1C 1D 1,交直线B 1C 1于点E 1,连接D 1E 1,DE ,在平面D 1DEE 1内过点P 作PH ∥EE 1交D 1E 1于点H ,连接C 1H ,则C 1H 即为点P 到直线CC 1的距离.当点P 在线段D 1E 上运动时,点P 到直线CC 1的距离的最小值为点C 1到线段D 1E 1的距离,即为△C 1D 1E 1的边D 1E 1上的高h .∵C 1D 1=2,C 1E 1=1,∴D 1E 1=5,∴h =25=255.答案:25531.(2013·高考福建卷)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.解析:由三视图知组合体为球内接正方体,正方体的棱长为2,若球半径为R ,则2R =23,∴R = 3.∴S 球表=4πR 2=4π×3=12π.答案:12π 32.(2013·高考辽宁卷)某几何体的三视图如图所示,则该几何体的体积是________.解析:由三视图可知该几何体是一个圆柱内部挖去一个正四棱柱,圆柱底面圆半径为2,高为4,故体积为16π;正四棱柱底面边长为2,高为4,故体积为16,故题中几何体的体积为16π-16.答案:16π-1633.(2013·高考天津卷)已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.解析:设正方体棱长为a ,球半径为R ,则43πR 3=92π,∴R =32,∴3a =3,∴a = 3.答案: 3 34.(2013·高考陕西卷)某几何体的三视图如图所示, 则其表面积为________.解析:由三视图可知,该几何体为一个半径为1的半球,其表面积为半个球面面积与截面面积的和,即12×4π+π=3π.答案:3π35.某几何体的三视图如图所示,则其体积为________.解析:原几何体可视为圆锥的一半,其底面半径为1,高为2,∴其体积为13×π×12×2×12=π3.答案:π336.(2013·高考新课标全国卷Ⅰ)如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C =6,求三棱柱ABC -A 1B 1C 1的体积.解:(1)证明:取AB 的中点O ,连接OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB . 由于AB =AA 1,∠BAA 1=60°, 故△AA 1B 为等边三角形, 所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)由题设知△ABC 与△AA 1B 都是边长为2的等边三角形,所以OC =OA 1= 3. 又A 1C =6,则A 1C 2=OC 2+OA 21,故OA 1⊥OC .因为OC ∩AB =O ,所以OA 1⊥平面ABC ,OA 1为三棱柱ABC -A 1B 1C 1的高.又△ABC 的面积S △ABC =3,故三棱柱ABC -A 1B 1C 1的体积V =S △ABC ·OA 1=3.37.(2013·高考安徽卷)如图,正方体ABC D-A 1B 1C 1D 1的棱长为1,P 为BC 的中点,Q 为线段CC 1上的动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S ,则下列命题正确的是________(写出所有正确命题的编号).①当0<CQ <12时,S 为四边形;②当CQ =12时,S 为等腰梯形;③当CQ =34时,S 与C 1D 1的交点R 满足C 1R =13;④当34<CQ <1时,S 为六边形;⑤当CQ =1时,S 的面积为62.解析:①当0<CQ <12时,如图(1).在平面AA 1D 1D 内,作A E ∥PQ , 显然E 在棱DD 1上,连接E Q , 则S 是四边形APQ E.②当CQ =12时,如图(2).显然PQ ∥BC 1∥A D 1,连接D 1Q , 则S 是等腰梯形.③当CQ =34时,如图(3).作BF ∥PQ 交CC 1的延长线于点F ,则C 1F =12.作A E ∥BF ,交DD 1的延长线于点E ,D 1E =12,A E ∥PQ ,连接E Q 交C 1D 1于点R ,由于Rt △RC 1Q ∽Rt △R D 1E ,∴C 1Q ∶D 1E =C 1R ∶R D 1=1∶2,∴C 1R =13.④当34<CQ <1时,如图(3),边接RM (点M 为A E 与A 1D 1交点),显然S 为五边形APQRM .⑤当CQ =1时,如图(4).同③可作A E ∥PQ 交DD 1的延长线于点E ,交A 1D 1于点M ,显然点M 为A 1D 1的中点,所以S 为菱形APQM ,其面积为12MP ×AQ =12×2×3=62.答案:①②③⑤ 38.(2013·高考新课标全国卷Ⅱ)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB . (1)证明:BC 1∥平面A 1C D ; (2)求二面角D-A 1C -E 的正弦值.解:(1)证明:连接AC 1,交A 1C 于点F ,则F 为AC 1的中点. 又D 是AB 的中点,连接D F ,则BC 1∥D F . 因为D F ⊂平面A 1C D ,BC 1⊄平面A 1C D , 所以BC 1∥平面A 1C D.(2)由AC =CB =22AB ,得AC ⊥BC . 以C 为坐标原点,CA →的方向为x 轴正方向,建立如图所示的空间直角坐标系C -xyz .设CA =2,则D(1,1,0),E(0,2,1),A 1(2,0,2),CD →=(1,1,0),CE →=(0,2,1),CA 1→=(2,0,2).设n =(x 1,y 1,z 1)是平面A 1C D 的法向量,则⎩⎪⎨⎪⎧n ·CD →=0,n ·CA 1→=0,即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1+2z 1=0. 可取n =(1,-1,-1).同理,设m 是平面A 1C E 的法向量,则⎩⎪⎨⎪⎧m ·CE →=0,m ·CA 1→=0,可取m =(2,1,-2).从而co s n ,m =n·m|n||m|=33,故s in n ,m =63.即二面角D-A 1C -E 的正弦值为63.39.(2013·高考陕西卷)如图,四棱柱ABC D-A 1B 1C 1D 1的底面ABC D 是正方形,O 为底面中心,A 1O ⊥平面ABC D ,AB =AA 1= 2.(1)证明:A 1C ⊥平面BB 1D 1D ;(2)求平面OCB 1与平面BB 1D 1D 的夹角θ的大小.解:(1)法一:由题设易知OA ,OB ,OA 1两两垂直,以O 为原点建立如图所示的空间直角坐标系.∵AB =AA 1=2, ∴OA =OB =OA 1=1,∴A (1,0,0),B (0,1,0),C (-1,0,0),D(0,-1,0),A 1(0,0,1). 由A 1B 1→=AB →,易得B 1(-1,1,1). ∵A 1C →=(-1,0,-1),BD →=(0,-2,0),BB 1→=(-1,0,1), ∴A 1C →·BD →=0,A 1C →·BB 1→=0, ∴A 1C ⊥B D ,A 1C ⊥BB 1, ∴A 1C ⊥平面BB 1D 1D.法二:∵A 1O ⊥平面ABC D ,∴A 1O ⊥B D. 又四边形ABC D 是正方形,∴B D ⊥AC ,∴B D ⊥平面A 1OC , ∴B D ⊥A 1C .又OA 1是AC 的中垂线,∴A 1A =A 1C =2,且AC =2,∴AC 2=AA 21+A 1C 2,∴△AA 1C 是直角三角形,∴AA 1⊥A 1C .又BB 1∥AA 1,∴A 1C ⊥BB 1.又BB 1∩B D =B , ∴A 1C ⊥平面BB 1D 1D.(2)设平面OCB 1的法向量n =(x ,y ,z ). ∵OC →=(-1,0,0),OB 1→=(-1,1,1),∴⎩⎪⎨⎪⎧n ·OC →=-x =0,n ·OB 1→=-x +y +z =0,∴⎩⎪⎨⎪⎧x =0,y =-z . 取n =(0,1,-1),由(1)知,A 1C →=(-1,0,-1)是平面BB 1D 1D 的法向量,∴co s θ=|co s 〈n ,A 1C →〉|=12×2=12.又0≤θ≤π2,∴θ=π3.40.(2013·高考湖南卷)如图,在直棱柱ABC D-A 1B 1C 1D 1中,A D ∥BC ,∠BA D =90°,AC ⊥B D ,BC =1,A D =AA 1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平面AC D 1所成角的正弦值.解:法一:(1)证明:因为BB 1⊥平面ABC D ,AC ⊂平面ABC D ,所以AC ⊥BB 1. 又AC ⊥B D ,所以AC ⊥平面BB 1D.而B 1D ⊂平面BB 1D ,所以AC ⊥B 1D. (2)因为B 1C 1∥A D ,所以直线B 1C 1与平面AC D 1所成的角等于直线A D 与平面AC D 1所成的角(记为θ).连接A 1D.因为棱柱ABC D-A 1B 1C 1D 1是直棱柱,且∠B 1A 1D 1=∠BA D =90°,所以A 1B 1⊥平面A DD 1A 1,从而A 1B 1⊥A D 1.又A D =AA 1=3,所以四边形A DD 1A 1是正方形,于是A 1D ⊥A D 1.故A D 1⊥平面A 1B 1D ,于是A D 1⊥B 1D.由(1)知,AC ⊥B 1D ,所以B 1D ⊥平面AC D 1.故∠A D B 1=90°-θ.在直角梯形ABC D 中,因为AC ⊥B D ,所以∠BAC =∠A D B .从而Rt △ABC ∽Rt △D AB ,故AB DA =BCAB,即AB =DA ·BC = 3. 连接AB 1,易知△AB 1D 是直角三角形,且B 1D 2=BB 21+B D 2=BB 21+AB 2+A D 2=21,即B 1D =21.在Rt △AB 1D 中,co s ∠A D B 1=AD B 1D =321=217,即co s (90°-θ)=217.从而s in θ=217.即直线B 1C 1与平面AC D 1所成角的正弦值为217.法二:(1)证明:易知,AB ,A D ,AA 1两两垂直.如图,以A 为坐标原点,AB ,A D ,AA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设AB =t ,则相关各点的坐标为A (0,0,0),B (t,0,0),B 1(t,0,3),C (t,1,0),C 1(t,1,3),D(0,3,0),D 1(0,3,3).从而B 1D →=(-t,3,-3),AC →=(t,1,0),BD →=(-t,3,0).因为AC ⊥B D ,所以AC →·BD →=-t 2+3+0=0. 解得t =3或t =-3(舍去).于是B 1D →=(-3,3,-3),AC →=(3,1,0).因为AC →·B 1D →=-3+3+0=0,所以AC →⊥B 1D →, 即AC ⊥B 1D.(2)由(1)知,AD 1→=(0,3,3),AC →=(3,1,0),B 1C 1→=(0,1,0). 设n =(x ,y ,z )是平面AC D 1的一个法向量,则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎨⎧3x +y =0,3y +3z =0.令x =1,则n =(1,-3,3).设直线B 1C 1与平面AC D 1所成角为θ,则s in θ=|co s 〈n ,B 1C 1→〉|=|n ·B 1C 1→|n |·|B 1C 1→||=37=217,即直线B 1C 1与平面AC D 1所成角的正弦值为217.41.(2013·高考大纲全国卷)如图,四棱锥P -ABC D 中,∠ABC =∠BA D =90°,BC =2A D ,△P AB 和△P A D 都是边长为2的等边三角形.(1)证明:PB ⊥C D ;(2)求点A 到平面PC D 的距离. 解:(1)证明:如图,取BC 的中点E ,连接DE ,则四边形AB ED 为正方形. 过点P 作PO ⊥平面ABC D ,垂足为O . 连接OA ,OB ,O D ,O E.由△P AB 和△P A D 都是等边三角形知P A =PB =P D ,所以OA =OB =O D ,即点O 为正方形AB ED 对角线的交点,故O E ⊥B D. 又O E ⊥OP ,B D ∩O =O ,所以O E ⊥平面P D B ,从而PB ⊥O E. 因为O 是B D 的中点,E 是BC 的中点, 所以O E ∥C D.因此PB ⊥C D.(2)取P D 的中点F ,连接OF ,则OF ∥PB . 由(1)知,PB ⊥C D ,故OF ⊥C D.又O D =12B D =2,OP =PD 2-OD 2=2,故△PO D 为等腰三角形,因此OF ⊥P D. 又P D ∩C D =D ,所以OF ⊥平面PC D.因为A E ∥C D ,C D ⊂平面PC D ,A E ⊄平面PC D , 所以A E ∥平面PC D.因此点O 到平面PC D 的距离OF 就是点A 到平面PC D 的距离,而OF =12PB =1,所以点A 到平面PC D 的距离为1. 42.(2013·高考山东卷)如图,四棱锥P -ABC D 中,AB ⊥AC ,AB ⊥P A ,AB ∥C D ,AB =2C D ,E ,F ,G ,M ,N分别为PB ,AB ,BC ,P D ,PC 的中点.(1)求证:C E ∥平面P A D ;(2)求证:平面E FG ⊥平面E MN . 证明:(1)法一:如图,取P A 的中点H ,连接E H ,D H . 因为E 为PB 的中点,所以E H ∥AB ,E H =12AB .又AB ∥C D ,C D =12AB ,所以E H ∥C D ,E H =C D.所以四边形D C E H 是平行四边形. 所以C E ∥D H .又D H ⊂平面P A D ,C E ⊄平面P A D , 所以C E ∥平面P A D. 法二:如图,连接CF .因为F 为AB 的中点,所以AF =12AB .又C D =12AB ,所以AF =C D.又AF ∥C D ,所以四边形AFC D 为平行四边形. 所以CF ∥A D.又CF ⊄平面P A D ,所以CF ∥平面P A D.因为E ,F 分别为PB ,AB 的中点,所以E F ∥P A . 又E F ⊄平面P A D ,所以E F ∥平面P A D. 因为CF ∩E F =F ,故平面C E F ∥平面P A D. 又C E ⊂平面C E F ,所以C E ∥平面P A D. (2)因为E ,F 分别为PB ,AB 的中点, 所以E F ∥P A .又AB ⊥P A ,所以AB ⊥E F . 同理可证AB ⊥FG .又E F ∩FG =F ,E F ⊂平面E FG ,FG ⊂平面E FG , 因此AB ⊥平面E FG .又M ,N 分别为P D ,PC 的中点,所以MN ∥D C . 又AB ∥D C ,所以MN ∥AB ,所以MN ⊥平面E FG . 又MN ⊂平面E MN ,所以平面E FG ⊥平面E MN . 43.(2013·高考江西卷)如图,四棱锥P -ABC D 中,P A ⊥平面ABC D ,E 为B D 的中点,G 为P D 的中点,△D AB≌△D CB ,E A =E B =AB =1,P A =32,连接C E 并延长交A D 于F .(1)求证:A D ⊥平面CFG ;(2)求平面BCP 与平面D CP 的夹角的余弦值.解:(1)证明:在△AB D 中,因为点E 是B D 中点, 所以E A =E B =ED =AB =1,故∠BA D =π2,∠AB E =∠A E B =π3.因为△D AB ≌△D CB ,所以△E AB ≌△E CB ,从而有∠F ED =∠B E C =∠A E B =π3,所以∠F ED =∠F E A ,故E F ⊥A D ,AF =F D. 又PG =G D ,所以FG ∥P A . 又P A ⊥平面ABC D ,所以GF ⊥A D ,故A D ⊥平面CFG .(2)以点A 为坐标原点建立如图所示的坐标系,则 A (0,0,0),B (1,0,0), C ⎝⎛⎭⎫32,32,0,D(0,3,0), P ⎝⎛⎭⎫0,0,32, 故BC →=⎝⎛⎭⎫12,32,0,CP →=⎝⎛⎭⎫-32,-32,32,CD →=⎝⎛⎭⎫-32,32,0.设平面BCP 的法向量n 1=(1,y 1,z 1), 则⎩⎨⎧12+32y 1=0,-32-32y 1+32z 1=0,解得⎩⎨⎧y 1=-33,z 1=23,即n 1=⎝⎛⎭⎫1,-33,23. 设平面D CP 的法向量n 2=(1,y 2,z 2), 则⎩⎨⎧-32+32y 2=0,-32-32y 2+32z 2=0,解得⎩⎨⎧y 2=3,z 2=2,即n 2=(1,3,2).从而平面BCP 与平面D CP 的夹角的余弦值为co s θ=|n 1·n 2||n 1||n 2|=43169×8=24. 44.(2013·高考江苏卷)如图,在三棱锥S -ABC 中,平面SAB ⊥平面SBC ,AB ⊥BC ,AS =AB .过A 作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.求证:(1)平面E FG ∥平面ABC ; (2)BC ⊥SA . 证明:(1)因为AS =AB ,AF ⊥SB ,垂足为F ,所以F 是SB 的中点. 又因为E 是SA 的中点, 所以E F ∥AB .因为E F ⊄平面ABC ,AB ⊂平面ABC ,所以E F ∥平面ABC . 同理E G ∥平面ABC .又E F ∩E G =E , 所以平面E FG ∥平面ABC .(2)因为平面SAB ⊥平面SBC ,且交线为SB ,又AF ⊂平面SAB ,AF ⊥SB ,所以AF ⊥平面SBC .因为BC ⊂平面SBC ,所以AF ⊥BC .又因为AB ⊥BC ,AF ∩AB =A ,AF ⊂平面SAB ,AB ⊂平面SAB ,所以BC ⊥平面SAB . 因为SA ⊂平面SAB ,所以BC ⊥SA . 45.(2013·高考江苏卷)如图,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值;(2)求平面A D C 1与平面ABA 1所成二面角的正弦值. 解:(1)以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D(1,1,0),A 1(0,0,4),C 1(0,2,4),所以A 1B →=(2,0,-4),C 1D →=(1,-1,-4).因为co s A 1B →,C 1D →=A 1B →·C 1D →|A 1B →||C 1D →|=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010.(2)设平面A D C 1的法向量为n 1=(x ,y ,z ),因为AD →=(1,1,0),AC 1→=(0,2,4),所以n 1·AD →=0,n 1·AC 1→=0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面A D C 1的一个法向量.取平面AA 1B 的一个法向量为n 2=(0,1,0),设平面A D C 1与平面ABA 1所成二面角的大小为θ.由|co s θ|=|n 1·n 2|n 1|·|n 2||=29×1=23,得s in θ=53.因此,平面A D C 1与平面ABA 1所成二面角的正弦值为53.46.(2013·高考湖北卷)如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,直线PC ⊥平面ABC ,E ,F 分别是P A ,PC 的中点.(1)记平面B E F 与平面ABC 的交线为l ,试判断直线l 与平面P AC 的位置关系,并加以证明;(2)设(1)中的直线l 与圆O 的另一个交点为D ,且点Q 满足DQ →=12CP →.记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与E F 所成的角为α,二面角E-l -C 的大小为β,求证:s in θ=s in αs in β .解:(1)直线l ∥平面P AC .证明如下:连接E F ,因为E ,F 分别是P A ,PC 的中点,所以E F ∥AC .又E F ⊄平面ABC ,且AC ⊂平面ABC ,所以E F ∥平面ABC .而E F ⊂平面B E F ,且平面B E F ∩平面ABC =l ,所以E F ∥l .因为l ⊄平面P AC ,E F ⊂平面P AC ,所以直线l ∥平面P AC .(2)法一(综合法):如图(1),连接B D ,由(1)可知交线l 即为直线B D ,且l ∥AC . 因为AB 是⊙O 的直径,所以AC ⊥BC ,于是l ⊥BC . 已知PC ⊥平面ABC ,而l ⊂平面ABC ,所以PC ⊥l . 而PC ∩BC =C ,所以l ⊥平面PBC .连接B E ,BF ,因为BF ⊂平面PBC ,所以l ⊥BF . 故∠CBF 就是二面角E-l -C 的平面角,即∠CBF =β.由DQ →=12CP →,作D Q ∥CP ,且D Q =12CP .连接PQ ,D F ,因为F 是CP 的中点,CP =2PF ,所以D Q =PF ,从而四边形D QPF 是平行四边形,PQ ∥F D. 连接C D ,因为PC ⊥平面ABC ,所以C D 是F D 在平面ABC 内的射影.故∠C D F 就是直线PQ 与平面ABC 所成的角,即∠C D F =θ. 又B D ⊥平面PBC ,所以B D ⊥BF ,所以∠B D F 为锐角.故∠B D F 为异面直线PQ 与E F 所成的角,即∠B D F =α,于是在Rt △D CF ,Rt △FB D ,Rt △BCF 中,分别可得s in θ=CF DF ,s in α=BF DF ,s in β=CF BF,从而s in αs in β=BF DF ·CF BF =CFDF=s in θ,即s in θ=s in αs in β.法二(向量法):如图(2),由DQ →=12CP →,作D Q ∥CP ,且D Q =12CP .连接PQ ,E F ,B E ,BF ,B D.由(1)可知交线l 即为直线B D.以点C 为原点,向量CA →,CB →,CP →所在直线分别为x ,y ,z 轴,建立如图(2)所示的空间直角坐标系,设CA =a ,CB =b ,CP =2c ,则有C (0,0,0),A (a,0,0),B (0,b,0),P (0,0,2c ),Q (a ,b ,c ),E ⎝⎛⎭⎫12a ,0,c ,F (0,0,c ). 于是FE →=⎝⎛⎭⎫12a ,0,0,QP →=(-a ,-b ,c ),BF →=(0,-b ,c ), 所以co s α=|FE →·QP →||FE →||QP →|=aa 2+b 2+c 2, 从而s in α=1-cos 2α=b 2+c 2a 2+b 2+c2.取平面ABC 的一个法向量为m =(0,0,1),可得s in θ=|m ·QP →||m ||QP →|=ca 2+b 2+c 2. 设平面B E F 的一个法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧ n ·FE →=0,n ·BF →=0,可得⎩⎪⎨⎪⎧12ax =0,-by +cz =0,取n =(0,c ,b ).于是|co s β|=|m·n||m||n|=b b 2+c2,从而s in β= 1-cos 2β=cb 2+c2.故s in αs in β=b 2+c 2a 2+b 2+c 2·c b 2+c 2=c a 2+b 2+c 2=s in θ,即s in θ=s in αs in β. 47.(2013·高考浙江卷)如图,在四棱锥P -ABC D 中,P A ⊥平面ABC D ,AB =BC =2, A D =C D =7,P A =3,∠ABC =120°,G 为线段PC 上的点.(1)证明:B D ⊥平面APC ;(2)若G 为PC 的中点,求D G 与平面APC 所成的角的正切值;(3)若G 满足PC ⊥平面BG D ,求PGGC的值.解:(1)证明:设点O 为AC ,B D 的交点.由AB =BC ,A D =C D ,得B D 是线段AC 的中垂线, 所以O 为AC 的中点,B D ⊥AC .又因为P A ⊥平面ABC D ,B D ⊂平面ABC D ,所以P A ⊥B D. 所以B D ⊥平面APC . (2)连接OG .由(1)可知,O D ⊥平面APC ,则D G 在平面APC 内的射影为OG ,所以∠OG D 是D G 与平面APC 所成的角.由题意得OG =12P A =32.在△ABC 中,AC = AB 2+BC 2-2AB ·BC ·cos ∠ABC= 4+4-2×2×2×(-12)=23,所以OC =12AC = 3.在直角△OC D 中,O D =CD 2-OC 2=7-3=2.在直角△OG D 中,tan ∠OG D =OD OG =433.所以D G 与平面APC 所成的角的正切值为433.(3)因为PC ⊥平面BG D ,OG ⊂平面BG D ,所以PC ⊥OG . 在直角△P AC 中,PC =P A 2+AC 2=3+12=15,所以GC =AC ·OC PC =23×315=2155.从而PG =3155,所以PG GC =32.48.(2013·高考北京卷)如图,在四棱锥P -ABC D 中,AB ∥C D ,AB ⊥A D ,C D =2AB ,平面P A D ⊥底面ABC D ,P A ⊥A D ,E 和F 分别是C D 和PC 的中点.求证:(1)P A ⊥底面ABC D ; (2)B E ∥平面P A D ;(3)平面B E F ⊥平面PC D.证明:(1)因为平面P A D ⊥底面ABC D ,且P A 垂直于这两个平面的交线A D ,所以P A ⊥底面ABC D.(2)因为AB ∥C D ,C D =2AB ,E 为C D 的中点, 所以AB ∥DE ,且AB =DE.所以四边形AB ED 为平行四边形.所以B E ∥A D.又因为B E ⊄平面P A D ,A D ⊂平面P A D , 所以B E ∥平面P A D.(3)因为AB ⊥A D ,而且四边形AB ED 为平行四边形, 所以B E ⊥C D ,A D ⊥C D. 由(1)知P A ⊥底面ABC D , 所以P A ⊥C D.所以C D ⊥平面P A D. 所以C D ⊥P D.因为E 和F 分别是C D 和PC 的中点, 所以P D ∥E F .所以C D ⊥E F . 又因为C D ⊥B E ,E F ∩B E =E , 所以C D ⊥平面B E F .所以平面B E F ⊥平面PC D.49.(2013·高考天津卷)如图, 三棱柱ABC -A 1B 1C 1中, 侧棱A 1A ⊥底面ABC ,且各棱长均相等,D ,E ,F 分别为棱AB ,BC ,A 1C 1的中点.(1)证明E F ∥平面A 1C D ;(2)证明平面A 1C D ⊥平面A 1ABB 1;(3)求直线BC 与平面A 1C D 所成角的正弦值.解:(1)证明:如图,在三棱柱ABC -A 1B 1C 1中,AC ∥A 1C 1,且AC =A 1C 1,连接ED ,在△ABC 中,因为D ,E 分别为AB ,BC 的中点,所以DE =12AC 且DE ∥AC .又因为F 为A 1C 1的中点,可得A 1F =DE ,且A 1F ∥DE ,即四边形A 1DE F 为平行四边形,所以E F ∥D A 1.又E F ⊄平面A 1C D ,D A 1⊂平面A 1C D ,所以E F ∥平面A 1C D.(2)证明:由于底面ABC 是正三角形,D 为AB 的中点,故C D ⊥AB .又由于侧棱A 1A ⊥底面ABC ,C D ⊂平面ABC ,所以A 1A ⊥C D.又A 1A ∩AB =A ,因此C D ⊥平面A 1ABB 1.而C D ⊂平面A 1C D ,所以平面A 1C D ⊥平面A 1ABB 1.(3)在平面A 1ABB 1内,过点B 作BG ⊥A 1D 交直线A 1D 于点G ,连接CG .由于平面A 1C D ⊥平面A 1ABB 1,而直线A 1D 是平面A 1C D 与平面A 1ABB 1的交线,故BG ⊥平面A 1C D.由此可得∠BCG 为直线BC 与平面A 1C D 所成的角.设棱长为a ,可得A 1D =5a 2,由△A 1A D ∽△BG D ,易得BG =5a5.在Rt △BGC 中,s in∠BCG =BG BC =55.所以直线BC 与平面A 1C D 所成角的正弦值为55.50.(2013·高考四川卷)如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,AB =AC =2AA 1,∠BAC =120°,D ,D 1分别是线段BC ,B 1C 1的中点,P 是线段A D 的中点.(1)在平面ABC 内,试作出过点P 与平面A 1BC 平行的直线l ,说明理由,并证明直线l ⊥平面A DD 1A 1;(2)设(1)中的直线l 交AB 于点M ,交AC 于点N ,求二面角A -A 1M -N 的余弦值.解:(1)如图(1),在平面ABC 内,过点P 作直线l ∥BC ,因为l 在平面A 1BC 外,BC 在平面A 1BC 内,由直线与平面平行的判定定理可知,l ∥平面A 1BC .因为AB =AC ,D 是BC 的中点,所以BC ⊥A D ,则直线l ⊥A D.因为AA 1⊥平面ABC ,所以AA 1⊥l .又因为A D ,AA 1在平面A DD 1A 1内,且A D 与AA 1相交,所以直线l ⊥平面A DD 1A 1. (2)法一:连接A 1P ,过点A 作A E ⊥A 1P 于点E ,过点E 作E F ⊥A 1M 于点F ,连接AF . 由(1)知,MN ⊥平面A E A 1, 所以平面A E A 1⊥平面A 1MN .所以A E ⊥平面A 1MN ,则A 1M ⊥A E. 所以A 1M ⊥平面A E F ,则A 1M ⊥AF . 故∠AF E 为二面角A -A 1M -N 的平面角(设为θ).设AA 1=1,则由AB =AC =2AA 1,∠BAC =120°,有∠BA D =60°,AB =2,A D =1. 又P 为A D 的中点,所以M 为AB 的中点,且AP =12,AM =1.所以在Rt △AA 1P 中,A 1P =52.在Rt △A 1AM 中,A 1M = 2.从而A E =AA 1·AP A 1P =15,AF =AA 1·AM A 1M =12,所以s in θ=AE AF =25.所以co s θ=1-sin 2θ=1-⎝⎛⎭⎪⎫252=155. 故二面角A -A 1M -N 的余弦值为155. 法二:设A 1A =1,则AB =AC =2.如图(2),过点A 1作A 1E 平行于C 1B 1,以点A 1为坐标原点,分别以A 1E →,A 1D 1→,A 1A →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系Oxyz (点O 与点A 1重合),则A 1(0,0,0),A (0,0,1).因为P 为A D 的中点,所以M ,N 分别为AB ,AC 的中点,故M ⎝⎛⎭⎫32,12,1,N ⎝⎛⎭⎫-32,12,1,所以A 1E →=⎝⎛⎭⎫32,12,1,A 1A →=(0,0,1),NM →=(3,0,0).设平面AA 1M 的一个法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ n 1⊥A 1M →n 1⊥A 1A →,即⎩⎪⎨⎪⎧n 1·A 1M →=0,n 1·A 1A →=0,故有⎩⎪⎨⎪⎧(x 1,y 1,z 1)·⎝⎛⎭⎫32,12,1=0,(x 1,y 1,z 1)·(0,0,1)=0,从而⎩⎪⎨⎪⎧32x 1+12y 1+z 1=0,z 1=0.取x 1=1,则y 1=-3,所以n 1=(1,-3,0). 设平面A 1MN 的一个法向量为n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧ n 2⊥A 1M →,n 2⊥NM →,即⎩⎪⎨⎪⎧n 2·A 1M →=0,n 2·NM →=0,故有⎩⎪⎨⎪⎧(x 2,y 2,z 2)·⎝⎛⎭⎫32,12,1=0,(x 2,y 2,z 2)·(3,0,0)=0,从而⎩⎪⎨⎪⎧32x 2+12y 2+z 2=0,3x 2=0.取y 2=2,则z 2=-1,所以n 2=(0,2,-1). 设二面角A -A 1M -N 的平面角为θ,又θ为锐角,则co s θ=⎪⎪⎪⎪n 1·n 2|n 1||n 2|=⎪⎪⎪⎪⎪⎪(1,-3,0)·(0,2,-1)2×5 =155.故二面角A -A 1M -N 的余弦值为155.51.(2013·高考福建卷)如图,在四棱锥P -ABC D 中,P D ⊥平面ABC D ,AB ∥D C ,AB ⊥A D ,BC =5,D C =3,A D =4,∠P A D =60°.(1) 当正视方向与向量AD →的方向相同时,画出四棱锥P -ABC D 的正视图(要求标出尺寸,并写出演算过程);(2)若M 为P A 的中点,求证:D M ∥平面PBC ; (3)求三棱锥D-PBC 的体积.图(1)解:法一:(1)在梯形ABC D 中,如图(1),过点C 作C E ⊥AB ,垂足为E. 由已知得,四边形A D C E 为矩形,A E =C D =3,在Rt △B E C 中,由BC =5,C E =4,依勾股定理得B E =3,从而AB =6. 又由P D ⊥平面ABC D ,得P D ⊥A D ,从而在Rt △P D A 中,由A D =4,∠P A D =60°, 得P D =4 3.正视图如图(2)所示.图(2) 图(3)(2)如图(3),取PB 的中点N ,连接MN ,CN .在△P AB 中,∵M 是P A 的中点,∴MN ∥AB ,MN =12AB =3.又C D ∥AB ,C D =3,∴MN ∥C D ,MN =C D ,∴四边形MNC D 为平行四边形,∴D M ∥CN . 又D M ⊄平面PBC ,CN ⊂平面PBC , ∴D M ∥平面PBC .(3)V D-PBC =V P -D BC =13S △D BC ·P D , 又S △D BC =6,P D =43,所以V D-PBC =8 3.法二:(1)同法一.图(4)(2)如图(4),取AB 的中点E ,连接M E ,DE. 在梯形ABC D 中,B E ∥C D ,且B E =C D , ∴四边形BC DE 为平行四边形, ∴DE ∥BC .又DE ⊄平面PBC ,BC ⊂平面PBC , ∴DE ∥平面PBC .又在△P AB 中,M E ∥PB ,M E ⊄平面PBC ,PB ⊂平面PBC ,∴M E ∥平面PBC . 又DE ∩M E =E ,∴平面D M E ∥平面PBC .又D M ⊂平面D M E ,∴D M ∥平面PBC .。
第八章立体几何§8.1空间几何体的结构,三视图和直观图1.认识柱,锥,台,球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体,球,圆柱,圆锥,棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.高考主要考查空间几何体的结构和视图,柱,锥,台,球的定义与性质是基础,以它们为载体考查线线,线面,面面的关系是重点,三视图一般会在选择题,填空题中考查,以给出空间图形选择其三视图或给出三视图判断其空间图形的形式出现,考查空间想象能力.1.棱柱,棱锥,棱台的概念(1)棱柱:有两个面互相______,其余各面都是________,并且每相邻两个四边形的公共边都互相________,由这些面所围成的多面体叫做棱柱.※注:棱柱又分为斜棱柱和直棱柱.侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱.(2)棱锥:有一个面是________,其余各面都是有一个公共顶点的__________,由这些面所围成的多面体叫做棱锥.※注:如果棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,则这个棱锥叫做正棱锥.(3)棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,叫做棱台.※注:由正棱锥截得的棱台叫做正棱台.※2.棱柱,棱锥,棱台的性质(1)棱柱的性质侧棱都相等,侧面是______________;两个底面与平行于底面的截面是__________的多边形;过不相邻的两条侧棱的截面是______________;直棱柱的侧棱长与高相等且侧面,对角面都是________.(2)正棱锥的性质侧棱相等,侧面是全等的__________;棱锥的高,斜高和斜高在底面上的射影构成一个____________;棱锥的高,侧棱和侧棱在底面上的射影也构成一个____________;侧面的斜高,侧棱及底面边长的一半也构成一个____________;侧棱在底面上的射影,斜高在底面上的射影及底面边长的一半也构成一个____________.(3)正棱台的性质侧面是全等的____________;斜高相等;棱台的高,斜高和两底面的边心距组成一个____________;棱台的高,侧棱和两底面外接圆的半径组成一个____________;棱台的斜高,侧棱和两底面边长的一半也组成一个____________.3.圆柱,圆锥,圆台(1)圆柱,圆锥,圆台的概念分别以________的一边,__________的一直角边,________中垂直于底边的腰所在的直线为旋转轴,其余各边旋转一周而形成的曲面所围成的几何体分别叫做圆柱,圆锥,圆台.(2)圆柱,圆锥,圆台的性质圆柱,圆锥,圆台的轴截面分别是________,___________,___________;平行于底面的截面都是__________.4.球(1)球面与球的概念以半圆的______所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球.半圆的圆心叫做球的________.(2)球的截面性质球心和截面圆心的连线________截面;球心到截面的距离d与球的半径R及截面圆的半径r的关系为______________.5.平行投影在一束平行光线照射下形成的投影,叫做__________.平行投影的投影线互相__________.6.空间几何体的三视图,直观图(1)三视图①空间几何体的三视图是用正投影得到的,在这种投影下,与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的.三视图包括__________,__________,__________.②三视图尺寸关系口诀:“长对正,高平齐,宽相等.” 长对正指正视图和俯视图长度相等,高平齐指正视图和侧(左)视图高度要对齐,宽相等指俯视图和侧(左)视图的宽度要相等.(2)直观图空间几何体的直观图常用斜二测画法来画,其规则是:①在已知图形所在空间中取水平面,在水平面内作互相垂直的轴Ox ,Oy ,再作Oz 轴,使∠xOz =________且∠yOz =________.②画直观图时,把Ox ,Oy ,Oz 画成对应的轴O ′x ′,O ′y ′,O ′z ′,使∠x ′O ′y ′=____________,∠x ′O ′z ′=____________.x ′O ′y ′所确定的平面表示水平面.③已知图形中,平行于x 轴,y 轴或z 轴的线段,在直观图中分别画成____________x ′轴,y ′轴或z ′轴的线段,并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.④已知图形中平行于x 轴和z 轴的线段,在直观图中保持长度不变,平行于y 轴的线段,长度为原来的__________.⑤画图完成后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图.注:空间几何体的三视图和直观图在观察角度和投影效果上的区别是:(1)观察角度:三视图是从三个不同位置观察几何体而画出的图形,直观图是从某一点观察几何体而画出的图形;(2)投影效果:三视图是在平行投影下画出的平面图形,用斜二测画法画出的直观图是在平行投影下画出的空间图形.【自查自纠】1.(1)平行 四边形 平行 (2)多边形 三角形2.(1)平行四边形 全等 平行四边形 矩形 (2)等腰三角形 直角三角形 直角三角形 直角三角形 直角三角形(3)等腰梯形 直角梯形 直角梯形 直角梯形 3.(1)矩形 直角三角形 直角梯形 (2)矩形 等腰三角形 等腰梯形 圆4.(1)直径 球心 (2)垂直于 d =R 2-r 2 5.平行投影 平行6.(1)①正(主)视图 侧(左)视图 俯视图 (2)①90° 90°②45°(或135°) 90° ③平行于 ④一半下列说法中正确的是( ) A .棱柱的底面一定是平行四边形B .棱锥的底面一定是三角形C .棱锥被平面分成的两部分不可能都是棱锥D .棱柱被平面分成的两部分可以都是棱柱解:根据棱柱,棱锥的性质及截面性质判断,故选D.以下关于几何体的三视图的论述中,正确的是( )A .球的三视图总是三个全等的圆B .正方体的三视图总是三个全等的正方形C .水平放置的正四面体的三视图都是正三角形D .水平放置的圆台的俯视图是一个圆解:几何体的三视图要考虑视角,只有球无论选择怎样的视角,其三视图总是三个全等的圆.故选A.(2012·陕西)将正方体(如图a 所示)截去两个三棱锥,得到图b 所示的几何体,则该几何体的侧视图为( )解:还原正方体知该几何体侧视图为正方形,AD 1为实线,B1C 的正投影为A 1D ,且B 1C 被遮挡为虚线.故选B.用一张4cm×8cm 的矩形硬纸卷成圆柱的侧面,则圆柱轴截面的面积为________cm 2(接头忽略不计).解:以4cm 或8cm为底面周长,所得圆柱的轴截面面积均为32πcm 2,故填32π.已知正三角形ABC 的边长为a ,那么△ABC的平面直观图△A ′B ′C ′的面积为________.解:如图所示是实际图形和直观图.由图可知,A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图中作C ′D ′⊥A ′B ′,垂足为D ′,则C ′D ′=22O ′C ′=68a .∴S △A ′B ′C ′=12A ′B ′×C ′D ′=12×a×68a =616a 2.故填616a 2.类型一 空间几何体的结构特征(2012·湖南)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是()解:D 选项的正视图应为如图所示的图形. 故选D.【评析】本题主要考查空间想象能力,是近年高考中的热点题型.本题可用排除法一一验证:A ,B ,C 都有可能,而D 的正视图与侧视图不可能相同.若某几何体的三视图如图所示,则这个几何体的直观图可以是()解:从俯视图看,B ,D 符合,从正视图看,B 不符合,D 符合,而从侧视图看D 也是符合的.故选D.类型二 空间几何体的三视图如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为()A .6 3B .93C .12 3D .18 3解:由三视图可知该几何体是一个斜四棱柱,高h=22-1=3,底面积为9,所以体积V =9×3=9 3.故选B.【评析】通过三视图考查几何体的体积运算是较为常规的考题,考生对此并不陌生.对于空间几何体的考查,从内容上看,柱,锥的定义和相关性质是基础,以它们为载体考查三视图,体积是重点.本题给出了几何体的三视图,只要掌握三视图的画法“长对正,高平齐,宽相等”,不难将其还原得到斜四棱柱.如图所示的三个直角三角形是 一个体积为20cm 3的几何体的三视图,则h =________cm.解:由三视图可知,该几何体为三棱锥,此三棱锥的底面为直角三角形,直角边长分别为5cm ,6cm ,三棱锥的高为h cm ,则三棱锥的体积为V=13×12×5×6×h=20,解得h =4cm.故填4.类型三 空间多面体的直观图如图是一个几何体的三视图,用斜二测画法画出它的直观图.解:由三视图知该几何体是一个简单组合体,它的下部是一个正四棱台,上部是一个正四棱锥.画法:(1)画轴.如图1,画x 轴,y 轴,z 轴,使∠xOy =45°,∠xOz =90°.图1(2)画底面.利用斜二测画法画出底面ABCD ,在z 轴上截取O ′使OO ′等于三视图中相应高度,过O ′作Ox 的平行线O ′x ′,Oy 的平行线O ′y ′,利用O ′x ′与O ′y ′画出底面A ′B ′C ′D ′.(3)画正四棱锥顶点.在Oz 上截取点P ,使PO ′等于三视图中相应的高度.(4)成图.连接P A ′,PB ′,PC ′,PD ′,A ′A ,B ′B ,C ′C ,D ′D ,整理得到三视图表示的几何体的直观图如图2所示.图2【评析】根据三视图可以确定一个几何体的长,宽,高,再按照斜二测画法,建立x 轴,y 轴,z 轴,使∠xOy =45°,∠xOz =90°,确定几何体在x 轴,y 轴,z 轴方向上的长度,最后连线画出直观图.已知一个四棱锥的高为3,其底面用斜二测画法所画出的水平放置的直观图是一个边长为1的正方形,则此四棱锥的体积为( )A . 2B .6 2C .13D .2 2解:因为四棱锥的底面直观图是一个边长为1的正方形,该正方形的对角线长为2,根据斜二测画法的规则,原图底面的底边长为1,高为直观图中正方形的对角线长的两倍,即22,则原图底面积为S =2 2.因此该四棱锥的体积为V =13Sh =13×22×3=2 2.故选D.类型四 空间旋转体的直观图用一个平行于圆锥底面的平面截这个圆锥,截得圆台上,下底面的面积之比为1∶16,截去的圆锥的母线长是3cm ,求圆台的母线长.解:设圆台的母线长为l ,截得圆台的上,下底面半径分别为r ,4r .根据相似三角形的性质得, 33+l =r4r ,解得 l =9. 所以,圆台的母线长为9cm.【评析】用平行于底面的平面去截柱,锥,台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,设相关几何变量列方程求解.圆锥底面半径为1cm ,高为2cm,其中有一个内接正方体,求这个内接正方体的棱长.解:过圆锥的顶点S 和正方体底面的一条对角线CD 作圆锥的截面,得圆锥的轴截面SEF ,正方体对角面CDD 1C 1如图所示. 设正方体棱长为x ,则CC 1=x ,C 1D 1=2x .作SO ⊥EF 于O ,则SO =2,OE =1.∵△ECC 1∽△ESO ,∴CC 1SO =EC 1EO ,即x2=1-22x1, 解得x =22(cm).故内接正方体的棱长为22cm.1.在研究圆柱,圆锥,圆台的相关问题时,主要方法就是研究它们的轴截面,这是因为在轴截面中容易找到这些几何体的有关元素之间的位置关系以及数量关系.2.正多面体(1)正四面体就是棱长都相等的三棱锥,正六面体就是正方体,连接正方体六个面的中心,可得到一个正八面体,正八面体可以看作是由两个棱长都相等的正四棱锥拼接而成.(2)如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,连接A 1B ,BC 1,A 1C 1,DC 1,DA 1,DB ,可以得到一个棱长为2a 的正四面体A 1-BDC 1,其体积为正方体体积的13.(3)正方体与球有以下三种特殊情形:一是球内切于正方体;二是球与正方体的十二条棱相切;三是球外接于正方体.它们的相应轴截面如图所示(正方体的棱长为a ,球的半径为R ).3.长方体的外接球(1)长,宽,高分别为a ,b ,c 的长方体的体对角线长等于外接球的直径,即a 2+b 2+c 2=2R .(2)棱长为a 的正方体的体对角线长等于外接球的直径,即3a =2R .4.棱长为a 的正四面体(1)斜高为32a ;(2)高为63a ;(3)对棱中点连线长为22a ; (4)外接球的半径为64a ,内切球的半径为612a ;(5)正四面体的表面积为3a 2,体积为212a 3.5.三视图的正(主)视图,侧(左)视图,俯视图分别是从几何体的正前方,正左方,正上方观察几何体画出的轮廓线,对于能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示.6.一个平面图形在斜二测画法下的直观图与原图形相比发生了变化,注意原图与直观图中的“三变,三不变”.三变:坐标轴的夹角改变,与y 轴平行线段的长度改变(减半),图形改变.三不变:平行性不变,与x 轴平行的线段长度不变,相对位置不变.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系:S 直观图=24S 原图形,S 原图形=22S 直观图.1.由平面六边形沿某一方向平移形成的空间几何体是( )A .六棱锥B .六棱台C .六棱柱D .非棱柱,棱锥,棱台的一个几何体解:平面六边形沿某一方向平移形成的空间几何体符合棱柱的定义,故选C .2.下列说法中,正确的是( ) A .棱柱的侧面可以是三角形B .若棱柱有两个侧面是矩形,则该棱柱的其它侧面也是矩形C .正方体的所有棱长都相等D .棱柱的所有棱长都相等解:棱柱的侧面都是平行四边形,选项A 错误;其它侧面可能是平行四边形,选项B 错误;棱柱的侧棱与底面边长并不一定相等,选项D 错误;易知选项C 正确.故选C.3.将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括( )A .一个圆台,两个圆锥B .两个圆台,一个圆柱C .两个圆台,一个圆锥D .一个圆柱,两个圆锥解:把等腰梯形分割成两个直角三角形和一个矩形,由旋转体的定义可知所得几何体包括一个圆柱,两个圆锥.故选D.4.将正三棱柱截去三个角(如图1所示A ,B ,C 分别是△GHI三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )A B C D解:观察图形,易知图2所示几何体的侧视图为直角梯形,且EB 为直角梯形的对角线.故选A.5.(2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是()A .棱柱B .棱台C .圆柱D .圆台 解:由俯视图可知该几何体的上,下两底面为半径不等的圆,又∵正视图和侧视图相同,∴可判断其为旋转体.故选D.6.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为()A .2 2 B. 2 C .2 3 D. 3 解:由三视图可知,此多面体是四棱锥,底面是边长为2的正方形,并且有一条长为2的侧棱垂直于底面,所以最长棱长为22+22+22=2 3.故选C.7.若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于________.解:由正视图知,三棱柱是底面边长为2,高为1的正三棱柱,所以底面积为2×12×2×2×32=23,侧面积为3×2×1=6,所以其表面积为6+2 3.故填6+23.8.如图是某个圆锥的三视图,根据图中所标尺寸可得俯视图中圆的面积为________,圆锥母线长为________.解:由三视图可知,圆锥顶点在底面的射影是底面圆的中心,根据图中的数据,底面圆的半径为10,则俯视图中圆的面积为100π,母线长为302+102 =1010,故填100π;1010.9.如图a 是截去一个角的长方体,试按图示的方向画出其三视图.解:图a 中几何体三视图如图b 所示:10.如图1是某几何体的三视图,试说明该几何体的结构特征,并用斜二测画法画出它的直观图.解:图1中几何体是由上部为正六棱柱,下部为倒立的正六棱锥堆砌而成的组合体.斜二测画法:(1)画轴.如图2,画x 轴,y 轴,z 轴,使∠xOy =45°,∠xOz =∠yOz =90°.(2)画底面,利用斜二测画法画出底面ABCDEF ,在z 轴上截取O ′,使OO ′等于正六棱柱的高,过O ′作Ox 的平行线O ′x ′,Oy 的平行线O ′y ′,利用O ′x ′与O ′y ′画出底面A ′B ′C ′D ′E ′F ′.(3)画正六棱锥顶点.在Oz 上截取点P ,使PO ′等于正六棱锥的高.(4)成图.连接P A ′,PB ′,PC ′,PD ′,PE ′,PF ′,AA ′,BB ′,CC ′,DD ′,EE ′,FF ′,整理得到三视图表示的几何体的直观图如图3所示.注意:图形中平行于x 轴的线段,在直观图中保持原长度不变;平行于y 轴的线段,长度为原来的一半.11.某长方体的一条对角线长为7,在该长方体的正视图中,这条对角线的投影长为6,在该长方体的侧视图与俯视图中,这条对角线的投影长分别为a 和b ,求ab的最大值.解:如图,则有AC 1=7,DC 1=6, BC 1=a ,AC =b ,设AB =x ,AD =y ,AA 1=z ,有 x 2+y 2+z 2=7,x 2+z 2=6,∴y 2=1.∵a 2=y 2+z 2=z 2+1,b 2=x 2+y 2=x 2+1, ∴a =z 2+1,b =x 2+1. ∴ab =(z 2+1)(x 2+1)≤z 2+1+x 2+12=4,当且仅当z 2+1=x 2+1,即x =z =3时,ab 的最大值为4.水以匀速注入某容器中,容器的三视图如图所示,其中与题中容器对应的水的高度h 与时间t的函数关系图象是( )解:由三视图知其直观图为两个圆台的组合体,水是匀速注入的,所以水面高度随时间变化的变化率先逐渐减小后逐渐增大,又因为容器的对称性,所以函数图象关于一点中心对称.故选C.§8.2空间几何体的表面积与体积1.了解棱柱,棱锥,台,球的表面积和体积的计算公式.2.会利用公式求一些简单几何体的表面积与体积.高考主要考查空间几何体的侧面积,表面积,体积以及相关元素的关系与计算,这些内容常与三视图相结合,以选择题,填空题的形式出现,也可能以空间几何体为载体,考查线面关系,侧面积,表面积以及体积.1.柱体,锥体,台体的表面积(1)直棱柱,正棱锥,正棱台的侧面积S直棱柱侧=__________,S正棱锥侧=__________,S正棱台侧=__________(其中C,C′为底面周长,h为高,h′为斜高).(2)圆柱,圆锥,圆台的侧面积S圆柱侧=________,S圆锥侧=________,S圆台侧=________(其中r,r′为底面半径,l为母线长).(3)柱或台的表面积等于________与__________的和,锥体的表面积等于________与__________的和.2.柱体,锥体,台体的体积(1)棱柱,棱锥,棱台的体积V棱柱=__________,V棱锥=__________,V棱台=__________(其中S,S′为底面积,h为高).(2)圆柱,圆锥,圆台的体积V圆柱=__________,V圆锥=__________,V圆台=__________(其中r,r′为底面半径,h为高).3.球的表面积与体积(1)半径为R的球的表面积S球=________.(2)半径为R的球的体积V球=________.【自查自纠】1.(1)Ch 12Ch′12()C+C′h′(2)2πrlπrlπ(r+r′)l(3)侧面积两个底面积侧面积一个底面积2.(1)Sh 13Sh13h()S+SS′+S′(2)πr2h13πr2h13πh()r2+rr′+r′23.(1)4πR2(2)43πR3圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为()A.6π(4π+3)B.8π(3π+1)C.6π(4π+3)或8π(3π+1)D.6π(4π+1)或8π(3π+2)解:分两种情况:①以边长为6π的边为高时,4π为圆柱底面周长,则2πr=4π,r=2,∴S底=πr2=4π,S侧=6π×4π=24π2,S表=2S底+S侧=8π+24π2=8π(3π+1);②以边长为4π的边为高时,6π为圆柱底面周长,则2πr=6π,r=3.∴S底=πr2=9π,S表=2S底+S侧=18π+24π2=6π(4π+3).故选C.正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为()A.23 2 B. 2 C.23 D.43 2解:∵正三棱锥的侧面均为直角三角形,故侧面为等腰直角三角形,且直角顶点为棱锥的顶点,∴侧棱长为2,V=13×12×(2)2×2=23.故选C.已知圆柱的底面直径与高都等于球的直径,则圆柱的体积与球体积之比为()A.1∶2 B.2∶1 C.2∶3 D.3∶2解:设球半径为R,圆柱底面半径为R,高为2R.∵V球=43πR3,V圆柱=πR2·2R=2πR3,∴V圆柱∶V球=3∶2.故选D.长方体ABCD-A1B1C1D1的8个顶点在同一个球面上,且AB=2,AD=3,AA1=1,则球面面积为________.解:∵长方体ABCD-A1B1C1D1的8个顶点在同一个球面上,则外接球的直径是长方体的体对角线,而长方体的体对角线的长为AB2+AD2+AA21=22,∴半径R= 2.∴S球=4πR2=8π.故填8π.若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为____________.解:设圆锥底面半径为r,母线长为l,则⎩⎪⎨⎪⎧πr2=π,πrl=2π,有⎩⎪⎨⎪⎧r=1,l=2,从而可知圆锥的高h=l2-r2=4-1= 3.∴V=13×π×3=33π.故填33π.类型一空间几何体的面积问题如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC边上的高,沿AD把△ABD折起,使∠BDC=90°.(1)证明:平面ADB⊥平面BDC;(2)若BD=1,求三棱锥D-ABC的表面积.解:(1)证明:∵折起前AD是BC边上的高,∴沿AD把△ABD折起后,AD⊥DC,AD⊥BD.又DB∩DC=D,∴AD⊥平面BDC.又∵AD⊂平面ADB,∴平面ADB⊥平面BDC.(2)由(1)知,DA⊥BD,BD⊥DC,DC⊥DA,DB=DA=DC=1,∴AB=BC=CA= 2.从而S△DAB=S△DBC=S△DCA=12×1×1=12,S△ABC=12×2×2×sin60°=32.∴三棱锥D-ABC的表面积S=12×3+32=3+32.【评析】充分运用图形在翻折前后的不变性,如角的大小不变,线段长度不变,线线关系不变等,再由面面垂直的判定定理进行推理证明,然后再计算.(2013·福建)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图,侧视图,俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是____________.解:由三视图可知该组合体为球内接一个棱长为2的正方体,∴正方体的体对角线为球的直径2r=22+22+22=23,S球=4πr2=12π.故填12π.类型二空间旋转体的面积问题如图,半径为4的球O中有一内接圆柱,当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是______.解:如图,设球的一条半径与圆柱相应的母线的夹角为α,圆柱侧面积S=2π×4sinα×2×4cosα=32πsin2α,当α=π4时,S取最大值32π,此时球的表面积与该圆柱的侧面积之差为32π.故填32π.【评析】根据球的性质,内接圆柱上,下底面中心连线的中点为球心,且圆柱的上,下底面圆周均在球面上,球心和圆柱的上,下底面圆上的点的连线与母线的夹角相等,这些为我们建立圆柱的侧面积与上述夹角之间的函数关系提供了依据.(2012·辽宁)一个几何体的三视图如图所示,则该几何体的表面积为____________.解:由三视图知该几何体为长4宽3高1的长方体的中间挖去一个半径为1高为1的圆柱所成几何体,所以表面积为2×(4×3+4×1+3×1)-2×π×12+2π×1×1=38.故填38.类型三空间多面体的体积问题一个正三棱锥(底面是正三角形,顶点在底面的射影是底面正三角形的中心)的底面边长为6,侧棱长为15,求这个三棱锥的体积.解:如图所示为正三棱锥S-ABC,设H为正三角形ABC的中心,连接SH,则SH的长即为该正三棱锥的高.连接AH并延长交BC于E,则E为BC的中点,且AH⊥BC.∵△ABC是边长为6的正三角形,∴AE =32×6=33,AH =23AE =2 3. 在△ABC 中,S △ABC =12BC ×AE =12×6×33=93,在Rt △SHA 中,SA =15,AH =23, ∴SH =SA 2-AH 2=15-12= 3.∴V 正三棱锥=13×S △ABC ×SH =13×93×3=9.【评析】(1)求锥体的体积,要选择适当的底面和高,然后应用公式V =13Sh进行计算.(2)求空间几何体体积的常用方法为割补法和等积变换法:①割补法:将这个几何体分割成几个柱体,锥体,分别求出柱体和锥体的体积,从而得出要求的几何体的体积;②等积变换法:特别的,对于三棱锥,由于其任意一个面均可作为棱锥的底面,从而可选择更容易计算的方式来求体积;利用“等积性”还可求“点到面的距离”.如图,在多面体ABCDEF 中,已知ABCD是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A.23 B.33 C.43 D.32 解:如图,过A ,B 两点分别作AM ,BN 垂直于EF ,垂足分别为M ,N ,连接DM ,CN ,可证得DM ⊥EF ,CN ⊥EF ,则多面体ABCDEF 分为三部分,即多面体的体积V ABCDEF =V AMD -BNC +V E -AMD +V F -BNC .依题意知AEFB 为等腰梯形.易知Rt △DME Rt △CNF ,∴EM =NF =12.又BF =1,∴BN =32.作NH 垂直于BC ,则H 为BC 的中点,∴NH =22. ∴S △BNC =12·BC ·NH =24.∴V F -BNC =13·S △BNC ·NF =224, V E -AMD =V F -BNC =224,V AMD -BNC =S △BNC·MN=24. ∴V ABCDEF =23,故选A .类型四 空间旋转体的体积问题某几何体的三视图如图所示,则它的体积是( )A .8-2π3B .8-π3C .8-2πD .2π3解:由三视图知几何体为一个正方体中间去掉一个圆锥,所以它的体积是V =23-13×π×12×2=8-23π.故选A.【评析】根据已知三视图想象出该几何体的直观图,然后分析该几何体的组成,再用对应的体积公式进行计算.(2012·河南模拟)已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与其内接三角形构成,根据图中的数据可得此几何体的体积为( )A.2π3+12 B.4π3+16 C.2π6+16 D.2π3+12解:由三视图可得该几何体的上部是一个三棱锥,下部是半球,根据三视图中的数据可得V =12×43π×⎝⎛⎭⎫223+13×⎝⎛⎭⎫12×1×1×1=2π6+16.故选C.1.几何体的展开与折叠(1)几何体的表面积,除球以外,都是利用展开图求得的,利用空间问题平面化的思想,把一个平面图形折叠成一个几何体,再研究其性质,是考查空间想象能力的常用方法.(2)多面体的展开图①直棱柱的侧面展开图是矩形;②正棱锥的侧面展开图是由一些全等的等腰三角形拼成的,底面是正多边形;③正棱台的侧面展开图是由一些全等的等腰梯形拼成的,底面是正多边形.(3)旋转体的展开图①圆柱的侧面展开图是矩形,矩形的长(或宽)是底面圆周长,宽(或长)是圆柱的母线长;②圆锥的侧面展开图是扇形,扇形的半径长是圆锥的母线长,弧长是圆锥的底面周长;③圆台的侧面展开图是扇环,扇环的上,下弧长分别为圆台的上,下底面周长.注:①圆锥中母线长l 与底面半径r 和展开图扇形中半径和弧长间的关系及符号容易混淆,同学们应多动手推导,加深理解.②圆锥和圆台的侧面积公式S 圆锥侧=12cl 和S 圆台侧=12(c ′+c )l 与三角形和梯形的面积公式在形式上相同,可将二者联系起来记忆.2.空间几何体的表面积的计算方法有关空间几何体的表面积的计算通常是将空间图形问题转化为平面图形问题,这是解决立体几何问题常用的基本方法.(1)棱柱,棱锥,棱台等多面体的表面积可以分别求各面面积,再求和,对于直棱柱,正棱锥,正棱台也可直接利用公式;(2)圆柱,圆锥,圆台的侧面是曲面,计算其侧面积时需将曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和;(3)组合体的表面积应注意重合部分的处理. 3.空间几何体的体积的计算方法(1)计算柱,锥,台体的体积,关键是根据条件找出相应的底面面积和高,应注意充分利用多面体的截面和旋转轴截面,将空间问题转化为平面问题求解.(2)注意求体积的一些特殊方法:分割法,补体法,还台为锥法等,它们是计算一些不规则几何体体积常用的方法,应熟练掌握.(3)利用三棱锥的“等体积性”可以解决一些点到平面的距离问题,即将点到平面的距离视为一个三棱锥的高,通过将其顶点和底面进行转化,借助体积的不变性解决问题.4.由几何体的三视图求几何体的表面积与体积问题,一般按如下三个步骤求解:(1)由三视图想象出原几何体的形状;(2)由三视图给出的数量关系确定原几何体的数量关系;(3)如果是规则几何体,直接代入公式求解,如果不是规则几何体,通过“割补”后,转化为规则几何体求解.1.已知圆锥的正视图是边长为2的等边三角形,则该圆锥体积为( )A .2π2B .2πC .3π3D .3π 解:易知圆锥的底面直径为2,母线长为2,则该圆锥的高为22-12=3,因此其体积是13π·12×3=3π3.故选C. 2.一个长方体共一顶点的三个面的面积分别是2,3,6,则这个长方体的体对角线的长是( ) A .2 3 B .3 2 C .6 D . 6 解:设长方体的长,宽,高分别为a ,b ,c ,则有ab =2,ac =3,bc =6,解得a =1,b =2,c=3,则长方体的体对角线的长l =a 2+b 2+c 2= 6.故选D.3.一空间几何体的三视图如图所示,则该几何体的体积为( )A .2π+2 3B .4π+2 3C .2π+233D .4π+233解:该空间几何体由一圆柱和一正四棱锥组成,圆柱的底面半径为1,高为2,体积为2π,正四棱锥的底面边长为2,高为3,所以体积为13×(2)2×3=233.所以该几何体的体积为2π+233.故选C . 4.将长,宽分别为4和3的长方形ABCD 沿对角线AC 折成直二面角,得到四面体A -BCD ,则四面体A -BCD 的外接球的表面积为( )A .25πB .50πC .5πD .10π解:由题设知AC 为外接球的直径,∴2R =32+42=5,S 表=4πR 2=4π×⎝⎛⎭⎫522=25π.故选A.。
1.【2015高考安徽,理5】已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) (A )若α,β垂直于同一平面,则α与β平行 (B )若m ,n 平行于同一平面,则m 与n 平行(C )若α,β不平行,则在α内不存在与β平行的直线 (D )若m ,n 不平行,则m 与n 不可能垂直于同一平面4.【2015高考陕西,理5】一个几何体的三视图如图所示,则该几何体的表面积为( ) A .3π B .4π C .24π+ D .34π+5.【2015高考新课标1,理11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r =( ) (A )1 (B )2 (C )4 (D )86.【2015高考重庆,理5】某几何体的三视图如图所示,则该几何体的体积为A 、13π+ B 、23π+ C 、 123π+ D 、223π+7.【2015高考北京,理5】某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2+ B.4+ C.2+ D .58.【2015高考安徽,理7】一个四面体的三视图如图所示,则该四面体的表面积是( ) (A)1+(B)2 (C)1+(D)9.【2015高考新课标2,理9】已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B.64π C.144π D.256π正(主)视图11俯视图侧(左)视图2110.【2015高考山东,理7】在梯形ABCD 中,2ABC π∠=,//,222AD BC BC AD AB === .将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) (A )23π 错误!未找到引用源。
(B )43π错误!未找到引用源。
2015专题四:立体几何(教师版)题型分析考点一三视图、直观图与表面积、体积1.直观图(1)画法:常用斜二测画法.(2)规则:①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系S直观图=24S原图形,S原图形=22S直观图.2.三视图(1)几何体的三视图包括正(主)视图、侧(左)视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrlS圆台侧=π(r+r′)l2.空间几何体的表面积与体积公式名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=Sh锥体(棱锥和圆锥)S表面积=S侧+S底V=13Sh台体 (棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 3例1.等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.解析:∵OE =(2)2-1=1,∴O ′E ′=12,E ′F =24,∴直观图A ′B ′C ′D ′的面积为S ′=12×(1+3)×24=22.答案:22例2.(2013·重庆高考)某几何体的三视图如图所示,则该几何体的表面积为( )A .180B .200C .220D .240解析:选D 由三视图可知,此几何体是一个横放的直四棱柱,底面梯形的面积为(2+8)×42=20,侧面面积为2×10+2×5×10+8×10=200,故四棱柱的表面积为2×20+200=240.例3.(1)如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1 -ABC 1的体积为( )A.312 B.34 C.612D.64(2)(2013·新课标Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π[解析] (1)三棱锥B 1 -ABC 1的体积等于三棱锥A -B 1BC 1的体积,三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312.(2)根据三视图可以判断该几何体由上、下两部分组成,其中上面部分为长方体,下面部分为半个圆柱,所以组合体的体积为2×2×4+12π×22×4=16+8π.[答案] (1)A (2)A考点二 球与空间几何体的“切”“接”问题1.长方体、正方体的外接球其体对角线长为该球的直径. 2.正方体的内切球其棱长为球的直径.3.正三棱锥的外接球中要注意正三棱锥的顶点、球心及底面正三角形中心共线. 4.正四面体的外接球与内切球的半径之比为3∶1. 方法主要是“补体”和“找球心” 方法一:直接法例1、一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3 ,则此球的表面积为 . 14π练习:已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ) A. 16π B. 20π C. 24π D. 32π 方法二:构造法(构造正方体或长方体)例2(2008年福建高考题)若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是 .练习 (2010年全国卷)一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( ) A. 3π B. 4π C. 33π D. 6π 三、确定球心位置法例3、在矩形ABCD 中,AB=4,BC=3,AC 沿将矩形ABCD 折成一个直二面角B-AC-D ,则四面体ABCD 的外接球的体积为( C )π12125.A π9125.B π6125.C π3125.D四、构造直角三角形例4、正四面体的棱长为a ,则其内切球和外接球的半径是多少,体积是多少?练习: 角度一 直三棱柱的外接球1.(2013·辽宁高考)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172B .210 C.132D .310解析:选C 如图,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝⎛⎭⎫522+62=132. 角度二 正方体的外接球2.(2013·合肥模拟)一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.解析:依题意可知,新的几何体的外接球也就是原正方体的外接球,要求的直径就是正方体的体对角线;∴2R =23(R 为球的半径),∴R =3, ∴球的体积V =43πR 3=43π.答案:43π角度三 正四面体的内切球3.(2014·长春模拟)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.解析:设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a 2=63π. 答案:63π角度四 四棱锥的外接球4.四棱锥P -ABCD 的五个顶点都在一个球面上,该四棱锥的三视图如图所示,E ,F 分别是棱AB ,CD 的中点,直线EF 被球面所截得的线段长为22,则该球的表面积为( )A.9π B.3πC.22π D.12π解析:选D该几何体的直观图如图所示,该几何体可看作由正方体截得,则正方体外接球的直径即为PC.由直线EF被球面所截得的线段长为22,可知正方形ABCD对角线AC的长为22,可得a=2,在△P AC中PC=22+(22)2=23,球的半径R=3,∴S表=4πR2=4π×(3)2=12π.考点三利用空间向量求角和距离1.两条异面直线所成角的求法设两条异面直线a,b的方向向量为a,b,其夹角为θ,则cos φ=|cos θ|=|a·b||a||b|(其中φ为异面直线a,b所成的角).2.直线和平面所成的角的求法如图所示,设直线l的方向向量为e,平面α的法向量为n,直线l与平面α所成的角为φ,两向量e与n的夹角为θ,则有sin φ=|cos θ|=|n·e| |n||e|.3.求二面角的大小(1)如图①,AB,CD是二面角α -l -β的两个面内与棱l垂直的直线,则二面角的大小θ=〈AB,CD〉.(2)如图②③,n1,n2分别是二面角α -l -β的两个半平面α,β的法向量,则二面角的大小θ=〈n1,n2〉(或π-〈n1,n2〉).4.点到平面的距离的求法设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|||||cos |||AB n d AB n θ==易错点:1.求异面直线所成角时,易求出余弦值为负值而盲目得出答案而忽视了夹角为⎝ ⎛⎦⎥⎤0,π2.2.求直线与平面所成角时,注意求出夹角的余弦值的绝对值应为线面角的正弦值.3.利用平面的法向量求二面角的大小时,二面角是锐角或钝角由图形决定.由图形知二面角是锐角时cosθ=|n 1·n 2||n 1||n 2|;由图形知二面角是钝角时,cos θ=-|n 1·n 2||n 1||n 2|.当图形不能确定时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n 1,n 2的夹角是相等(一个平面的法向量指向二面角的内部,另一个平面的法向量指向二面角的外部),还是互补(两个法向量同时指向二面角的内部或外部),这是利用向量求二面角的难点、易错点.一、线线角问题1.(2013·沈阳调研)在直三棱柱A 1B 1C 1 -ABC 中,∠BCA =90°,点D 1,F 1分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是( )A.3010 B.12 C.3015D.1510解析:选A 建立如图所示的坐标系,设BC =1,则A (-1,0,0),F 1⎝⎛⎭⎫-12,0,1, B (0,-1,0),D 1⎝⎛⎭⎫-12,-12,1,则1AF =⎝⎛⎭⎫12,0,1, 1BD =⎝⎛⎭⎫-12,12,1. ∴cos 〈1AF ,1BD 〉=1AF ·1BD | 1AF ||1BD |=3010.2.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 和N 分别是A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值为________.解析:以D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,如图所示.则A (1,0,0), M ⎝⎛⎭⎫1,12,1, C (0,1,0), N ⎝⎛⎭⎫1,1,12. ∴AM =⎝⎛⎭⎫0,12,1, CN =⎝⎛⎭⎫1,0,12. 设直线AM 与CN 所成的角为θ,则 cos θ=|cos 〈AM ,CN 〉|=|AM ·CN ||AM ||CN |=121+14× 1+14=二、线面角的问题3、(2013·湖南高考)如图,在直棱柱ABCD -A 1B 1C 1D 1中,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平面ACD 1所成角的正弦值.[解]法一:(1)证明:如图1,因为BB 1⊥平面ABCD ,AC ⊂平面ABCD ,所以AC ⊥BB 1.图1又AC ⊥BD ,所以AC ⊥平面BB 1D .而B 1D ⊂平面BB 1D ,所以AC ⊥B 1D .(2)因为B 1C 1∥AD ,所以直线B 1C 1与平面ACD 1所成的角等于直线AD 与平面ACD 1所成的角(记为θ). 如图1,连接A 1D .因为棱柱ABCD -A 1B 1C 1D 1是直棱柱,且∠B 1A 1D 1=∠BAD =90°,所以A 1B 1⊥平面ADD 1A 1.从而A 1B 1⊥AD 1.又AD =AA 1=3,所以四边形ADD 1A 1是正方形,于是A 1D ⊥AD 1.故AD 1⊥平面A 1B 1D ,于是AD 1⊥B 1D .由(1)知,AC ⊥B 1D ,所以B 1D ⊥平面ACD 1.故∠ADB 1=90°-θ.在直角梯形ABCD 中,因为AC ⊥BD ,所以∠BAC =∠ADB .从而Rt △ABC ∽Rt △DAB ,故AB DA =BCAB.即AB =DA ·BC = 3. 连接AB 1,易知△AB 1D 是直角三角形,且B 1D 2=BB 21+BD 2=BB 21+AB 2+AD 2=21,即B 1D =21.在Rt △AB 1D 中,cos ∠ADB 1=AD B 1D =321=217,即cos(90°-θ)=217.从而sin θ=217. 即直线B 1C 1与平面ACD 1所成角的正弦值为217. 法二:(1)证明:易知,AB ,AD ,AA 1两两垂直.如图2,以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设AB =t ,则有A (0,0,0),B (t,0,0),B 1(t,0,3),C (t,1,0),C 1(t,1,3),D (0,3,0),D 1(0,3,3).图2从而1B D =(-t,3,-3),AC =(t,1,0),BD =(-t,3,0).因为AC ⊥BD ,所以AC ·BD =-t 2+3+0=0, 解得t =3或t =-3(舍去).于是1B D =(-3,3,-3),AC =(3,1,0).因为AC ·1B D =-3+3+0=0,所以AC ⊥1B D ,即AC ⊥B 1D . (2)由(1)知,1AD =(0,3,3),AC =(3,1,0),11B C =(0,1,0). 设n =(x ,y ,z )是平面ACD 1的一个法向量,则⎩⎪⎨⎪⎧n ·AC =0,n ·1AD =0,即⎩⎨⎧3x +y =0,3y +3z =0.令x =1,则n =(1,-3,3). 设直线B 1C 1与平面ACD 1所成角为θ,则sin θ=|cos 〈n ,11B C 〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·11B C |n |·|11B C |=37=217. 即直线B 1C 1与平面ACD 1所成角的正弦值为217. [针对训练](2013·福建高考改编)如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.解:由题意知DC ⊥AD ,D 1D ⊥DC ,D 1D ⊥AD 故以D 为原点,DA ,DC ,1DD 的方向为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系,则A (4k,0,0),C (0,6k,0),B 1(4k,3k,1),A 1(4k,0,1),所以AC =(-4k,6k,0),1AB =(0,3k,1),1AA =(0,0,1).设平面AB 1C 的法向量n =(x ,y ,z ),则由⎩⎪⎨⎪⎧AC ·n =0,1AB ·n =0,得⎩⎪⎨⎪⎧-4kx +6ky =0,3ky +z =0.取y =2,得n =(3,2,-6k ). 设AA 1与平面AB 1C 所成角为θ,则sin θ=|cos 〈1AA ,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪1AA ·n | 1AA |·|n |=6k 36k 2+13=67,解得k =1, 故所求k 的值为1.三、二面角问题4、(2013·新课标卷Ⅱ)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB . (1)证明:BC 1//平面A 1CD ; (2)求二面角D -A 1C -E 的正弦值.[解] (1)证明:连接AC1交A 1C 于点F ,则F 为AC 1的中点. 又D 是AB 的中点,连接DF ,则BC 1∥DF .因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD .(2)由AC =CB =22AB 得, AC ⊥BC .以C 为坐标原点,CA ,CB ,CC ′的方向为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系C -xyz .设CA =2,则D (1,1,0),E (0,2,1),A 1(2,0,2),CD =(1,1,0),CE =(0,2,1),1CA =(2,0,2).设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则⎩⎪⎨⎪⎧n ·CD =0,n ·1CA =0.即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1+2z 1=0.可取n =(1,-1,-1).同理,设m 是平面A 1CE 的法向量,则⎩⎪⎨⎪⎧m ·CE =0,m ·1CA =0.可取m =(2,1,-2).从而cos 〈n ,m 〉=n ·m |n ||m |=33,故sin 〈n ,m 〉=63.即二面角D -A 1C -E 的正弦值为63. [针对训练](2014·杭州模拟)如图,已知平面QBC 与直线P A 均垂直于Rt △ABC 所在平面,且P A =AB =AC . (1)求证:P A ∥平面QBC ;(2)若PQ ⊥平面QBC ,求二面角Q -PB -A 的余弦值.解:(1)证明:过点Q 作QD ⊥BC 于点D , ∵平面QBC ⊥平面ABC ,∴QD ⊥平面ABC . 又P A ⊥平面ABC ,∴QD ∥P A .又QD ⊂平面QBC ,P A ⊄平面QBC ∴P A ∥平面QBC . (2)∵PQ ⊥平面QBC ,∴∠PQB =∠PQC =90°,又PB =PC ,PQ =PQ , ∴△PQB ≌△PQC ,∴BQ =CQ .∴点D 是BC 的中点,连接AD ,则AD ⊥BC , 又AD ⊄平面QBC ,BC ⊂平面QBC , ∴AD ⊥平面QBC .∴PQ ∥AD ,AD ⊥QD , ∴四边形P ADQ 是矩形.分别以AC ,AB ,AP 所在的直线为x ,y ,z 轴建立空间直角坐标系A -xyz ,设P A =2a ,则Q (a ,a,2a ),B (0,2a,0),P (0,0,2a ),设平面QPB 的法向量为n =(x ,y ,z ), ∵PQ =(a ,a,0),PB =(0,2a ,-2a ),∴⎩⎪⎨⎪⎧ax +ay =0,2ay -2az =0,n =(1,-1,-1). 又平面P AB 的一个法向量为m =(1,0,0).设二面角Q -PB -A 为θ,则|cos θ|=|cos 〈m ,n 〉|=⎪⎪⎪⎪m·n |m|·|n|=33, 又二面角Q -PB -A 是钝角, ∴cos θ=-33,即二面角Q -PB -A 的余弦值为-33.四、 利用空间向量解决探索性问题.(2013·江西模拟)如图,四边形ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF ∥DE ,DE =3AF ,BE 与平面ABCD 所成的角为60°.(1)求证:AC ⊥平面BDE ; (2)求二面角F -BE -D 的余弦值;(3)设点M 是线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论. 解:(1)证明:∵DE ⊥平面ABCD , ∴DE ⊥AC ,∵四边形ABCD 是正方形, ∴AC ⊥BD ,又DE ∩BD =D , ∴AC ⊥平面BDE . (2)∵DE ⊥平面ABCD ,∴∠EBD 就是BE 与平面ABCD 所成的角,即∠EBD =60°. ∴EDBD= 3.由AD =3,得DE =36,AF = 6. 如图,分别以DA ,DC ,DE 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (3,0,0),F (3,0,6),E (0,0,36),B (3,3,0),C (0,3,0),∴BF =(0,-3,6),EF =(3,0,-26).设平面BEF 的一个法向量为n =(x ,y ,z ),则⎩⎨⎧n ·BF =0,n ·EF =0,即⎩⎨⎧-3y +6z =0,3x -26z =0.令z =6,则n =(4,2,6). ∵AC ⊥平面BDE ,∴CA =(3,-3,0)为平面BDE 的一个法向量,∴cos 〈n ,CA 〉=n ·CA |n ||CA |=626×32=1313.故二面角F -BE -D 的余弦值为1313. (3)依题意,设M (t ,t,0)(t >0),则AM =(t -3,t,0), ∵AM ∥平面BEF ,∴AM ·n =0, 即4(t -3)+2t =0,解得t =2.∴点M 的坐标为(2,2,0),此时DM =23DB ,∴点M 是线段BD 上靠近B 点的三等分点.[针对训练]已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 在线段BD 1上.当∠APC 最大时,三棱锥P -ABC 的体积为________.解析:以B 为坐标原点,BA 为x 轴,BC 为y 轴,BB 1为z 轴建立空间 直角坐标系(如图),设BP =λ1BD ,可得P (λ,λ,λ),再由cos ∠APC =AP ·CP | AP ||CP |可求得当λ=13时,∠APC 最大,故V P -ABC =13×12×1×1×13=118.五、近三年新课标高考试题十、立体几何(三视图1小+1小1大:(1)三视图(2)线面关系(3)与球有关的组合体(4)证明、求体积与表面积(注意规范性),作辅助线的思路(5)探索性问题的思考方法)(11)(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为解析:条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的。
2015年高考真题――立体几何1. [新课标卷1]11.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )A. 1B. 2C. 4D. 82.[全国课标2]6. 一个正方体被一个平面截取一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( ) A.B. C. D.3.[北京卷]7. 某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( ) A. 1B.C.D. 24. [天津卷]10.一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 .5. [山东卷]9. 已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.B.C.D. 6.[广东卷]6. 若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )81716151111A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交 7. [重庆卷]5. 某几何体的三视图如图所示,则该几何体的体积为( ) A.123π+ B. 136π C. 73π D. 52π8.[安徽卷]9. 一个四面体的三视图如图所示,则该四面体的表面积是( )A.1B.1+C.2D.9.[江苏卷]9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个. 若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为 .10.[浙江卷]2.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .83cmB .123cmC .3233cm D .4033cm11.[湖南卷]10.某工作的三视图如图3所示,现将该工作通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积/原工件的体积)( )A.89πB.827πC.21)πD.21)π221112212.[陕西卷]5. 一个几何体的三视图如图所示,则该几何体的表面积为( )A.3πB. 4πC. 2π+4D. 3π+313.[湖北卷]5.12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则( ) A .p 是q 的充分条件,但不是q 的必要条件 B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件14.[新课标1]18.(本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I)证明:平面AEC ⊥平面BED ;(II)若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -.15.[全国课标2]19.(本小题满分12分)如图,长方体ABCD ﹣A 1B 1C 1D 1中,AB=16,BC=10,AA 1=8,点E ,分别在A 1B 1, D 1C 1上,A 1E= D 1F=4.过点E,F 的平面α与此长方体的面相交,交线围成一个正方形. (I)在图中画出这个正方形(不必说明画法和理由) (II)求平面α把该长方体分成的两部分体积的比值.22FD C 1A 1C如图,在三棱锥E-ABC 中,平面EAB ⊥平面ABC ,三角形EAB 为等边三角形,AC ⊥ BC,且AC=BC=,O,M 分别为AB,V A 的中点.(I)求证:VB//平面MOC.(II)求证:平面MOC ⊥平面 V AB (III)求三棱锥V-ABC 的体积.17. [天津卷]17.(满分13分) 如图,已知1AA ⊥平面ABC ,11,BB AA AB=AC=3,1BC AA =,1BB =点E ,F 分别是BC ,1AC 的中点, (I )求证:EF 平面11A B BA ; (II )求证:平面1AEA ⊥平面1BCB 。
专题十 立体几何1.【2015高考安徽,理5】已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )(A )若α,β垂直于同一平面,则α与β平行(B )若m ,n 平行于同一平面,则m 与n 平行(C )若α,β不平行,则在α内不存在与β平行的直线(D )若m ,n 不平行,则m 与n 不可能垂直于同一平面【答案】D【解析】由A ,若α,β垂直于同一平面,则α,β可以相交、平行,故A 不正确;由B ,若m ,n 平行于同一平面,则m ,n 可以平行、重合、相交、异面,故B 不正确;由C ,若α,β不平行,但α平面内会存在平行于β的直线,如α平面中平行于α,β交线的直线;由D 项,其逆否命题为“若m 与n 垂直于同一平面,则m ,n 平行”是真命题,故D 项正确.所以选D.【考点定位】1.直线、平面的垂直、平行判定定理以及性质定理的应用.【名师点睛】空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.2.【2015高考北京,理4】设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】因为α,β是两个不同的平面,m 是直线且m α⊂.若“m β∥”,则平面、αβ可能相交也可能平行,不能推出//αβ,反过来若//αβ,m α⊂,则有m β∥,则“m β∥”是“αβ∥”的必要而不充分条件.考点定位:本题考点为空间直线与平面的位置关系,重点考察线面、面面平行问题和充要条件的有关知识.【名师点睛】本题考查空间直线与平面的位置关系及充要条件,本题属于基础题,本题以空间线、面位置关系为载体,考查充要条件.考查学生对空间线、面的位置关系及空间面、面的位置关系的理解及空间想象能力,重点是线面平行和面面平行的有关判定和性质.3.【2015高考新课标1,理6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
专题十 立体几何1.【2015高考安徽,理5】已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )(A )若α,β垂直于同一平面,则α与β平行(B )若m ,n 平行于同一平面,则m 与n 平行(C )若α,β不平行,则在α内不存在与β平行的直线(D )若m ,n 不平行,则m 与n 不可能垂直于同一平面【答案】D【解析】由A ,若α,β垂直于同一平面,则α,β可以相交、平行,故A 不正确;由B ,若m ,n 平行于同一平面,则m ,n 可以平行、重合、相交、异面,故B 不正确;由C ,若α,β不平行,但α平面内会存在平行于β的直线,如α平面中平行于α,β交线的直线;由D 项,其逆否命题为“若m 与n 垂直于同一平面,则m ,n 平行”是真命题,故D 项正确.所以选D.【考点定位】1.直线、平面的垂直、平行判定定理以及性质定理的应用.【名师点睛】空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.2.【2015高考北京,理4】设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】因为α,β是两个不同的平面,m 是直线且m α⊂.若“m β∥”,则平面、αβ可能相交也可能平行,不能推出//αβ,反过来若//αβ,m α⊂,则有m β∥,则“m β∥”是“αβ∥”的必要而不充分条件.考点定位:本题考点为空间直线与平面的位置关系,重点考察线面、面面平行问题和充要条件的有关知识.【名师点睛】本题考查空间直线与平面的位置关系及充要条件,本题属于基础题,本题以空间线、面位置关系为载体,考查充要条件.考查学生对空间线、面的位置关系及空间面、面的位置关系的理解及空间想象能力,重点是线面平行和面面平行的有关判定和性质.3.【2015高考新课标1,理6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
2015-2017立體幾何高考真題1、(2015年1卷6題)《九章算術》是我國古代內容極為豐富の數學名著,書中有如下問題:“今有委米依垣內角,下周八尺,高五尺。
問:積及為米幾何?”其意思為:“在屋內牆角處堆放米(如圖,米堆為一個圓錐の四分之一),米堆為一個圓錐の四分之一),米堆底部の弧長為8尺,米堆の高為5尺,問米堆の體積和堆放の米各為多少?”已知1斛米の體積約為1.62立方尺,圓周率約為3,估算出堆放斛の米約有( ) (A )14斛 (B )22斛 (C )36斛 (D )66斛【答案】B【解析】設圓錐底面半徑為r ,則12384r ⨯⨯==163r =,所以米堆の體積為211163()5433⨯⨯⨯⨯=3209,故堆放の米約為3209÷1.62≈22,故選B.考點:圓錐の性質與圓錐の體積公式2、(2015年1卷11題)圓柱被一個平面截去一部分後與半球(半徑為r )組成一個幾何體,該幾何體三視圖中の正視圖和俯視圖如圖所示.若該幾何體の表面積為16 + 20π,則r=( )(A )1 (B )2 (C )4 (D )8 【答案】B【解析】由正視圖和俯視圖知,該幾何體是半球與半個圓柱の組合體,圓柱の半徑與球の半徑都為r ,圓柱の高為2r ,其表面積為22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故選B.考點:簡單幾何體の三視圖;球の表面積公式、圓柱の測面積公式 3、(2015年1卷18題)如圖,四邊形ABCD 為菱形,∠ABC=120°,E ,F 是平面ABCD 同一側の兩點,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC.(Ⅰ)證明:平面AEC ⊥平面AFC ;(Ⅱ)求直線AE 與直線CF 所成角の余弦值. 【解析】 試題分析:(Ⅰ)連接BD ,設BD∩AC=G,連接EG ,FG ,EF ,在菱形ABCD 中,不妨設GB=1易證EG ⊥AC ,通過計算可證EG ⊥FG ,根據線面垂直判定定理可知EG ⊥平面AFC ,由面面垂直判定定理知平面AFC ⊥平面AEC ;(Ⅱ)以G 為座標原點,分別以,GB GC の方向為x 軸,y 軸正方向,||GB 為單位長度,建立空間直角坐標系G-xyz ,利用向量法可求出異面直線AE 與CF 所成角の余弦值. 試題解析:(Ⅰ)連接BD ,設BD∩AC=G,連接EG ,FG ,EF ,在菱形ABCD 中,不妨設GB=1,由∠ABC=120°,可得 由BE ⊥平面ABCD ,AB=BC 可知,AE=EC ,又∵AE ⊥EC ,∴EG ⊥AC ,在Rt △EBG 中,可得DF=2.在Rt △FDG 中,可得在直角梯形BDFE 中,由BD=2,可得 ∴222EG FG EF +=,∴EG ⊥FG ,∵AC∩FG=G,∴EG ⊥平面AFC ,∵EG ⊂面AEC ,∴平面AFC ⊥平面AEC.(Ⅱ)如圖,以G 為座標原點,分別以,GB GC の方向為x 軸,y 軸正方向,||GB 為單位長度,建立空間直角坐標系G-xyz ,由(Ⅰ)可得A (00),E (,F (-1,0,C (00),∴AE =(1,CF =(-1,).…10分故cos ,3||||AE CF AE CF AE CF ⋅<>==-. 所以直線AE 與CF 考點:空間垂直判定與性質;異面直線所成角の計算;空間想像能力,推理論證能力4、(2015年2卷6題)一個正方體被一個平面截去一部分後,剩餘部分の三視圖如右圖,則截去部分體積與剩餘部分體積の比值為( )A .81 B .71 C .61 D .51 【解析】由三視圖得,在正方體1111ABCD A BC D -中,截去四面體111A A B D -,如圖所示,,設正方體棱長為a ,則11133111326A A B D V a a -=⨯=,故剩餘幾何體體積為3331566a a a -=,所以截去部分體積與剩餘部分體積の比值為51,故選D .考點:三視圖.5、(2015年2卷9題)已知A,B 是球O の球面上兩點,∠AOB=90,C 為該球面上の動點,若三棱錐O-ABC 體積の最大值為36,則球O の表面積為( ) A .36π B .64π C .144π D .256π【解析】如圖所示,當點C 位於垂直於面AOB の直徑端點時,三棱錐O ABC -の體積最大,設球O の半徑為R ,此時2311136326O ABC C AOB V V R R R --==⨯⨯==,故6R =,則球O の表面積為24144S R ππ==,故選C .考點:外接球表面積和椎體の體積.6、(2015年2卷19題)(本題滿分12分)如圖,長方體1111ABCD A BC D -中,=16AB ,A1=10BC ,18AA =,點E ,F 分別在11A B ,11C D 上,114A E D F ==.過點E ,F の平面α與此長方體の面相交,交線圍成一個正方形.(Ⅰ)在圖中畫出這個正方形(不必說出畫法和理由); (Ⅱ)求直線AF 與平面α所成角の正弦值. 【解析】(Ⅰ)交線圍成の正方形EHGF 如圖:(Ⅱ)作EM AB ⊥,垂足為M ,則14AM AE ==,18EM AA ==,因為EHGF 為正方形,所以10EH EF BC ===.於是226MH EH EM =-=,所以10AH =.以D為座標原點,DA の方向為x 軸の正方向,建立如圖所示の空間直角坐標系D xyz -,則(10,0,0)A ,(10,10,0)H ,(10,4,8)E ,(0,4,8)F ,(10,0,0)FE =,(0,6,8)HE =-.設(,,)n x y z =是平面E H G F の法向量,則0,0,n FE n HE ⎧⋅=⎪⎨⋅=⎪⎩即100,680,x y z =⎧⎨-+=⎩所以可取(0,4,3)n =.又(10,4,8)AF =-,故45cos ,15n AF n AF n AF⋅<>==⋅.所以直線AF 與平面α所成角の正弦值為45.考點:1、直線和平面平行の性質;2、直線和平面所成の角.7、(2016年1卷6題)如圖,某幾何體の三視圖是三個半徑相等の圓及每個圓中兩條相互垂直の半徑.若該幾何體の體積是283π,則它の表面積是 (A )17π (B )18π (C )20π (D )28πD D CAE FA B CB【解析】試題分析: 該幾何體直觀圖如圖所示:是一個球被切掉左上角の18,設球の半徑為R ,則37428V R 833ππ=⨯=,解得R 2=,所以它の表面積是78の球面面積和三個扇形面積之和2271=42+32=1784S πππ⨯⨯⨯⨯故選A .考點:三視圖及球の表面積與體積8、(2016年1卷11題)平面α過正方體ABCD -A 1B 1C 1D 1の頂點A ,α//平面CB 1D 1,αI 平面ABCD =m ,αI 平面AB B 1A 1=n ,則m 、n 所成角の正弦值為(B (D)13試題分析:如圖,設平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因為//α平面11CB D ,所以//',//'m m n n ,則,m n 所成の角等於','m n 所成の角.延長AD ,過1D 作11//DE B C ,連接11,CE B D ,則CE 為'm ,同理11BF 為'n ,而111//,//BD CE B F A B ,則','m n 所成の角即為1,A B BD 所成の角,即為60︒,故,m n ,選A. 考點:平面の截面問題,面面平行の性質定理,異面直線所成の角.【名師點睛】求解本題の關鍵是作出異面直線所成角,求異面直線所成角の步驟是:平移定角、連線成形,解形求角、得鈍求補.9、(2016年1卷18題)如圖,在以A ,B ,C ,D ,E ,F 為頂點の五面體中,面ABEF 為正方形,AF =2FD ,90AFD ∠=,且二面角D -AF -E 與二面角C -BE -F 都是60.(I )證明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A の余弦值.試題解析:(I )由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ⊂平面F ABE ,故平面F ABE ⊥平面FDC E .(II )過D 作DG F ⊥E ,垂足為G ,由(I )知DG ⊥平面F ABE .以G 為座標原點,GF の方向為x 軸正方向,GF 為單位長度,建立如圖所示の空間直角坐標系G xyz -.由(I )知DF ∠E 為二面角D F -A -E の平面角,故DF 60∠E =,則DF 2=,DG 3=,可得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D .由已知,//F AB E ,所以//AB 平面FDC E . 又平面CDAB 平面FDC DC E =,故//CD AB ,CD//F E .由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 為二面角C F -BE -の平面角,C F 60∠E =.從而可得(C -.所以(C E =,()0,4,0EB =,(C 3,A =--,()4,0,0AB =-. 設(),,n x y z =是平面C B E の法向量,則C 00n n ⎧⋅E =⎪⎨⋅EB =⎪⎩,即040x y ⎧+=⎪⎨=⎪⎩, CABDEF所以可取(3,0,n =.設m 是平面CD AB の法向量,則C 0m m ⎧⋅A =⎪⎨⋅AB =⎪⎩,同理可取()0,3,4m =.則219cos ,n m n m n m ⋅==- 故二面角C E -B -A の余弦值為考點:垂直問題の證明及空間向量の應用【名師點睛】立體幾何解答題第一問通常考查線面位置關係の證明,空間中線面位置關係の證明主要包括線線、線面、面面三者の平行與垂直關係,其中推理論證の關鍵是結合空間想像能力進行推理,要防止步驟不完整或考慮不全致推理片面,該類題目難度不大,以中檔題為主.第二問一般考查角度問題,多用空間向量解決.10、(2016年2卷6題)右圖是由圓柱與圓錐組合而成の幾何體の三視圖,則該幾何體の表面積為(A )20π (B )24π (C )28π (D )32π 解析:幾何體是圓錐與圓柱の組合體,設圓柱底面圓半徑為,周長為,圓錐母線長為,圓柱高為. 由圖得,,由畢氏定理得:,,故選C .11、(2016年2卷14題)α,β是兩個平面,m ,n 是兩條線,有下列四個命題:①如果m n ⊥,m α⊥,n β∥,那麼αβ⊥. ②如果m α⊥,n α∥,那麼m n ⊥. ③如果a β∥,m α⊂,那麼m β∥.④如果m n ∥,αβ∥,那麼m 與α所成の角和n 與β所成の角相等.r c l h2r =2π4πc r ==4l =21π2S r ch cl =++表4π16π8π=++28π=其中正確の命題有 .(填寫所有正確命題の編號) 【解析】②③④12(2016年2卷19題)(本小題滿分12分)如圖,菱形ABCD の對角線AC 與BD 交於點O ,5AB =,6AC =,點E ,F 分別在AD ,CD 上,54AE CF ==,EF 交BD 於點H .將△DEF 沿EF 折到△D EF 'の位置OD '=(I )證明:DH'⊥平面ABCD ; (II )求二面角B D A C '--の正弦值.【解析】⑴證明:∵,∴,∴. ∵四邊形為菱形,∴,∴,∴,∴.∵,∴;又,, ∴,∴,∴,∴, ∴.又∵,∴面.⑵建立如圖坐標系.,,,, ,,, 設面法向量,由得,取, ∴.同理可得面の法向量, 54AE CF ==AE CFAD CD=EF AC ∥ABCD AC BD ⊥EF BD ⊥EF D H ⊥EF DH'⊥6AC =3AO =5AB =AO OB ⊥4OB =1AE OH OD AO=⋅=3DH D H '==222'OD OH D H '=+'D H OH ⊥OH EF H =I 'D H ⊥ABCD H xyz -()500B ,,()130C ,,()'003D ,,()130A -,,()430AB =u u u r ,,()'133AD =-u u u r ,,()060AC =u u u r ,,'ABD ()1n x y z =,,u r1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩430330x y x y z +=⎧⎨-++=⎩345x y z =⎧⎪=-⎨⎪=⎩()1345n =-u r ,,'AD C ()2301n =u u r,,∴,∴.13、(2016年3卷9題)如圖,網格紙上小正方形の邊長為1,粗實現畫出の是某多面體の三視圖,則該多面體の表面積為( )(A)18+ (B)54+ (C )90 (D )81 【答案】B考點:空間幾何體の三視圖及表面積.【技巧點撥】求解多面體の表面積及體積問題,關鍵是找到其中の特徵圖形,如棱柱中の矩形,棱錐中の直角三角形,棱臺中の直角梯形等,通過這些圖形,找到幾何元素間の關係,建立未知量與已知量間の關係,進行求解. 14、(2016年3卷10題)在封閉の直三棱柱111ABC A B C -內有一個體積為V の球,若AB BC ⊥,6AB =,8BC =,13AA =,則V の最大值是( ) (A )4π (B )92π(C )6π (D )323π【答案】B試題分析:要使球の體積V 最大,必須球の半徑R 最大.由題意知球の與直三棱柱の上下底面都相切時,球の半徑取得最大值32,此時球の體積為334439()3322R πππ==,故選B .考點:1、三棱柱の內切球;2、球の體積.【思維拓展】立體幾何是の最值問題通常有三種思考方向:(1)根據幾何體の結構特徵,變1212cos n n n n θ⋅=u r u u r u r u ur sin θ=動態為靜態,直觀判斷在什麼情況下取得最值;(2)將幾何體平面化,如利用展開圖,在平面幾何圖中直觀求解;(3)建立函數,通過求函數の最值來求解. 15、(2016年3卷19題)(本小題滿分12分) 如圖,四棱錐P ABC -中,PA ⊥地面ABCD ,ADBC ,3AB AD AC ===,4PA BC ==,M 為線段AD 上一點,2AM MD =,N 為PC の中點.(I )證明MN平面PAB ;(II )求直線AN 與平面PMN 所成角の正弦值.【答案】(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(Ⅰ)取PB の中點T ,然後結合條件中の數據證明四邊形AMNT 為平行四邊形,從而得到MNAT ,由此結合線面平行の判斷定理可證;(Ⅱ)以A 為座標原點,以,AD AP 所在直線分別為,y z 軸建立空間直角坐標系,然後通過求直線AN の方向向量與平面PMN 法向量の夾角來處理AN 與平面PMN 所成角.試題解析:(Ⅰ)由已知得232==AD AM ,取BP の中點T ,連接TN AT ,,由N 為PC中點知BC TN //,221==BC TN .又BC AD //,故TN AM,四邊形AMNT 為平行四邊形,於是AT MN //.因為⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB.設(,,)n x y z =為平面PMN の法向量,則⎪⎩⎪⎨⎧=⋅=⋅00PN n PM n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x ,可取(0,2,1)n =,於是||85|cos ,|||||n AN n AN n AN ⋅<>==.考點:1、空間直線與平面間の平行與垂直關係;2、棱錐の體積. 【技巧點撥】(1)證明立體幾何中の平行關係,常常是通過線線平行來實現,而線線平行常常利用三角形の中位線、平行四邊形與梯形の平行關係來推證;(2)求解空間中の角和距離常常可通過建立空間直角坐標系,利用空間向量中の夾角與距離來處理. 16、(2017年1卷7題)某多面體の三視圖如圖所示,其中正視圖和左視圖都由正方形和等腰直角三角形組成,正方形の邊長為2,俯視圖為等腰直角三角形、該多面體の各個面中有若干是梯形,這些梯形の面積之和為A .10B .12C .14D .16【答案】B【解析】由三視圖可畫出立體圖該立體圖平面內只有兩個相同の梯形の面()24226S =+⨯÷=梯6212S =⨯=全梯故選B17、(2017年1卷16題)如圖,圓形紙片の圓心為O ,半徑為5cm ,該紙片上の等邊三角形ABC の中心為O ,D 、E 、F 為元O 上の點,DBC △,ECA △,FAB △分別是一BC ,CA ,AB 為底邊の等腰三角形,沿虛線剪開後,分別以BC ,CA ,AB 為折痕折起DBC △,ECA △,FAB △,使得D ,E ,F 重合,得到三棱錐.當ABC △の邊長變化時,所得三棱錐體積(單位:3cm )の最大值為_______.【答案】【解析】由題,連接OD ,交BC 與點G ,由題,OD BC ⊥OG =,即OG の長度與BC の長度或成正比設OG x =,則BC =,5DG x =-三棱錐の高h2132ABC S x =⋅=△則213ABC V S h =⋅=△令()452510f x x x =-,5(0,)2x ∈,()3410050f x x x '=-令()0f x '>,即4320x x -<,2x <則()()280f x f =≤ 則38045V ⨯=≤∴體積最大值為3415cm18、(2017年1卷18題)如圖,在四棱錐P ABCD -中,AB CD ∥中,且90BAP CDP ∠=∠=︒.(1)證明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,求二面角A PB C --の余弦值. 【解析】(1)證明:∵90BAP CD P ∠=∠=︒∴PA AB ⊥,PD CD ⊥又∵AB CD ∥,∴PD AB ⊥又∵PD PA P =,PD 、PA ⊂平面PAD ∴AB ⊥平面PAD ,又AB ⊂平面PAB ∴平面PAB ⊥平面PAD(2)取AD 中點O ,BC 中點E ,連接PO ,OE ∵AB CD∴四邊形ABCD 為平行四邊形 ∴OE AB由(1)知,AB ⊥平面PAD∴OE ⊥平面PAD ,又PO 、AD ⊂平面PAD ∴OE PO ⊥,OE AD ⊥ 又∵PA PD =,∴PO AD ⊥ ∴PO 、OE 、AD 兩兩垂直∴以O 為座標原點,建立如圖所示の空間直角坐標系O xyz -設2PA =,∴()002D -,,、()220B ,,、()002P ,,、()202C -,,, ∴()022PD =--,,、()222PB =-,,、()2200BC =-,,設()n x y z =,,為平面PBC の法向量由00n PB n BC ⎧⋅=⎪⎨⋅=⎪⎩,得20y +=-=⎪⎩ 令1y =,則z =,0x =,可得平面PBCの一個法向量(01n =, ∵90APD ∠=︒,∴PD PA ⊥又知AB ⊥平面PAD ,PD ⊂平面PAD ∴PD AB ⊥,又PA AB A = ∴PD ⊥平面PAB即PD 是平面PABの一個法向量,(0PD =,,∴cos 23PD n PD n PD n⋅===⋅, 由圖知二面角A PB C --為鈍角,所以它の余弦值為19、(2017年2卷4題)如圖,網格紙上小正方形の邊長為1,學 科&網粗實線畫出の是某幾何體の三視圖,該幾何體由一平面將一圓柱截去一部分所得,則該幾何體の體積為( ) 【解析】 A .90π B .63π C .42π D .36π【解析】【命題意圖】本題主要考查簡單幾何體三視圖及體積,以考查考生の空間想像能力為主目の. 【解析】 【解析】解法一:常規解法【解析】從三視圖可知:一個圓柱被一截面截取一部分而剩餘の部分,具體圖像如下:【解析】從上圖可以清晰の可出剩餘幾何體形狀,該幾何體の體積分成兩部分,部分圖如下:從左圖可知:剩下の體積分上下兩部分陰影の體積,下麵陰影の體積為面部分體積即第二種體積求法:V 20、(2017年2卷10題)已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,則異面直線1AB 與1C B 所成角の余弦值為( )A B C D 【命題意圖】本題考查立體幾何中の異面直線角度の求解,意在考查考生の空間想像能力 【解析】解法一:常規解法在邊F 由三角形中位線定理和平行線平移功能,異面直線 通過幾何關係求得FH 21、(2017年2卷19題) 如圖,四棱錐P -ABCD 中,側面PAD 為等比三角形且垂直於底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD の中點. (1)證明:直線//CE 平面PAB (2)點M 在棱PC 上,且直線BM 與底面ABCD 所成銳角為o45 ,求二面角M -AB -D の余弦值【命題意圖】線面平行の判定,線面垂直の判定,面面垂直の性質,線面角、二面角の求解 【標準答案】(1)證明略;(2【基本解法1】(1)證明:取PA 中點為F ,連接EF 、AF 因為90BAD ABC ∠=∠=︒,12BC AD =所以BC 12AD 因為E 是PD の中點,所以EF12AD ,所以EF BC 所以四邊形EFBC 為平行四邊形,所以//EC BF 因為BF ⊂平面PAB ,EC ⊄平面PAB 所以直線//CE 平面PAB(2)取AD 中點為O ,連接OC OP 、因為△PAD 為等邊三角形,所以PO ⊥AD因為平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,PO ⊂平面PAD 所以PO ⊥平面ABCD因為AO BC ,所以四邊形OABC 為平行四邊形,所以//AB OC 所以OC AD ⊥以,,OC OD OP 分別為,,x y z 軸建立空間直角坐標系,如圖設1BC =,則(0,0,3),(0,1,0),(1,1,0),(1,0,0)P A B C --,所以(1,0,PC = 設(,,)M x y z ,則(,,3)PM x y z =-,(1,0,0)AB =因為點M 在棱PC 上,所以(01)PM PC λλ=≤≤,即(,,(1,0,x y z λ= 所以()M λ,所以(1,1)BM λ=- 平面ABCD の法向量為(0,0,1)n = 因為直線BM 與底面ABCD 所成角為45︒, 所以|||sin 45||cos ,|2||||(BM n BM n BM n λ⋅︒=<>===解得12λ=-()22BM =-- 設平面MAB の法向量為(,,)m x y z =,則020AB m x BM m x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩令1z =,則(0,m =所以cos ,5||||6m n m n <>==⋅ 所以求二面角M AB D --の余弦值522、(2017年3卷8題)已知圓柱の高為1,它の兩個底面の圓周在直徑為2の同一個球の球面上,則該圓柱の體積為()A .πB .3π4C.π2 D .π4【答案】B【解析】由題可知球心在圓柱體中心,圓柱體上下底面圓半徑r =,則圓柱體體積23ππ4V r h ==,故選B.23、(2017年3卷16題)為空間中兩條互相垂直の直線,等腰直角三角形ABC の直角邊AC 所在直線與,都垂直,斜邊AB 以直線AC 為旋轉軸旋轉,有下列結論:①當直線AB 與成60︒角時,AB 與成30︒角; ②當直線AB 與成60︒角時,AB 與成60︒角; ③直線AB 與所成角の最小值為45︒; ④直線AB 與所成角の最大值為60︒.其中正確の是________(填寫所有正確結論の編號) 【答案】②③【解析】由題意知,a b AC 、、三條直線兩兩相互垂直,畫出圖形如圖.不妨設圖中所示正方體邊長為1, 故||1AC =,AB =斜邊AB 以直線AC 為旋轉軸旋轉,則A 點保持不變, B 點の運動軌跡是以C 為圓心,1為半徑の圓.以C 為座標原點,以CD 為軸正方向,CB 為軸正方向, CA 為軸正方向建立空間直角坐標系. 則(1,0,0)D ,(0,0,1)A ,直線の方向單位向量(0,1,0)a =,||1a =. B 點起始座標為(0,1,0),直線の方向單位向量(1,0,0)b =,||1b =. 設B 點在運動過程中の座標(cos ,sin ,0)B θθ',其中為B C '與CD の夾角,[0,2π)θ∈.那麼'AB 在運動過程中の向量(cos ,sin ,1)AB θθ'=--,||2AB '=.設AB '與所成夾角為π[0,]2α∈,則(cos ,sin ,1)(0,1,0)cos sin |a AB θθαθ--⋅=∈'. 故ππ[,]42α∈,所以③正確,④錯誤.設AB '與所成夾角為π[0,]2β∈,cos (cos ,sin ,1)(1,0,0)cos |AB bb AB b AB βθθθ'⋅='-⋅='.當AB '與夾角為60︒時,即π3α=, sin3πθα====.∵22cos sin 1θθ+=,∴|cos |θ=∴1cos |cos |2βθ==. ∵π[0,]2β∈.∴π=3β,此時AB '與夾角為60︒.∴②正確,①錯誤.24、(2017年3卷19題)如圖,四面體ABCD 中,△ABC 是正三角形,△ACD 是直角三角形.ABD CBD ∠=∠,AB BD =.(1)證明:平面ACD ^平面ABC ;(2)過AC の平面交BD 於點E ,若平面AEC 把四面體ABCD 分成體積相等の兩部分.求二面角D AE C --の余弦值.【解析】⑴取AC 中點為O ,連接BO ,DO ; ABC ∆為等邊三角形 ∴BO AC ⊥∴AB BC = AB BCBD BDABD DBC=⎧⎪=⎨⎪∠=∠⎩ABD CBD ∴∆≅∆. DA B CED BC EO∴AD CD =,即ACD ∆為等腰直角三角形,ADC ∠ 為直角又O 為底邊AC 中點∴DO AC ⊥令AB a =,則A B A C B C B D a ====易得:O D a =,OB =∴222OD OB BD +=由畢氏定理の逆定理可得2DOB π∠=即OD OB ⊥OD AC OD OBAC OB O AC ABC OB ABC⊥⎧⎪⊥⎪⎪=⎨⎪⊂⎪⊂⎪⎩平面平面OD ABC ∴⊥平面 又∵OD ADC ⊂平面由面面垂直の判定定理可得ADC ABC ⊥平面平面 ⑵由題意可知V V D ACE B ACE --=即B ,D 到平面ACE の距離相等即E 為BD 中點以O 為原點,OA 為軸正方向,OB 為軸正方向,OD 為軸正方向,設AC a =,建立空間直角坐標系,則()0,0,0O ,,0,02a A ⎛⎫ ⎪⎝⎭,0,0,2a D ⎛⎫ ⎪⎝⎭,,0B ⎛⎫ ⎪ ⎪⎝⎭,,4a E ⎛⎫ ⎪ ⎪⎝⎭易得:,24a a AE ⎛⎫=- ⎪ ⎪⎝⎭,,0,22a a AD ⎛⎫=- ⎪⎝⎭,,0,02a OA ⎛⎫= ⎪⎝⎭ 設平面AED の法向量為1n ,平面AEC の法向量為2n ,則1100AE n AD n ⎧⋅=⎪⎨⋅=⎪⎩,解得(13,1,n =2200AE n OA n ⎧⋅=⎪⎨⋅=⎪⎩,解得(20,1,n = 若二面角D AE C --為,易知為銳角,則12127cos n n n n θ⋅==⋅主要考點:1、能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等の簡易組合)の三視圖,能識 別上述三視圖所表示の立體模型,會用斜二側法畫出它們の直觀圖 .2、瞭解球、棱柱、棱錐、臺の表面積和體積の計算公式 .3、能運用公理、定理和已獲得の結論證明一些空間圖形の位置關係の簡單命題4、掌握空間向量の線性運算及其座標表示.5、掌握空間向量の數量積及其座標表示,能運用向量の數量積判斷向量の共線與垂直.6、理解直線の方向向量與平面の法向量.7、能用向量方法解決直線與直線、直線與平面、平面與平面の夾角の計算問題,瞭解向量方法在研究立體幾何問題中の應用.。
2015年高考数学《新高考创新题型》之7:立体几何(含精析)之7.立体几何(含精析)一、选择题。
1.如图,正方体的棱长为,点在棱上,且,点是平面上的动点,且动点到直线的距离与点到点的距离的平方差为,则动点的轨迹是()A.圆B.抛物线C.双曲线D.2.如图,正四面体ABCD的顶点C在平面α内,且直线BC与平面α所成角为45°,顶点B在平面α上的射影为点O,当顶点A与点O的距离最大时,直线CD与平面α所成角的正弦值等于()A.B.C.D.3.如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点,F是侧面CDD1C1上的动点,且B1F面A1BE,则B1F与平面CDD1C1所成角的正切值构成的集合是()A.2B.C.D.,这两个球相外切,且球与正方体共顶点A的三个面相切,球与正方体共顶点的三个面相切,则两球在正方体的面上的正投影是()(创作:学科网“天骄工作室”)5.如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是()6.在如图所示的空间直角坐标系中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②7.如图,正方体的棱长为,以顶点A为球心,2为半径作一个球,则图中球面与正方体的表面相交所得到的两段弧长之和等于(创作:学科网“天骄工作室”)A.B.C.D.8.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将表面积为的鸡蛋(视为球体)放入其中,则鸡蛋中心(球心)与蛋巢底面的距离为A.B.C.D.的矩形,按图中实线切割后,将它们作为一个正四棱锥的底面(由阴影部分拼接而成)和侧面,则的取值范围是()A.(0,2) B.(0,1)C.(1,2) D.10.一个不透明圆锥体的正视图和侧视图(左视图)为两全等的正三角形.若将它倒立放在桌面上,则该圆锥体在桌面上从垂直位置倒放到水平位置的过程中(含起始位置和最终位置),其在水平桌面上正投影不可能是()设动点P在棱长为1的正方体ABCD-A1B1C1D1的对角线BD1上,记=λ.当APC为钝角时,λ的取值范围是________.12.如右图,正方体的棱长为1,P为BC的中点,Q为线段上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是________(写出所有正确命题的编号).[来源:学§科§网]①当时,S为四边形;②当时,S不为等腰梯形;③当时,S与的交点R满足;④当时,S为六边形;⑤当时,S的面积为.的正三角形硬纸,沿各边中点连线垂直折起三个小三角形,做成一个蛋托,半径为的鸡蛋(视为球体)放在其上(如图),则鸡蛋中心(球心)与蛋托底面的距离为________.平面上,将两个半圆弧和、两条直线和围成的封闭图形记为D,如图中阴影部分.记D绕y轴旋转一周而成的几何体为,过作的水平截面,所得截面面积为,试利用祖暅原理、一个平放的圆柱和一个长方体,得出的体积值为________.抛物线绕轴旋转一周形成一个如图所示的旋转体,在此旋转体内水平放入一个正方体,使正方体的一个面恰好与旋转体的开口面平齐,则此正方体的棱长是.三、解答题。
2015立体几何专题(大题)(文)1.如图,三棱锥P-ABC 中,PA ⊥平面ABC ,1,1,2,60PA AB AC BAC ===∠=o.(Ⅰ)求三棱锥P-ABC 的体积;(Ⅱ)证明:在线段PC 上存在点M ,使得AC ⊥BM ,并求PM MC的值.2.如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =.A(Ⅰ)若D 为线段AC 的中点,求证C A ⊥平面D P O ;(Ⅱ)求三棱锥P ABC -体积的最大值;3. 如图,三棱台DEF ABC -中,2AB DE G H =,,分别为AC BC ,的中点.(Ⅰ)求证://BD 平面FGH ;(Ⅱ)若CF BC AB BC ⊥⊥,,求证:平面BCD ⊥平面EGH .4.如图1,在直角梯形ABCD 中,//,,2AD BC BAD AB BC π∠==12AD a ==,E 是AD 的中点,O 是OC 与BE 的交点,将ABE ∆沿BE 折起到图2中1A BE ∆的位置,得到四棱锥1A BCDE -.(Ⅰ)证明:CD ⊥平面1AOC ;(Ⅱ)当平面1A BE ⊥平面BCDE 时,四棱锥1A BCDE -的体积为,求a 的值.5.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F ,G ,H 标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG 与平面ACH 的位置关系.并说明你的结论.(Ⅲ)证明:直线DF ⊥平面BEG6.如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(Ⅰ)证明:平面AEC ⊥平面BED ;(Ⅱ)若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -积.7.如图,在三棱锥111ABC A B C -中,11ABC 90AB AC 2,AA 4,A ∠====,在底面ABC 的射影为BC 的中点,D 为11B C 的中点.(1)证明:11D A BC A ⊥平面;(2)求直线1A B 和平面11B C B C 所成的角的正弦值.8.如图,圆锥的顶点为P ,底面的一条直径为AB ,C 为半圆弧AB 的中点,E 为劣弧CB 的中点.已知2=PO ,1=OA ,求三棱锥AOC P -的体积,并求异面直线PA 与OE 所成角的大小.。
一、选择题2.【2013高考北京文第8题】如图,在正方体ABCD-AB1C1D1中,P为对角线BD1的三等分点,P到1各顶点的距离的不同取值有().A.3个B.4个C.5个D.6个【答案】B【解析】试题分析:设正方体的棱长为a.建立空间直角坐标系,如图所示.4.【2015高考北京,文7】某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B C D.2【答案】C【解析】四棱锥的直观图如图所示:由三视图可知,SC ⊥平面CD AB ,S A 是四棱锥最长的棱,SA ===,故选C .【考点定位】三视图.5. 【2014高考广东卷.文.9】若空间中四条直线两两不同的直线1l .2l .3l .4l ,满足12l l ⊥,23//l l ,34l l ⊥,则下列结论一定正确的是( )A .14l l ⊥B .14//l lC .1l .4l 既不平行也不垂直D .1l .4l 的位置关系不确定 【答案】D【解析】如下图所示,在正方体1111ABCD A B C D -中,取1AA 为2l ,1BB 为3l ,取AD 为1l ,BC 为4l ,【考点定位】本题考查空间中直线的位置关系的判定,属于中等题.6. 【2013高考广东卷.文.6】某三棱锥的三视图如图所示,则该三棱锥的体积是().A .16 B .13 C .23D .1 【答案】B【考点定位】本题考查立体几何中的三视图与体积,属于基础题9. 【2015高考广东,文6】若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交 【答案】A【考点定位】空间点、线、面的位置关系.10. 【2013高考广东卷.文.8】设l 为直线,α,β是两个不同的平面.下列命题中正确的是().A .若l ∥α,l ∥β,则α∥βB .若l ⊥α,l ⊥β,则α∥βC .若l ⊥α,l ∥β,则α∥βD .若α⊥β,l ∥α,则l ⊥β 【答案】B【解析】如图,在正方体A 1B 1C 1D 1-ABCD 中,【考点定位】本题考查立体几何中线,面之间的平行垂直关系,属于能力题13.【 2014湖南文8】一块石材表示的几何体的三视图如图2所示,将石材切削、打磨、加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4【答案】B【考点定位】三视图 内切圆 球 三棱柱14. 【2013湖南,文7】已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积( ).A B .1 C 【答案】D【解析】如图所示,正方体ABCD -A 1B 1C 1D 1的俯视图为ABCD ,侧视图为BB 1D 1D ,故该正方体的正视图应为AA 1C 1C .又因AC .15. 【2015高考湖南,文10】某工作的三视图如图3所示,现将该工作通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积/原工件的体积)( )A 、89πB 、827πC D【答案】A【考点定位】三视图、基本不等式求最值、圆锥的内接长方体16. 【2013山东,文4】一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如下图所示,则该四棱锥侧面积和体积分别是( ).A .45,8B .45,83C .4(5+1),83D .8,8 【答案】B【解析】由正(主)视图数据可知正四棱锥的底面是边长为2的正方形,高也是2,如图:由图可知PO =2,OE =1,所以PE 22215+=, 所以V =13×4×2=83,S =1425=452⨯20. 【2014高考陕西版文第5题】将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为( ).4A π .3B π .2C π .D π【答案】C考点:旋转体;几何体的侧面积.21. 【2015高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+【答案】D【解析】由几何体的三视图可知该几何体为圆柱的截去一半,所以该几何体的表面积为21121222342πππ⨯⨯+⨯⨯⨯+⨯=+,故答案选D【考点定位】1.空间几何体的三视图;2.空间几何体的表面积.24. 【2014全国2,文6】如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( ) A.2717 B.95 C.2710 D.31【答案】C【解析】由三视图还原几何体为一个小圆柱和大圆柱组成的简单组合体.其中小圆柱底面半径为2、高为4,大圆柱底面半径为3、高为2,则其体积和为22243234πππ⨯⨯+⨯⨯=,而圆柱形毛坯体积为23654ππ⨯⨯=,故切削部分体积为20π,从而切削的部分的体积与原来毛坯体积的比值为20105427ππ=. 25. 【2013课标全国Ⅱ,文9】一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ).【答案】:A【解析】:如图所示,该四面体在空间直角坐标系O -xyz 的图像为下图:则它在平面zOx 的投影即正视图为,故选A.27. 【2014全国2,文7】正三棱柱111ABC A B C -的底面边长为2,D 为BC 中点,则三棱锥11A B DC -的体积为( )(A )3 (B )32 (C )1 (DD A 1C 1AB 1BC【答案】C30. 【2013四川,文2】一个几何体的三视图如图所示,则该几何体可以是( )(A )棱柱 (B )棱台 (C )圆柱 (D )圆台31. 【2014四川,文4】某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是( )(锥体体积公式:13V Sh =,其中S 为底面面积,h 为高) A 、3B 、2CD 、1侧视图俯视图11222211【答案】D【考点定位】空间几何体的三视图和体积.35. 【2015高考新课标1,文6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) (A )14斛 (B )22斛 (C )36斛 (D )66斛【答案】B【考点定位】圆锥的性质与圆锥的体积公式36. 【2014全国1,文8】如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱【答案】B【解析】根据三视图的法则:长对正,高平齐,宽相等.可得几何体如下图所示.38. 【2013课标全国Ⅰ,文11】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π 【答案】:A【解析】:该几何体为一个半圆柱与一个长方体组成的一个组合体.V 半圆柱=12π×22×4=8π, V 长方体=4×2×2=16.所以所求体积为16+8π.故选A.40. 【2015高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( ) (A )1 (B )2(C )4 (D )8【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B. 【考点定位】简单几何体的三视图;球的表面积公式;圆柱的测面积公式41. 【2014年.浙江卷.文3】某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A. 372cmB. 390cmC. 3108cmD. 3138cm 【答案】B 【解析】试题分析:由三视图知,原几何体是由一个长方体与一个三棱柱组成, 其体积为)(90343216433cm V =⨯⨯⨯+⨯⨯=,故选B. 考点:根据三视图还原几何体,求原几何体的体积,容易题.42. 【2014年.浙江卷.文6】设m 、n 是两条不同的直线,α、β是两个不同的平面,则( )A.若n m ⊥,α//n ,则α⊥mB.若β//m ,αβ⊥,则α⊥mC.若β⊥m ,β⊥n ,α⊥n ,则α⊥mD.若n m ⊥,β⊥n ,αβ⊥,则α⊥m【答案】C考点:空间中的线线、线面、面面的位置关系,容易题.43.【2013年.浙江卷.文4】设m,n是两条不同的直线,α,β是两个不同的平面().A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β【答案】:C【解析】:A选项中直线m,n可能平行,也可能相交或异面,直线m,n的关系是任意的;B选项中,α与β也可能相交,此时直线m平行于α,β的交线;D选项中,m也可能平行于β.故选C.44.【2013年.浙江卷.文5】已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是().A.108 cm3B.100 cm3C.92 cm3D.84 cm3【答案】:B49. 【2015高考浙江,文4】设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( )A .若l β⊥,则αβ⊥B .若αβ⊥,则l m ⊥C .若//l β,则//αβD .若//αβ,则//l m 【答案】A【解析】采用排除法,选项A 中,平面与平面垂直的判定,故正确;选项B 中,当αβ⊥时,,l m 可以垂直,也可以平行,也可以异面;选项C 中,//l β时,,αβ可以相交;选项D 中,//αβ时,,l m 也可以异面.故选A.【考点定位】直线、平面的位置关系.50. 【2015高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .83cmB .123cmC .3233cm D .4033cm【答案】C【考点定位】1.三视图;2.空间几何体的体积.51.【2015高考浙江,文7】如图,斜线段AB与平面α所成的角为60 ,B为斜足,平面α上的动点P∠PAB= ,则点P的轨迹是()满足30A.直线B.抛物线C.椭圆D.双曲线的一支【答案】C【解析】由题可知,当P点运动时,在空间中,满足条件的AP绕AB旋转形成一个圆锥,用一个与圆锥高成60 角的平面截圆锥,所得图形为椭圆.故选C.【考点定位】1.圆锥曲线的定义;2.线面位置关系.54.【2013高考重庆文第8题】某几何体的三视图如图所示,则该几何体的表面积为( ).A.180 B.200 C.220 D.240【答案】D【解析】试题分析:由三视图知该几何体是底面为等腰梯形的直棱柱,考点:三视图.55.【2014高考重庆文第7题】某几何体的三视图如图所示,则该几何体的体积为( )A.12B.18C.24D.30 【答案】C考点:1、空间几何体的三视图;2、空间几何体的体积.56. 【2015高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为( )(A)123π+ (B) 136π (C) 73π (D) 52π 【答案】B【解析】由三视图可知该几何体是由一个底面半径为1,高为2的圆柱,再加上一个半圆锥:其底面半径为1,高也为1,构成的一个组合体,故其体积为61311612122πππ=⨯⨯⨯+⨯⨯,故选B. 【考点定位】三视图及柱体与锥体的体积.57. 【2014,安徽文8】一个多面体的三视图如图所示,则多面体的体积是 ( )A.233 B.476C.6D.7【答案】A.考点:1.多面体的三视图与体积.59.【2015高考安徽,文9】一个四面体的三视图如图所示,则该四面体的表面积是()(A)1+(B)1+(C)2+(D)【答案】C【解析】由该几何体的三视图可知,该几何体的直观图,如下图所示:【考点定位】本题主要考查空间几何体的三视图、锥体表面积公式.61.【2014年普通高等学校招生全国统一考试湖北卷7】在如图所示的空间直角坐标系xyzO-中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C. ④和③D.④和② 【答案】D考点:空间由已知条件,在空间坐标系中作出几何体的形状,正视图与俯视图的面积,容易题.62. 【2015高考湖北,文5】12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件 【答案】A .【解析】若p :12,l l 是异面直线,由异面直线的定义知,12,l l 不相交,所以命题q :12,l l 不相交成立,即p 是q 的充分条件;反过来,若q :12,l l 不相交,则12,l l 可能平行,也可能异面,所以不能推出12,l l 是异面直线,即p 不是q 的必要条件,故应选A .【考点定位】本题考查充分条件与必要条件、异面直线,属基础题.63. 【2014福建,文3】以边长为1的正方形的一边所在所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于 ( ).2..2.1A B C D ππ【答案】A 【解析】试题分析:由已知得,所得圆柱的底面半径和高均为为1,所以圆柱的侧面积为2π,选A . 考点:旋转体的侧面积.66. 【2015高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于( )A .8+B .11+C .14+D .15 【答案】B【解析】由三视图还原几何体,该几何体是底面为直角梯形,高为2的直四棱柱,且底面直角梯形的两底分别为12,,直角腰长为1,.底面积为12332⨯⨯=,侧面积为所以该几何体的表面积为11+B . 【考点定位】三视图和表面积.二、填空题1.【2013高考北京文第10题】某四棱锥的三视图如图所示,该四棱锥的体积为__________.【答案】32. 【2014高考北京文第11题】某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为 .俯视图侧(左)视图正(主)视图11122【答案】【解析】由三视图可知:该几何体为一条侧棱垂直底面的三棱锥,底面为边长为2的正三角形,棱锥的高为2=考点:本小题主要考查立体几何中的三视图,考查同学们的空间想象能力,考查分析问题与解决问题的能力.3. 【2014山东.文13】一个六棱锥的体积为32,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为 . 【答案】12考点:正六棱锥的几何特征,几何体的面积与体积.5. 【2013高考陕西版文第12题】某几何体的三视图如图所示,则其表.面积为__________.【答案】3π 【解析】试题分析:三视图可知该几何体为半径为1的球体的一半,所以表面积为12×4π×12+π×12=3π. 考点:三视图,容易题.6.【2013课标全国Ⅱ,文15】已知正四棱锥O -ABCD ,底面边长为,则以O 为球心,OA 为半径的球的表面积为__________.【答案】:24π【解析】:如图所示,在正四棱锥O -ABCD 中,V O -ABCD =13×S 正方形ABCD ·|OO 1|=13×2×|OO 1|9. 【2015高考四川,文14】在三棱住ABC -A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M,N,P分别是AB,BC,B1C1的中点,则三棱锥P-A1MN的体积是______.【答案】1 24【考点定位】本题主要考查空间几何体的三视图、直观图及空间线面关系、三棱柱与三棱锥的体积等基础知识,考查空间想象能力、图形分割与转换的能力,考查基本运算能力.11.【2013课标全国Ⅰ,文15】已知H是球O的直径AB上一点,AH∶HB=1∶2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为______.【答案】:9π2【解析】:如图,15. 【2013,安徽文15】如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点,,A P Q 的平面截该正方体所得的截面记为S ,则下列命题正确的是 (写出所有正确命题的编号).①当102CQ <<时,S 为四边形 ②当12CQ =时,S 为等腰梯形 ③当34CQ =时,S 与11C D 的交点R 满足113C R =④当314CQ <<时,S 为六边形⑤当1CQ =时,S 【答案】①②③⑤.(2)1CQ=,S=,⑤正确,图如下:(3)34CQ=,画图如下:113C R=,③正确;(4)314CQ<<,如图是五边形,④不正确;(5)12CQ<<,如下图,是四边形,故①正确.【考点】1.立体几何中线面位置关系;2.正方体的截面.19.【2013天津,文10】已知一个正方体的所有顶点在一个球面上.若球的体积为9π2,则正方体的棱长为__________.【解析】由题意知349ππ32V R==球,32R=.设正方体的棱长为a=2R,a.20.【2014天津,文10】一个几何体的三视图如图所示(单位:m),则该几何体的体积为3m.【答案】20.3π 【解析】试题分析:几何体为一个圆锥与一个圆柱的组合体. 圆锥的高为2,底半径为2;圆柱的高为4,底半径为1,所以体积为221202241.33V πππ=⨯⨯⨯+⨯⨯=考点:三视图21. 【2015高考天津,文10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m .【答案】8π3【考点定位】本题主要考查三视图及几何体体积的计算.22. 【2013年普通高等学校招生全国统一考试湖北卷16】我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是 寸. (注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 【答案】3【解析】试题分析:由题意盆内所盛水的上底面直径为28122+=20(寸),下底面半径为6寸,高为9寸,故体积为V =13·9·(π·102+π·62+π·10·6)=588π,而盆上口面积为π·142=196π,故平地降雨量为588π196π=3(寸). 24. 【2014上海,文8】在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于 .【答案】24【解析】由题意割去的两个小长方体的体积为2(51)324⨯-⨯=. 【考点】三视图,几何体的体积..25. 【2013上海,文10】已知圆柱Ω的母线长为l ,底面半径为r ,O 是上底面圆心,A 、B 是下底面圆周上两个不同的点,BC 是母线,如图.若直线OA 与BC 所成角的大小为6π,则lr=______.【解析】由题知,tan6r l π==⇒l r =三、解答题2.【2013高考北京文第17题】(本小题共14分)如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD =2AB,平面P AD⊥平面ABCD,P A⊥AD.E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.所以AB∥DE,且AB=DE.所以ABED为平行四边形.所以BE∥AD.又因为BE⊄平面P AD,AD⊂平面P AD,所以BE∥平面P AD.(3)因为AB⊥AD,而且ABED为平行四边形,所以BE⊥CD,AD⊥CD.由(1)知P A⊥底面ABCD,所以P A⊥CD.3. 【2014高考北京文第17题】(本小题满分14分)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,12AA AC ==,E 、F 分别为11A C 、BC 的中点.(1)求证:平面ABE ⊥平面11B BCC ; (2)求证:1//C F 平面ABE ; (3)求三棱锥E ABC -的体积.C 1B 1A 1FE C BA【答案】(3)【解析】试题分析:(1)由直线与平面垂直证明直线与平行的垂直;(2)证明直线与平面平行;(3)求三棱锥的体积就用体积公式.试题解析:(1)在三棱柱111ABC A B C -中,1BB ⊥底面ABC ,所以1BB ⊥AB ,又因为AB ⊥BC ,所以AB ⊥平面11B BCC ,因为AB ⊂平面ABE ,所以平面ABE ⊥平面11B BCC . (2)取AB 中点G ,连结EG ,FG ,因为E ,F 分别是11A C 、BC 的中点,所以FG ∥AC ,且FG=12AC , 因为AC ∥11A C ,且AC=11A C ,所以FG ∥1EC ,且FG=1EC ,所以四边形1FGEC 为平行四边形,所以1//C F EG ,考点:本小题主要考查直线与直线、直线与平面、平面与平面的垂直与平行的证明;考查几何体的体积的求解等基础知识,考查同学们的空间想象能力、推理论证能力、运算求解能力、逻辑推理能力,考查数形结合思想、化归与转化思想.5. 【2015高考北京,文18】(本小题满分14分)如图,在三棱锥V C -AB 中,平面V AB ⊥平面C AB ,V ∆AB 为等边三角形,C C A ⊥B 且C C A =B =,O ,M 分别为AB ,V A 的中点.(I )求证:V //B 平面C MO ; (II )求证:平面C MO ⊥平面V AB ; (III )求三棱锥V C -AB 的体积.【答案】(I )证明详见解析;(II )证明详见解析;(III .试题解析:(Ⅰ)因为,O M 分别为AB ,V A 的中点, 所以//OM VB .又因为VB ⊄平面C MO , 所以//VB 平面C MO .(Ⅲ)在等腰直角三角形ACB 中,AC BC ==所以2,1AB OC ==.所以等边三角形V AB 的面积VAB S ∆=. 又因为OC ⊥平面V AB ,所以三棱锥C V -AB 的体积等于13VAB OC S ∆⨯⨯=. 又因为三棱锥V C -AB 的体积与三棱锥C V -AB 的体积相等,所以三棱锥V C -AB . 考点:线线平行、线面平行、面面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积公式.6. 【2014高考广东卷.文.18】(本小题满分13分)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,1AB =,2BC PC ==,作如图3折叠,折痕//EF DC .其中点E .F 分别在线段PD .PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF CF ⊥.(1)证明:CF ⊥平面MDF ; (2)求三棱锥M CDE -的体积.图3图2MFEPDCBA PDCB A【答案】(1)详见解析;(2.(2)CF ⊥ 平面MDF ,CF DF ∴⊥,又易知60PCD ∠= ,30CDF ∴∠= ,从而1122CF CD ==, //EF DC ,DE CEDP CP ∴=,122=,DE ∴=,PE ∴=,12CDE S CD DE ∆∴=⋅=,MD ====,1133M CDE CDE V S MD -∆∴=⋅==. 【考点定位】本题以折叠图形为考查形式,考查直线与平面垂直的判定以及利用等体积法计算三棱锥的体积,属于中等题.8. 【2013高考广东卷.文.18】(本小题满分14分)如图(1),在边长为1的等边三角形ABC 中,D ,E 分别是AB ,AC 上的点,AD =AE ,F 是BC 的中点,AF 与DE 交于点G .将△ABF 沿AF 折起,得到如图(2)所示的三棱锥A -BCF ,其中BC .图(1) 图(2) (1)证明:DE ∥平面BCF ; (2)证明:CF ⊥平面ABF ; (3)当AD =23时,求三棱锥F -DEG 的体积V F -DEG .【答案】(1)详见解析 (2)详见解析 (3(2)证明:在等边三角形ABC 中,∵F 是BC 的中点,BC =1,∴AF ⊥CF ,BF =CF =12.∵在三棱锥A -BCF 中,BC , ∴BC 2=BF 2+CF 2.∴CF ⊥BF . ∵BF ∩AF =F ,∴CF ⊥平面ABF .(3)由(1)可知GE ∥CF ,结合(2)可得GE ⊥平面DFG .∴V F -DEG =V E -DFG =13×12·DG ·FG ·GE =1111132333⎛⨯⨯⨯⨯= ⎝【考点定位】本题考查立体几何中的线面平行,垂直和椎体体积,属于拔高题10. 【2015高考广东,文18】(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =.(1)证明:C//B 平面D P A ; (2)证明:C D B ⊥P ;(3)求点C 到平面D P A 的距离.【答案】(1)证明见解析;(2)证明见解析;(3.试题解析:(1)因为四边形CD AB 是长方形,所以C//D B A ,因为C B ⊄平面D P A ,D A ⊂平面D P A ,所以C//B 平面D P A(2)因为四边形CD AB 是长方形,所以C CD B ⊥,因为平面DC P ⊥平面CD AB ,平面DC P 平面CD CD AB =,C B ⊂平面CD AB ,所以C B ⊥平面DC P ,因为D P ⊂平面DC P ,所以C D B ⊥P(3)取CD 的中点E ,连结AE 和PE ,因为D C P =P ,所以CD PE ⊥,在Rt D ∆PE 中,PE ===DC P ⊥平面CD AB ,平面DC P 平面CD CD AB =,PE ⊂平面DC P ,【考点定位】1、线面平行;2、线线垂直;3、点到平面的距离.11. 【 2014湖南文18】如图3,已知二面角MN αβ--的大小为60 ,菱形ABCD 在面β内,,A B两点在棱MN 上,60BAD ∠= ,E 是AB 的中点,DO ⊥面α,垂足为O .(1)证明:AB⊥平面ODE ;(2)求异面直线BC 与OD 所成角的余弦值.【答案】(1)详见解析 (2) 34【解析】试题解析:(1)如图,因为DO α⊥,AB α⊆,所以DO AB ⊥,连接BD ,由题可知ABD ∆是正三角形,又E 是AB 的中点,所以DE AB ⊥,而DO DE D = ,故AB ⊥平面ODE .(2)因为//BC AD ,所以BC 与OD 所成的角等于AD 与OD 所成的角,即ADO ∠是BC 与OD 所成的角,由(1)可知,AB ⊥平面ODE ,所以AB OE ⊥,又DE AB ⊥,于是DEO ∠是二面角MN αβ--的平面角,从而060DEO ∠=,不妨设2AB =,则2AD =,易知DE =,在Rt DOE ∆中,03sin 602DO DE ==,连接AO ,在Rt AOD ∆中,332cos 24DO ADO AD ∠===,所以异面直线BC 与OD 所成角的余弦值为34. 【考点定位】异面直线的夹角 二面角 线面垂直12. 【2013湖南,文17】如图,在直棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC,AA 1=3,D 是BC的中点,点E 在棱BB 1上运动.(1)证明:AD ⊥C 1E ;(2)当异面直线AC ,C 1E 所成的角为60°时,求三棱锥C 1-A 1B 1E 的体积.15. 【2015高考湖南,文18】(本小题满分12分)如图4,直三棱柱111ABC A B C -的底面是边长为2的正三角形,,E F 分别是1,BC CC 的中点。
……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2015年高考数学立体几何专题试卷(新课标)1.(本小题满分12分)如图,四棱锥P ABCD -中,PAB ∆是正三角形,四边形ABCD 是矩形,且平面PAB ⊥平面ABCD ,2PA =,4PC =.(Ⅰ)若点E 是PC 的中点,求证://PA 平面BDE ;(Ⅱ)若点F 在线段PA 上,且FA PA λ=,当三棱锥B AFD -的体积为43时,求实数λ的值.【答案】(Ⅰ)证明见解析;(Ⅱ).32 【解析】试题分析:(Ⅰ)将证明线面平行转化为线线平行,通过做辅助线可证明出EQ //PA ,线面平行的判定定理可证出//PA 平面BDE ;(Ⅱ)如图所示作辅助线,通过题意可先分3431=⋅⋅==∆--FM S V V ABD ABD F AFD B 将问题转化为求BC ,由面面垂直的性质定理得PO ⊥平面ABCD ,进而FM ⊥平面ABCD ,得到BC ⊥平面PAB ,故2223BC PC PB =-=,进而确定332=FM ,再由2323====33FM FA PO PA λλλ⇒⇒ 试题解析:(Ⅰ)如图,连接AC ,设ACBD Q =,又点E 是PC 的中点,则在PAC ∆中,中位线EQ //PA , 3分又EQ ⊂平面BDE ,PA ⊄平面BDE .试卷第2页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………所以//PA 平面BDE 5分(Ⅱ)依据题意可得:2PA AB PB ===,取AB 中点O ,所以PO AB ⊥,且3PO =又平面PAB ⊥平面ABCD ,则PO ⊥平面ABCD ; 6分作//FM PO 于AB 上一点M ,则FM ⊥平面ABCD , 因为四边形ABCD 是矩形,所以BC ⊥平面PAB ,则PBC ∆为直角三角形8分所以2223BC PC PB =-=,则直角三角形ABP ∆的面积为1=232ABP S AB AD ∆⋅=412323==3333B AFD F ABD ABD V V S FM FM FM --∆==⋅=⇒ 10分由//FM PO 得:2323====33FM FA PO PA λλλ⇒⇒ 12分考点:1、线面平行问题与线线平行问题的互化;2、面面垂直与线面垂直问题的互化;3、综合分析能力.2.(本小题满分12分)如图几何体中,四边形ABCD 为矩形,36,2,AB BC BF CF DE EF ======4,//EF AB ,G 为FC 的中点,M 为线段CD上的一点,且2CM =.(Ⅰ)证明:AF//面BDG ;(Ⅱ)证明:面BGM ⊥面BFC ; (Ⅲ)求三棱锥F BMC -的体积V.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】(Ⅰ)(Ⅱ)证明见解析;(Ⅲ)三棱锥F BMC -的体积为322. 【解析】 试题分析:(1)证明线面平行常用方法:一是利用线面平行的判定定理,二是利用面面平行的性质定理,三是利用面面平行的性质;(2)证明两个平面垂直,首先考虑直线与平面垂直,也可以简单记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明类似,掌握化归与转化思想方法是解决这类题的关键. (3)在求三棱柱体积时,选择适当的底作为底面,这样体积容易计算. 试题解析:(Ⅰ)连接AC 交BD 于O 点,则O 为AC 的中点,连接OG ,因为点G 为CF 中点,所以OG 为AFC ∆的中位线,所以//OG AF , 2分 AF ⊄面BDG , OG ⊂面BDG , ∴//AF 面BDG 5分(Ⅱ)连接FM ,2BF CF BC ===,G 为CF 的中点, BG CF ∴⊥,2CM =,4DM ∴=,//EF AB ,ABCD 为矩形, 7分//EF DM ∴,又4EF =,EFMD ∴为平行四边形, 8分 2FM ED ∴==,FCM ∴∆为正三角形 MG CF ∴⊥, MG BG G =CF ∴⊥面BGM ,CF ⊂面BFC ,∴面BGM ⊥面BFC . 10分(Ⅲ)11233F BMC F BMG C BMG BMG BMG V V V S FC S ---=+=⨯⨯=⨯⨯,因为3GM BG ==,22BM =,所以122122BMG S =⨯⨯=,所以22233F BMC BMC V S -=⨯=. 12分 考点:(1)线面平行的判定;(2)面面垂直;(3)几何体的体积3.(本小题满分12分)如图,AB 为圆O 的直径,E 是圆O 上不同于A ,B 的动点,四边形ABCD 为矩形,且1,2==AD AB ,平面ABCD ⊥平面ABE .(1)求证:BE ⊥平面DAE .CABDE FGMO试卷第4页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)当点E 在AB 的什么位置时,四棱锥ABCD E -的体积为33. 【答案】(1)详见解析 (2)点E 在AB 满足6EAB π∠=或3EAB π∠=时,四棱锥E ABCD -的体积为33. 【解析】试题分析:第(1)问先证明线线垂直,再证明线面垂直;第(2)问探求点E 在»AB 的什么位置时,四棱锥E ABCD -的体积为33,从研究BAE α∠=的大小着手思考,通过体积建立关系求出α的大小. 试题解析:(1)因为四边形ABCD 为矩形,所以DA AB ⊥, 又平面ABCD ⊥平面ABE ,且平面ABCD I 平面ABE AB =, 所以DA ⊥平面ABE ,而BE ⊆平面ABE ,所以DA ⊥BE .又因为AB 为圆O 的直径,E 是圆O 上不同于A ,B 的动点,所以AE BE ⊥. 因为DA AE A =I ,所以BE ⊥平面DAE .(2)因为平面ABCD ⊥平面ABE ,过点E 作EH AB ⊥交AB 于点H ,则EH ⊥平面ABCD .在Rt BAE △中,记BAE α∠=(02πα<<),因为2AB =,所以2cos AE α=,sin 2cos sin sin 2HE AE αααα=⋅==,所以11221sin 2sin 2333E ABCD ABCD V S HE αα-=⨯=⨯⨯⨯=.由已知33E ABCD V -=,所以23sin 233α=,即3sin 22α=. 因为02πα<<,所以23πα=,即6πα=;或223πα=,即3πα=.于是点E 在AB 满足6EAB π∠=或3EAB π∠=时,四棱锥E ABCD -的体积为33.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………考点:立体几何中的线面关系和四棱锥体积. 4.(本小题满分12分)如图,在四棱锥ABCD S -中,底面ABCD 是正方形,⊥SA 底面ABCD ,AB SA =,点M 是SD 的中点,SC AN ⊥且交SC 于点N .(Ⅰ)求证:平面⊥SAC 平面AMN ; (Ⅱ)求二面角M AC D --的余弦值. 【答案】(Ⅰ)详见解析;(Ⅱ)33. 【解析】试题分析:方法1:(Ⅰ):⊥SA 底面ABCD , SA DC ⊥∴又底面ABCD 是正方形,DA DC ⊥∴ ⊥∴DC 平面SAD , AM DC ⊥∴ 又AD SA = ,M 是SD 的中点,SD AM ⊥∴,⊥∴AM 面SDC AM SC ⊥∴ ,然后再根据线面垂直的判定定理,即可得出结果.(Ⅱ)取AD 的中点F ,则SA MF //.作AC FQ ⊥于Q ,连结MQ .⊥SA 底面A B C D , ⊥∴MF 底面A B C D AC FQ ⊥ , AC MQ ⊥∴FQM ∠∴为二面角M AC D --的平面角,解三角形即可求出结果.解法2:(Ⅰ)如图,以A 为坐标原点,建立空间直角坐标系xyz A -,利用空间向量在立体几何中的应用,即可求出结果.试题解析:证明(Ⅰ):⊥SA 底面ABCD , SA DC ⊥∴ 又底面ABCD 是正方形,DA DC ⊥∴⊥∴DC 平面SAD , AM DC ⊥∴又AD SA = ,M 是SD 的中点,SD AM ⊥∴, ⊥∴AM 面SDC AM SC ⊥∴试卷第6页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………由已知SC AN ⊥, ⊥∴SC 平面AMN . 又⊂SC 面SAC ,∴面⊥SAC 面AMN 6分 (Ⅱ)取AD 的中点F ,则SA MF //. 作AC FQ ⊥于Q ,连结MQ .⊥SA 底面ABCD , ⊥∴MF 底面ABCD AC FQ ⊥ , AC MQ ⊥∴FQM ∠∴为二面角M AC D --的平面角设aAB SA ==,在MFQRt ∆中221a SA MF ==,a FQ 42=,a FQ MF MQ 4622=+= 33cos ==∠∴MQ FQ FQM 11分 所以二面角M AC D --的余弦值为3312分 解法2:(Ⅰ)如图,以A 为坐标原点,建立空间直角坐标系xyz A -,由于AB SA =,可设1===AS AD AB , 则()(),0,1,0,0,0,0B A ()()()1,0,0,0,0,1,0,1,1S D C ,⎪⎭⎫⎝⎛21,0,21M 3分 ⎪⎭⎫⎝⎛=∴21,0,21AM ,()1,1,1--=CS 4分0=∙CS AM , CS AM ⊥∴又AN SC ⊥ 且A AM AN = ⊥∴SC 平面AMN .又⊂SC 平面SAC 所以,平面SAC ⊥平面AMN 6分……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………(Ⅱ)⊥SA 底面ABCD AS ∴是平面ABCD 的一个法向量,()1,0,0=AS 7分 设平面ACM 的一个法向量为()z y x n ,,=()0,1,1=AC ,⎪⎭⎫ ⎝⎛=21,0,21AM ,则⎪⎩⎪⎨⎧=∙=∙00AM n AC n 得()1,1,1--=n 9分 33,cos ->=<∴n AS 11分 ∴二面角M AC D --的余弦值是3312分. 考点:1.线面垂直的判定;2.面面垂直的判定. 5.(本小题满分13分)如图,三棱柱111ABC A B C -中,侧棱垂直底面,︒=∠90ACB ,112AC BC AA ==,D 是棱1AA 的中点.(1)证明:1DC ⊥平面BDC ;(2)若12AA =,求三棱锥1C BDC -的体积. 【答案】(1)见解析 (2)13【解析】试题分析:对应第一问,关键是要掌握线面垂直的判定,把握线线垂直的证明方法,第二问注意椎体的体积公式的应用.试题解析:(1)由题设知1,BC CC BC AC ⊥⊥,1AC CC C =,∴BC ⊥平面11ACC A . (2分) 又∵1DC ⊂平面11ACC A ,∴1DC BC ⊥. (3分)由题设知1145o ADC A DC ∠=∠=,∴190oCDC ∠=,即1C D DC ⊥. (4分)∵DCBC C =,∴1DC ⊥平面BDC . (6分)(2) ∵12AA =,D 是棱1AA 的中点,112AC BC AA ==试卷第8页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………∴1,1AC BC AD === (7分) ∴222CD AD AC =+=,12DC = (9分)∴1CDC Rt ∆的面积11122122S CD DC =⋅=⨯⨯= (10分) ∴311131311=⨯⨯=⋅=-BC S V CDC B (11分) ∴3111==--CDC B BDC C V V ,即三棱锥1C BDC -的体积为13. (13分)考点:线面垂直的判定,椎体的体积. 6.(本题满分12分)在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PA ⊥底面ABCD ,PA AB = ,点E 是PD 的中点,作EF PC ⊥交PC 于F .(Ⅰ)求证:PB ∥平面EAC ; (Ⅱ)求证:PC ⊥平面AEF ; (Ⅲ)求二面角A PC D --的大小. 【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)60︒. 【解析】 试题分析:(Ⅰ)连结BD ,与AC 交于G .由中位线可得EG ∥PB .根据线面平行的判定定理可证得PB ∥平面EAC .(Ⅱ)由PA ⊥底面ABCD 可证得PA CD ⊥,又因为ABCD 是正方形,根据线面垂直判定定理可证得CD ⊥平面PAD ,从而可得CD AE ⊥.根据等腰三角形中线即为高线可得AE PD ⊥,根据线面垂直判定定理可证得AE ⊥平面PCD ,从而可得AE PC ⊥又EF PC ⊥可得PC ⊥平面AEF .(Ⅲ)以点A 为坐标原点建立空间直角坐标系. 设1AB =,可得各点的坐标,从而可得各向量坐标.根据向量垂直数量积为0可得面APC 和面DPC 的法向量.根据数量积公式可得两法向量夹角的余弦值,可得两法向量夹角. 两法向量夹角与二面角相等或互补.由观察可知所求二面角为锐角.试题解析:解:(Ⅰ)连结BD ,与AC 交于G , ∵ABCD 是正方形,∴则G 为BD 的中点 ∵E 是PD 的中点, ∴EG ∥PB∵EG ⊂平面EAC ,PB ⊄平面EAC ∴PB ∥平面EAC 3分……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………(Ⅱ)∵PA ⊥底面ABCD ,CD ⊂平面ABCD ∴PA CD ⊥∵CD AD ⊥,PA AD A = ∴CD ⊥平面PAD 4分 ∵AE ⊂平面PAD , ∴CD AE ⊥∵E 是PD 的中点,PA AD = ∴AE PD ⊥ ∵PD CD D =∴AE ⊥平面PCD 6分 而PC ⊂平面PCD , ∴AE PC ⊥又EF PC ⊥,AE EF E =PC ⊥平面AEF 8分(Ⅲ)如图建立空间直角坐标系,点A 为坐标原点,设1AB =则(0,0,1),(1,1,0),(0,1,0),(1,0,0)(0,0,1)(1,0,1)AP AC DC PD ====-=- 9分 设平面APC 的法向量是111(,,)m x y z =,则0,0AP m AC m ⋅=⋅=, 所以10z =,110x y +=,即(1,1,0)m =- 10分 设平面DPC 的法向量是222(,,)n x y z =,则0,0DC n PD n ⋅=⋅= 所以20y =,220x z -=,即(1,0,1)n = 11分11cos ,222m n m n m n⋅<>===⋅⋅,即面角A PC D --的大小为60︒. 12分考点:1线面平行;2线面垂直;3空间向量法解决立体几何问题.7.如图,一简单几何体的一个面ABC 内接于圆O ,,G H 分别是,AE BC 的中点,AB 是圆O 的直径,四边形DCBE 为平行四边形,且DC ⊥平面ABC .试卷第10页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)求证:GH ∥平面ACD ;(2)若2,1AB BC ==,23tan =∠EAB ,试求该几何体的V. 【答案】(1)证明见解析;(2)1V =. 【解析】试题分析:(1)证明线面垂直需通过证明面面垂直,根据题意,G H 分别是,AE BC 的中点,连接,GO OH ,利用三角形的中位线性质,易证:平面GOH ∥平面ACD ;(2)方法一:将所求几何体分割为两个三棱锥,E ABC E ACD --,同时三棱锥E ABC -的底面积为ABC S ∆,高为EB ,三棱锥E ACD -的底面积为ACD S ∆和高DE ,进而求得两个三棱锥的体积,进而求得所求三棱锥的体积:1V =;方法二:所求体积为四棱锥A BCDE V -,根据题意底面积为矩形BCDE 的面积,高为AC ,利用椎体的体积公式得到所求. 试题解析:(1)证明:连结,GO OH ∵,GO AD OH AC ∥∥.∴GO ∥平面,ACD OH ∥平面ACD ,又GO 交HO 于O ∴平面GOH ∥平面ACD ∴GH ∥平面ACD(2)法一:∵ACD E ABC E V V V --+= ∵2,1AB BC ==∵23tan =∠EAB ∴3,322=-==BC AB AC BE .……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………ACD E ABC E V V V --+=21133213131=⨯⨯⨯⨯=⋅=∆-DE S V ACD ACD E .21313213131=⨯⨯⨯⨯=⋅=∆-EB S V ACB ACB E∴12121=+=+=--ACD E ABC E V V V法二:∵DC ⊥平面ABC ∴DC AC ⊥ 又∵AC BC ⊥ ∴AC ⊥平面BCDE ∵2,1AB BC ==. ∵23tan =∠EAB ∴3,322=-==BC AB AC BE ∴ 13313131=⨯⨯⨯=⋅⋅=-AC S V BCDE BCDE A 矩形 考点:1.直线和平面平行的判定定理;2.椎体的体积.8.(本小题共14分)如图,将矩形ABCD 沿对角线BD 把△ABD 折起,使A 点移到1A 点,且1A 在平面BCD 上的射影O 恰好在CD 上.(1)求证:BC ⊥D A 1;(2)求证:平面CD A 1⊥平面BC A 1;(3)若AB=10,BC=6,求三棱锥BCD A -1的体积. 【答案】(1)、(2)详见解析;(3)48.【解析】试题分析:(1)由题意可知O A 1⊥平面BCD ,所以BC ⊥O A 1,又由已知可知BC CO ⊥,由线面垂直的判定定理可得D A 1⊂平面CD A 1,所以D A BC 1⊥;(2)欲证平面CD A 1⊥平面BC A 1,需证BC A D A 11平面⊥,又因为D A 1⊥B A 1.由(1)知BC ⊥D A 1,所以BC A D A 11平面⊥;(3)转换顶点可得11A BCD D A BC V V --=,代入计算即可. 试题解析:(1)因为1A 在平面BCD 上的射影O 在CD 上,试卷第12页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………所以O A 1⊥平面BCD. 又BC ⊂平面BCD , 所以BC ⊥O A 1.又BC ⊥CO ,CO O O A =⋂1,⊂CO 平面CD A 1,O A 1⊂平面CD A 1,所以BC ⊥平面CD A 1. 又D A 1⊂平面CD A 1, 所以D A BC 1⊥.(5分) (2)因为矩形ABCD , 所以D A 1⊥B A 1. 由(1)知BC ⊥D A 1.又⊂=⋂BC B B A BC ,1平面BC A B A BC A 111,平面⊂, 所以BC A D A 11平面⊥. 又CD A D A 11平面⊂,所以平面CD A BC A 11平面⊥.(10分) (3)因为BC A D A 11平面⊥, 所以C A D A 11⊥.因为CD=10,61=D A ,所以81=C A . 所以48686213111=⨯⨯⨯⨯==--BC A D BCD A V V .(14分) 考点:空间线线垂直、线面垂直的判定性质,多面体体积.9.如图,四棱柱1111ABCD A B C D -的底面为菱形,AC ,BD 交于点O ,1AO ⊥平面ABCD ,12AA BD ==,22AC =.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)证明:1AC ⊥平面11BB D D ; (2)求三棱锥1A C CD -的体积. 【答案】(1)见解析;(2)23【解析】试题分析:(1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD ,又因为1AO ⊥平面ABCD ,所以1A O BD ⊥.因为1AC A O O ⋂=,所以BD ⊥平面1A AC ,所以1BD A C ⊥. 2分由已知12AA =,22AC =,又1,AO OC AO AC =⊥,所以112AC A A ==, 所以22211A A A C AC +=,所以11A C A A ⊥,因为11B B A A ∥,所以11A C B B ⊥, 4分 因为1BD B B B ⋂=,所以1AC ⊥平面11BB D D . 6分 (2)连接11A C ,因为11AA CC ∥且11AA CC =,所以四边形11ACC A 是平行四边形, 所以11A C AC ∥, 8分 所以三棱锥1A C CD -的体积111113A C CD C ACD A ACD ACD V V V S AO ---∆===⨯ 10分11112222234123AC BD AO =⋅⋅⋅⋅=⋅⋅⋅=. 12分 考点:本题考查线面垂直的判定,求棱锥的体积点评:解决本题的关键是掌握线面垂直的判定定理,10.(本题满分12分)如图,在四棱锥P ABCD -中,PD ABCD ⊥面,四边形ABCD 为平行四边形,60DAB ∠=︒,24AB PA AD ===,试卷第14页,总14页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)若E 为PC 中点,求证:PA ∥平面BDE (2)求三棱锥D BCP -的体积 【答案】(1)见解析;(2)4 【解析】 试题分析:(1)连结AC 交BD 于点O ,连结OE , ∵ABCD 为平行四边形,∴O 是AC 的中点, 又∵E 是PC 的中点, ∴OE ∥PA又PA ⊄平面BDE,OE ⊂平面BDE ∴PA ∥平面BDE (2)13D PBC P DBC DBC V V S PD --∆==⋅ 又22124sin 6023,232DBC S PD PA AD ∆=⨯⨯==-= ,所以4D PBC V -= 考点:本题考查线面平行的判定,求棱锥的体积点评:解决本题的关键是在平面BDE 中找出与PA 平行的线。
2015年立体几何专题1.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )2.如图所示,某几何体的正视图是平行四边形,侧视图和俯视图都是矩形,则该几何体的体积为 ( )A ..C ..3.已知三棱柱1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,, ,AB AC ⊥112AA O =,则球的半径为A B . C .132 D .4.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A. 若αβ⊥,m α⊂,n β⊂,则m n ⊥ B .若//αβ,m α⊂,n β⊂,则//m n C .若m n ⊥,m α⊂,n β⊂,则αβ⊥ D .若m α⊥,//m n ,//n β,则αβ⊥5.某几何函数的三视图如图所示,则该几何的体积为( )A 、18+8πB 、8+8πC 、16+16πD 、8+16π6.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为( )A 、5003πcm 3 B 、8663πcm 3 C 、13723πcm 3 D 、20483πcm 37.一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为(A) (B) (C) (D) 8.在空间中,过点A 作平面π的垂线,垂足为B ,记)(A f B π=。
设βα,是两个不同的平面,对空间任意一点P ,)]([)],([21P f f Q P f f Q βααβ==,恒有21PQ PQ =,则( ) A.平面α与平面β垂直B.平面α与平面β所成的(锐)二面角为045C.平面α与平面β平行D.平面α与平面β所成的(锐)二面角为0609.如果,正方体的底面与正四面体的底面在同一平面α上,且AB//CD ,正方体的六个面所在的平面与直线CE,EF 相交的平面个数分别记为m ,n ,那么m+n=( )A.8B.9C.10D.11 10.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于( )A .1B .2 D .211.三棱柱111ABC A B C -的侧棱长和底面边长均为2,且侧棱⊥1AA 底面ABC ,其正视图是边长为2的正方形,则此三棱柱侧视图的面积为( )A ..4 12.某几何体的三视图如图所示,则它的表面积为( )AC 13,则正视图中的x 的值是( )A .14.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .503cm C .253cm 15.一个几何体的三视图如图所示,则该几何体的直观图可以是( )16.一个几何体的三视图如图所示,则该几何体的表面积为( )A17.已知三棱锥的底面是边长为1的正三角形,其正视图与俯视图如图所示,则其侧视图...的面积为( )A.1 D18.某几何体的三视图如图所示,则该几何体的体积为( )A .6 B.319.已知某几何体的三视图如图所示,则该几何体的体积为( )A.1 C.3 20.一个空间几何体的三视图如下左图所示,则该几何体的表面积为( )侧视图A .48B ...8021.一个棱锥的三视图如图,则该棱锥的外接球的表面积为________.22.如图,在棱长为2的正方体ABCD-A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为 .23.如图,正方体1111ABCD A B C D 的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点,,A P Q 的平面截该正方体所得的截面记为S ,则下列命题正确的是 (写出所有正确命题的编号)。
①当102CQ <<时,S 为四边形 ②当12CQ =时,S 为等腰梯形 ③当34CQ =时,S 与11C D 的交点R 满足113C R =④当314CQ <<时,S 为六边形⑤当1CQ =时,S的面积为224.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于________2cm 。
25.某几何体的三视图如图所示, 则其体积为 .26.某几何体的三视图如图所示,则该几何体的体积是 .27.已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、俯视图、均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_____28.如图是某个四面体的三视图,该四面体的体积为.29是等腰梯形,且AB∥CD,O是AB中点,PO平面ABCD,M是PA中点.⊥PBC平面ODM;(2)求点A到平面PCD的距离.(1)证明:平面//-是一个高为3的四棱锥,底面ABCD是边长为2的正方形,顶点S在30.如图,设S ABCD底面上的射影是正方形ABCD的中心.K是棱SC的中点.试求直线AK与平面SBC所成角的大小.31.如图,在三棱锥P ABC -中,PAB ∆是等边三角形,90PAC PBC ∠=∠=.(1)证明::AC BC =; (2)证明:AB PC ⊥;(3)若4PC =,且平面PAC ⊥平面PBC ,求三棱锥P ABC -体积.32.如图,四棱锥ABCD P -的底面ABCD 是平行四边形,1,2==AB AD , 60=∠ABC ,⊥PA 面ABCD ,设E 为PC 中点,点F 在线段PD 上且FD PF 2=.(1)求证://BE 平面ACF ;(2)设二面角D CF A --的大小为θ,若,求PA 的长. 33.如图,在四面体PABC 中,PC ⊥AB ,PA ⊥BC ,点D ,E ,F ,G 分别是 棱AP ,AC ,BC ,PB的中点.(1)求证:DE ∥平面BCP ;(2)求证:四边形DEFG 为矩形;(3)是否存在点Q ,到四面体PABC 六条棱的中点的距离相等?说明理由.34.如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E ,F 分别是AP ,AD 的中点.求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面PAD.35.如图,平面 PAC ⊥平面ABC ,△ABC 是以AC 为斜边的等腰直角三角形,E ,F ,O 分别为 PA ,PB ,AC 的中点,AC =16,PA =PC =10.(1)设G 是OC 的中点,证明:FG ∥平面BOE ;(2)证明:在△ABO 内存在一点M ,使FM ⊥平面BOE.36.如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C ,并求直线BC 1到平面D 1AC 的距离.C 11A37.如图,四棱锥P-ABCD 中,090ABC BAD ∠=∠=,2BC AD =,PAB ∆和PAD ∆都是等边三角形.(1)证明:PB CD ⊥;(2)求二面角A-PD-C 的大小.38.如图,在三棱柱ABC-A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB=3,BC=5.(1)求证:AA 1⊥平面ABC ;(2)求二面角A 1-BC 1-B 1的余弦值;(3)证明:在线段BC 1存在点D ,使得AD ⊥A 1B ,并求1BD BC 的值. 39.如图,在四棱柱1111D C B A ABCD -中,侧棱⊥1AA 底面ABCD ,)0(,6,5,4,3,1,//1>=====k k DC k BC k AD k AB AA DC AB(1)求证:⊥CD 平面11A ADD(2)若直线1AA 与平面C AB 1所成角的正弦值为76,求k 的值 (3)现将与四棱柱1111D C B A ABCD -形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为)(k f ,写出)(k f 的解析式。
(直接写出答案,不必说明理由)40.如图,已知平面四边形ABCP 中,D 为PA 的中点,PA AB ⊥,//CD AB , 且24PA CD AB ===.将此平面四边形ABCP 沿CD 折成直二面角P DC B --, 连接PA PB 、,设PB 中点为E .(1)证明:平面PBD ⊥平面PBC ; (2)在线段BD 上是否存在一点F ,使得EF ⊥平面PBC ?若存在,请确定点F 的位置;若不存在,请说明理由.(3)求直线AB 与平面PBC 所成角的正弦值.41.如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=.(1)证明:1AB AC ⊥;(2)若2AB CB ==,求三棱柱111ABC A B C -的体积.,底面ABCD 是等腰梯形,平面ABCD ,(1)证明:平面//PBC 平面ODM ;(2)求平面PBC 与平面PAD 所成锐二面角的余弦值.43.如图, 已知四边形ABCD 和BCEG 均为直角梯形,AD ∥BC,CE ∥BG ,平面ABCD ⊥平面BCEG ,BC=CD=CE=2AD=2BG=2.(1)求证: EC ⊥CD ;(2)求证:AG ∥平面BDE ;(3)求:几何体EG-ABCD 的体积.44.如图,AB 是圆O 的直径,点C 是弧AB 的中点,点V 是圆O 所在平面外一点,D 是AC 的中点,已知2AB =,2VA VB VC ===.(1)求证:OD//平面VBC ;(2)求证:AC ⊥平面VOD ;(3)求棱锥C ABV -的体积.45.如图1,在直角梯形ABCD 中,//AD BC ,90,ADC BA BC ∠==.把BAC ∆沿AC 折起到PAC ∆的位置,使得P 点在平面ADC 上的正投影O 恰好落在线段AC 上,如图2所示,点E F 、分别为棱PC CD 、的中点.(1)求证:平面//OEF 平面APD ;(2)求证:CD ⊥平面POF ;(3)若3,4,5AD CD AB ===,求四棱锥E CFO -的体积.46.如图,在△ABC 中,∠ABC=90°,∠A=30。
,斜边AC 上的中线BD=2,现沿BD 将△BCD 折起成三棱锥C-ABD ,已知G 是线段BD 的中点,E ,F 分别是CG ,AG 的中点.(1)求证:EF //平面ABC ;(2)三棱锥C —ABD 中,若棱A 一BCD 的体积.47.如图甲,ABC ∆是边长为6的等边三角形,,E D 分别为,AB AC 靠近,B C 的三等分点,点G 为边BC 边的中点,线段AG 交线段ED 于点F .将AED ∆沿ED 翻折,使平面AED ⊥平面BCDE ,连接,,AB AC AG ,形成如图乙所示的几何体.(1)求证:BC ⊥平面AFG(2)求四棱锥BCDE A -的体积. 48.如图,三棱锥P ABC -中,,4BC =,,点P 在平面ABC 内的射影恰为ABC ∆的重心G ,M 为侧棱AP 上一动点.(1)求证:平面PAG ⊥平面BCM ;(2)当M 为AP 的中点时,求直线BM 与平面PBC 所成角的正弦值.49.如图,在斜三棱柱111ABC A B C -中,O 是AC 的中点,1AO ⊥平面ABC ,090BCA ∠=,1AA AC BC ==.(1)求证:1AC ⊥平面1A BC ;(2)求二面角1A BB C --的余弦值.50.如图所示的多面体中,ABCD 是菱形,BDEF 是矩形,ED ⊥面ABCD ,(1)求证:平//CF AED 面B 面;(2)若BF BD a ==,求四棱锥A BDEF -的体积.。