2020-2021初一数学下期末试卷带答案(2)
- 格式:doc
- 大小:543.50 KB
- 文档页数:15
2020-2021学年度第二学期七年级期末数学试卷一、选择题:(本大题共12个小题,每小题4分,共48分).在每小题给出的四个选项中,只有一项是符合题目要求的.(注意:在试题卷上作答无效)1.(4分)方程x+1=5的解是()A.﹣6B.6C.4D.﹣42.(4分)下面图形分别表示低碳、节水、节能和绿色食品四个标志,其中的轴对称图形是()A.B.C.D.3.(4分)不等式2x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.4.(4分)现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1B.2C.3D.45.(4分)只用下列正多边形地砖中的一种,能够铺满地面的是()A.正十边形B.正八边形C.正六边形D.正五边形6.(4分)下列四组变形中,正确的是()A.由2x+7=0,得2x=﹣7B.由2x﹣3=0,得2x﹣3+3=0C.由=2,得x=D.由5x=4,得x=207.(4分)已知等腰三角形的两边长分别为a、b,且a、b满足|2a﹣b﹣1|+(b﹣a﹣2)2=0,则此等腰三角形的周长是()A.8B.11C.12D.11或138.(4分)已知,都是方程y=kx+b的解,则()A.y=2x+3B.y=2x+1C.y=2x﹣3D.y=﹣2x+1 9.(4分)如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()A.10°B.15°C.20°D.25°10.(4分)已知关于x的方程3k﹣x=6的解是非负数,则k的取值范围是()A.k≤﹣2B.k≤2C.k≥﹣2D.k≥211.(4分)为了提倡节约用水,采用“阶梯水价”收费办法:每户用水不超过5方,每方水费x元,超过5方,每方加收2元,小张家今年3月份用水11方共交水费56元,根据题意列出关于x的方程,正确的是()A.5x+6(x﹣2)=56B.5x+6(x+2)=56C.11(x+2)=56D.11(x+2)﹣6×2=5612.(4分)若关于x的不等式的整数解共有3个,则m的取值范围是()A.5<m<6B.5≤m<6C.5≤m≤6D.5<m≤6二、填空题:(本大题共6个小题,每小题4分,共24分).请把答案直接填在答题卡对应题目中的横线上.(注意:在试题卷上作答无效)13.(4分)如果x2m﹣1﹣6=0是关于x的一元一次方程,则m的值是.14.(4分)x的与1的差是非正数,用不等式表示为.15.(4分)已知一个正多边形的内角和为1260°,则这个多边形的每个内角比外角大度.16.(4分)如图,△ABC中,∠ABC=20°,∠ACB=16°,把△ABC沿AB翻折得到△ABD,则∠DAC的度数是.17.(4分)对x、y、z三个数这样规定:min[x,y,z]表示x、y、z这三个数中的最小数,如min[﹣1,2,3]=﹣1,如果min[+1,2,6﹣2x]=2,则x的取值范围是.18.(4分)如图,△ABC中,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,AD∥BC.以下结论:①∠ABC=∠ACB;②∠ADC+∠ABD=90°;③BD 平分∠ADC;④2∠BDC=∠BAC.其中正确的结论有.(填序号)三、解答题:(本大题共7个小题,共78分).解答应写出相应的文字说明、证明过程或演算步骤.(注意:在试题卷上作答无效)19.(12分)解下列方程(组)(1)(2)20.(10分)解不等式组:,并把解集在数轴上表示出来.21.(10分)如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得C2P+C1P的值最小.22.(10分)如图,△ABD中,E、F、M分别在边AB、AD、BD上,BF、DE相交于点N,∠A=62°,∠ADE=35°,∠ABF=20°,MN平分∠BND,求∠MND的度数.23.(10分)若关于x、y的二元一次方程组.(1)若方程组的解满足x﹣y=1,求k的值;(2)若x+y≤﹣1,求k的取值范围.24.(12分)为了做好学生返校“复学”的疫情防控工作,育英学校计划购买A、B两种型号的体温枪.已知A、B两种型号体温枪的购买单价分别为每支310元、460元.(1)若购买A、B两种型号的体温枪共50支,恰好支出20000元,求A、B两种型号体温枪各购买多少支?(2)若购买A、B两种型号的体温枪共50支,且支出不超过18000元,求A种型号体温枪至少要购买多少支?25.(14分)如图,在△ABC中,∠ABC=∠ACB,E为BC边上一点,以E为顶点作∠AEF,∠AEF的一边交AC于点F,使∠AEF=∠B.(1)如果∠ABC=40°,则∠BAC=;(2)判断∠BAE与∠CEF的大小关系,并说明理由;(3)当△AEF为直角三角形时,求∠AEF与∠BAE的数量关系.参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分).在每小题给出的四个选项中,只有一项是符合题目要求的.(注意:在试题卷上作答无效)1.(4分)方程x+1=5的解是()A.﹣6B.6C.4D.﹣4【分析】方程移项合并,即可求出解.【解答】解:方程x+1=5,移项得:x=5﹣1,合并得:x=4.故选:C.2.(4分)下面图形分别表示低碳、节水、节能和绿色食品四个标志,其中的轴对称图形是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.3.(4分)不等式2x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可.【解答】解:不等式2x﹣6≥0的解集为:x≥3,∴不等式2x﹣6≥0的解集在数轴上表示正确的是A.故选:A.4.(4分)现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1B.2C.3D.4【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【解答】解:四条木棒的所有组合:3,4,5和3,4,7和3,5,7和4,5,7;只有3,4,7不能组成三角形.故选:C.5.(4分)只用下列正多边形地砖中的一种,能够铺满地面的是()A.正十边形B.正八边形C.正六边形D.正五边形【分析】本题意在考查学生对平面镶嵌知识的掌握情况.【解答】解:由平面镶嵌的知识可知,只用一种正多边形能够铺满地面的是正三角形或正四边形或正六边形,故选:C.6.(4分)下列四组变形中,正确的是()A.由2x+7=0,得2x=﹣7B.由2x﹣3=0,得2x﹣3+3=0C.由=2,得x=D.由5x=4,得x=20【分析】利用等式的性质对每个等式进行变形,即可找出答案.【解答】解:A、根据等式性质1,2x+7=0两边都减7得2x=﹣7,原变形正确,故此选项符合题意;B、根据等式性质1,2x﹣3=0两边都加3得2x﹣3+3=3,原变形错误,故此选项不符合题意;C、根据等式性质2,=2两边都乘6得x=12,原变形错误,故此选项不符合题意;D、根据等式性质2,5x=4两边都除以5得x=,原变形错误,故此选项不符合题意.故选:A.7.(4分)已知等腰三角形的两边长分别为a、b,且a、b满足|2a﹣b﹣1|+(b﹣a﹣2)2=0,则此等腰三角形的周长是()A.8B.11C.12D.11或13【分析】首先根据|2a﹣b﹣1|+(b﹣a﹣2)2=0求得a、b的值,然后求得等腰三角形的周长即可.【解答】解:∵|2a﹣b﹣1|+(b﹣a﹣2)2=0∴解得:,当3为腰时,三边为3,3,5,由三角形三边关系定理可知,周长为:3+3+5=11.当5为腰时,三边为5,5,3,符合三角形三边关系定理,周长为:5+5+3=13.故选:D.8.(4分)已知,都是方程y=kx+b的解,则()A.y=2x+3B.y=2x+1C.y=2x﹣3D.y=﹣2x+1【分析】把方程的解代入方程,得出关于k、b的方程组,求出方程组的解即可.【解答】解:∵,都是方程y=kx+b的解,∴代入得:,解得:k=2,b=﹣3,∴y=2x﹣3,故选:C.9.(4分)如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()A.10°B.15°C.20°D.25°【分析】由旋转前后的对应角相等可知,∠DFC=∠BEC=60°;一个特殊三角形△ECF 为等腰直角三角形,可知∠EFC=45°,把这两个角作差即可.【解答】解:∵△BCE绕点C顺时针方向旋转90°得到△DCF,∴CE=CF,∠DFC=∠BEC=60°,∠EFC=45°,∴∠EFD=60°﹣45°=15°.故选:B.10.(4分)已知关于x的方程3k﹣x=6的解是非负数,则k的取值范围是()A.k≤﹣2B.k≤2C.k≥﹣2D.k≥2【分析】先把k当作已知条件表示出x的值,再由方程的解为非负数求出k的取值范围即可.【解答】解:解方程3k﹣x=6得,x=3k﹣6,∵方程的解是非负数,∴3k﹣6≥0,解得k≥2.故选:D.11.(4分)为了提倡节约用水,采用“阶梯水价”收费办法:每户用水不超过5方,每方水费x元,超过5方,每方加收2元,小张家今年3月份用水11方共交水费56元,根据题意列出关于x的方程,正确的是()A.5x+6(x﹣2)=56B.5x+6(x+2)=56C.11(x+2)=56D.11(x+2)﹣6×2=56【分析】根据应交水费=5×不超过5方时的每方水费+超出5方的部分×超过5方时的每方水费,即可得出关于x的一元一次方程,此题得解.【解答】解:依题意,得:5x+(11﹣5)×(x+2)=56,即5x+6(x+2)=56.故选:B.12.(4分)若关于x的不等式的整数解共有3个,则m的取值范围是()A.5<m<6B.5≤m<6C.5≤m≤6D.5<m≤6【分析】先求出不等式组的解集,根据不等式组的整数解得出答案即可.【解答】解:,∵不等式②的解集是x≥3,∴不等式组的解集是3≤<m,又∵关于x的不等式的整数解共有3个,是3,4,5,∴5<m≤6,故选:D.二、填空题:(本大题共6个小题,每小题4分,共24分).请把答案直接填在答题卡对应题目中的横线上.(注意:在试题卷上作答无效)13.(4分)如果x2m﹣1﹣6=0是关于x的一元一次方程,则m的值是1.【分析】直接利用一元一次方程的定义进而得出2m﹣1=1,即可得出答案.【解答】解:∵x2m﹣1﹣6=0是关于x的一元一次方程,∴2m﹣1=1,解得:m=1,故答案为:1.14.(4分)x的与1的差是非正数,用不等式表示为x﹣1≤0.【分析】直接利用非正数的定义进而得出不等式.【解答】解:由题意可得:x﹣1≤0.故答案为:x﹣1≤0.15.(4分)已知一个正多边形的内角和为1260°,则这个多边形的每个内角比外角大100度.【分析】首先根据多边形的内角和定理求得多边形的边数,然后求得内角即可,进而得出其外角度数.【解答】解:设正多边形的边数为n,∵正多边形的内角和为1260°,∴(n﹣2)×180°=1260°,解得:n=9,∴每个内角为:1260°÷9=140°,∴正九边形的每个外角40°,∴这个多边形的每个内角比外角大100°.故答案为:100.16.(4分)如图,△ABC中,∠ABC=20°,∠ACB=16°,把△ABC沿AB翻折得到△ABD,则∠DAC的度数是72°.【分析】由折叠得,ABC=20°=∠ABD,∠ACB=16°=∠ADB,由三角形的外角得∠DAE=∠ABD+∠ADB=20°+16°=36°,∠CAE=∠ABC+∠ACB=20°+16°=36°,进而求出答案.【解答】解:由折叠得,∠ABC=20°=∠ABD,∠ACB=16°=∠ADB,延长BA到E,∵∠DAE=∠ABD+∠ADB=20°+16°=36°,∠CAE=∠ABC+∠ACB=20°+16°=36°,∴∠DAC=∠DAE+∠CAE=36°+36°=72°,故答案为:72°.17.(4分)对x、y、z三个数这样规定:min[x,y,z]表示x、y、z这三个数中的最小数,如min[﹣1,2,3]=﹣1,如果min[+1,2,6﹣2x]=2,则x的取值范围是≤x≤2.【分析】先根据新定义列出关于x的不等式组,分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集.【解答】解:根据题意,得:,解不等式①,得:x≥,解不等式②,得:x≤2,则x的取值范围是≤x≤2,故答案为:≤x≤2.18.(4分)如图,△ABC中,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,AD∥BC.以下结论:①∠ABC=∠ACB;②∠ADC+∠ABD=90°;③BD 平分∠ADC;④2∠BDC=∠BAC.其中正确的结论有①②④.(填序号)【分析】根据角平分线的定义得到∠EAD=∠CAD,根据平行线的性质得到∠EAD=∠ABC,∠CAD=∠ACB,求得∠ABC=∠ACB,故①正确;根据角平分线的定义得到∠ADC=90°﹣∠ABC,求得∠ADC+∠ABD=90°故②正确;根据全等三角形的性质得到AB=CB,与题目条件矛盾,故③错误,根据角平分线的定义和三角形外角的性质即可得到2∠BDC=∠BAC,故④正确.【解答】解:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠EAD=∠ABC,∠CAD=∠ACB,∴∠ABC=∠ACB,故①正确;∵AD,CD分别平分∠EAC,∠ACF,∴可得∠ADC=90°﹣∠ABC,∴∠ADC+∠ABC=90°,∴∠ADC+∠ABD=90°,故②正确;∵∠ABD=∠DBC,BD=BD,∠ADB=∠BDC,∴△ABD≌△BCD(ASA),∴AB=CB,与题目条件矛盾,故③错误,∵∠DCF=∠DBC+∠BDC,∠ACF=∠ABC+∠BAC,∴2∠DCF=2∠DBC+2∠BDC,2∠DCF=2∠DBC+∠BAC,∴2∠BDC=∠BAC,故④正确,故答案为:①②④.三、解答题:(本大题共7个小题,共78分).解答应写出相应的文字说明、证明过程或演算步骤.(注意:在试题卷上作答无效)19.(12分)解下列方程(组)(1)(2)【分析】(1)根据一元一次方程的解法即可求出答案.(2)根据二元一次方程的解法即可求出答案.【解答】解:(1)∵,∴4(2x+5)﹣3(3x﹣2)=24,∴8x+20﹣9x+6=24,∴﹣x=﹣2,∴x=2;(2),∴①×3得:6x﹣21y=24③,②×2得:6x﹣16y=20④,③﹣④得:y=,将y=代入①得:x=,∴该方程组的解为20.(10分)解不等式组:,并把解集在数轴上表示出来.【分析】先分别解两个不等式得到x>﹣3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.【解答】解:,解①得x>﹣3,解②得x≤2,所以不等式组的解集为﹣3<≤2,用数轴表示为:21.(10分)如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得C2P+C1P的值最小.【分析】(1)将A、B、C按平移条件找出它的对应点A1、B1、C1,顺次连接A1B1、B1C1、C1A1,即得到平移后的图形.(2)利用轴对称性质,作出A、B、C关于直线m的对称点,A2、B2、C2,顺次连接A2B2、B2C2、C2A2,即得到关于直线m对称的△A2B2C2;(3)两点间线段最短,连接C1与C2与m的交点即为点P,使得CP+C1P的值最小.【解答】解:(1)如图,△A1B1C1为所作图形(2)如图,△A2B2C2为所作图形(3)如图,两点间线段最短,故如图,连接C1与C2与m的交点即为点P,使得C2P+C1P 的值最小.22.(10分)如图,△ABD中,E、F、M分别在边AB、AD、BD上,BF、DE相交于点N,∠A=62°,∠ADE=35°,∠ABF=20°,MN平分∠BND,求∠MND的度数.【分析】利用三角形的外角的性质求解即可.【解答】解:∵∠BED=∠A+∠ADE,∠BND=∠BED+∠EBN,∴∠BND=∠EBN+∠A+∠ADE=62°+35°+20°=117°,∵MN平分∠BND,∴∠MND=∠BND=58.5°.23.(10分)若关于x、y的二元一次方程组.(1)若方程组的解满足x﹣y=1,求k的值;(2)若x+y≤﹣1,求k的取值范围.【分析】(1)先利用加减消元法解方程组得到,则利用x﹣y=1得到﹣17k ﹣15﹣(9k+10)=1,然后解关于k的方程即可;(2)利用x+y≤﹣1得到﹣17k﹣15+9k+10≤﹣1,然后解关于k的不等式即可.【解答】解:(1)解方程组得,∵x﹣y=1,∴﹣17k﹣15﹣(9k+10)=1,∴k=﹣1;(2)∵x+y≤﹣1,∴﹣17k﹣15+9k+10≤﹣1,∴k≥﹣.24.(12分)为了做好学生返校“复学”的疫情防控工作,育英学校计划购买A、B两种型号的体温枪.已知A、B两种型号体温枪的购买单价分别为每支310元、460元.(1)若购买A、B两种型号的体温枪共50支,恰好支出20000元,求A、B两种型号体温枪各购买多少支?(2)若购买A、B两种型号的体温枪共50支,且支出不超过18000元,求A种型号体温枪至少要购买多少支?【分析】(1)设A种型号体温枪购买了x支,B种型号体温枪购买了y支,根据“购买A、B两种型号的体温枪共50支,恰好支出20000元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设A种型号体温枪购买了m支,则B种型号体温枪购买了(50﹣m)支,根据总支出不超过18000元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最小整数值即可得出结论.【解答】解:(1)设A种型号体温枪购买了x支,B种型号体温枪购买了y支,依题意,得:,解得:.答:A种型号体温枪购买了20支,B种型号体温枪购买了30支.(2)设A种型号体温枪购买了m支,则B种型号体温枪购买了(50﹣m)支,依题意,得:310m+460(50﹣m)≤18000,解得:m≥33.又∵m为正整数,∴m可取的最小值为34.答:A种型号体温枪至少要购买34支.25.(14分)如图,在△ABC中,∠ABC=∠ACB,E为BC边上一点,以E为顶点作∠AEF,∠AEF的一边交AC于点F,使∠AEF=∠B.(1)如果∠ABC=40°,则∠BAC=100°;(2)判断∠BAE与∠CEF的大小关系,并说明理由;(3)当△AEF为直角三角形时,求∠AEF与∠BAE的数量关系.【分析】(1)根据等腰三角形的性质解答即可;(2)根据三角形内角与外角的关系可得∠B+∠BAE=∠AEC=∠AEF+∠FEC,再由条件∠AEF=∠B可得∠BAE=∠FEC;(3)分别根据当∠AFE=90°时,以及当∠EAF=90°时利用外角的性质得出即可.【解答】解:(1)∵在△ABC中,∠ABC=∠ACB,∠ABC=40°,∴∠ACB=40°,∴∠BAC=180°﹣40°﹣40°=100°,故答案为:100°.(2)∠BAE=∠FEC;理由如下:∵∠B+∠BAE=∠AEC,∠AEF=∠B,∴∠BAE=∠FEC;(3)如图1,当∠AFE=90°时,∵∠B+∠BAE=∠AEF+∠CEF,∠B=∠AEF=∠C,∴∠BAE=∠CEF,∵∠C+∠CEF=90°,∴∠BAE+∠AEF=90°,即∠AEF与∠BAE的数量关系是互余;如图2,当∠EAF=90°时,∵∠B+∠BAE=∠AEF+∠1,∠B=∠AEF=∠C,∴∠BAE=∠1,∵∠C+∠1+∠AEF=90°,∴2∠AEF+∠1=90°,即2∠AEF与∠BAE的数量关系是互余.2020-2021学年度第二学期七年级(下)期末数学试卷一、选择题(本题共8个小题,每小题3分,共24分)1.(3分)下列各方程组中,是二元一次方程组的是()A.B.C.D.2.(3分)计算a2•a3的结果等于()A.a5B.a6C.a﹣1D.a233.(3分)下列各式中,与(a﹣1)2相等的是()A.a2﹣1B.a2﹣2a+1C.a2﹣2a﹣1D.a2+14.(3分)把多项式m2﹣16m分解因式,结果正确的是()A.(m+4)(m﹣4)B.m(m+4)(m﹣4)C.m(m﹣16)D.(m﹣4)25.(3分)如图,直线a,b被直线c所截,那么∠2的同旁内角是()A.∠1B.∠3C.∠4D.∠56.(3分)在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.7.(3分)若a+b=1,则a2﹣b2+2b的值为()A.4B.3C.1D.08.(3分)已知a﹣b=14,ab=6,则a2+b2的值是()A.196B.36C.20D.208二、填空题(本题共6个小题,每小题3分,共18分)9.(3分)如果单项式5x m+2n y n﹣2m+2与7x5y7是同类项,那么m n的值是.10.(3分)如果二次三项式x2+kx+49是一个整式的平方,则k的值是.11.(3分)如图,已知AD∥BC,CE=5,CF=8,且CE⊥AD,CF⊥AB垂足分别为E,F.则AD与BC间的距离是.12.(3分)数据1,2,3,4,5的方差为.13.(3分)已知a m=2,a n=3(m,n为正整数),则a3m+2n=.14.(3分)甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+l)(x+9),则a﹣b的值是.三、解答题(共58分)15.(6分)解下列方程组:(1)(2)16.(6分)因式分解:(1)m3﹣16m;(2)xy3﹣10xy2+25xy.17.(6分)先化简,再求值:(2x﹣1)2﹣(2x+1)(2x﹣1)+(x+1)(3﹣x),其中x=.18.(6分)如图,AB∥DF,DE∥BC,∠1=65°,求∠2、∠3的度数.19.(6分)三五三七鞋厂为了了解初中学生穿鞋的鞋号情况,对红华中学初二(1)班的20名男生所穿鞋号统计如下表:鞋号23.52424.52525.526人数344711(1)写出男生鞋号数据的平均数,中位数,众数;(2)在平均数,中位数和众数中,鞋厂最感兴趣的是什么?20.(6分)湘西自治州风景优美,物产丰富,一外地游客到某特产专营店,准备购买精加工的豆腐乳和猕猴桃果汁两种盒装特产.若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元.(1)请分别求出每盒豆腐乳和每盒猕猴桃果汁的价格;(2)该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需多少元?21.(8分)先阅读材料:分解因式:(a+b)2+2(a+b)+1.解:令a+b=M,则(a+b)2+2(a+b)+1=M2+2M+1=(M+1)2所以(a+b)2+2(a+b)+1=(a+b+1)2.材料中的解题过程用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你运用这种思想方法解答下列问题:(1)分解因式:1﹣2(x+y)+(x+y)2=;(2)分解因式:(m+n)(m+n﹣4)+4;(3)证明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某个整数的平方.22.(6分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°.(1)写出点A,B的对应点;(2)求∠AOB'和∠A'OB的度数.23.(8分)在综合与实践课上,老师计同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.(1)如图(1),若三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC间的数量关系;(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,∠CFG=β,则∠AEG与∠CFG的数量关系是什么?用含α,β的式子表示(不写理由).参考答案与试题解析一、选择题(本题共8个小题,每小题3分,共24分)1.(3分)下列各方程组中,是二元一次方程组的是()A.B.C.D.【分析】要正确地判断哪一个属于二元一次方程组,需要掌握二元一次方程及二元一次方程组的定义.所谓二元一次方程是指含有两个未知数,并且未知数的项的最高次数是1的整式方程;而二元一次方程组是指由两个二元一次方程组成的方程组.根据以上定义即可判断此题.【解答】解:A、b是二次,故不是二元一次方程组,故此选项错误;B、含有三个未知数,是三元而不是二元方程组,故此选项错误;C、xy是二次项,是二次而不是一次方程,故此选项错误;D、是二元一次方程组.故此选项正确;故选:D.2.(3分)计算a2•a3的结果等于()A.a5B.a6C.a﹣1D.a23【分析】根据同底数幂的乘法法则,求出a2•a3的结果等于多少即可.【解答】解:a2•a3=a5.故选:A.3.(3分)下列各式中,与(a﹣1)2相等的是()A.a2﹣1B.a2﹣2a+1C.a2﹣2a﹣1D.a2+1【分析】根据完全平方公式求出(a﹣1)2=a2﹣2a+1,即可选出答案.【解答】解:∵(a﹣1)2=a2﹣2a+1,∴与(a﹣1)2相等的是B,故选:B.4.(3分)把多项式m2﹣16m分解因式,结果正确的是()A.(m+4)(m﹣4)B.m(m+4)(m﹣4)C.m(m﹣16)D.(m﹣4)2【分析】直接提公因式m即可.【解答】解:m2﹣16m=m(m﹣16),故选:C.5.(3分)如图,直线a,b被直线c所截,那么∠2的同旁内角是()A.∠1B.∠3C.∠4D.∠5【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.【解答】解:∵直线a、b被直线c所截,∴∠2的同旁内角是∠4.故选:C.6.(3分)在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.7.(3分)若a+b=1,则a2﹣b2+2b的值为()A.4B.3C.1D.0【分析】首先利用平方差公式,求得a2﹣b2+2b=(a+b)(a﹣b)+2b,继而求得答案.【解答】解:∵a+b=1,∴a2﹣b2+2b=(a+b)(a﹣b)+2b=a﹣b+2b=a+b=1.故选:C.8.(3分)已知a﹣b=14,ab=6,则a2+b2的值是()A.196B.36C.20D.208【分析】根据完全平方公式,即可解答.【解答】解:a2+b2=(a﹣b)2+2ab=142+2×6=208,故选:D.二、填空题(本题共6个小题,每小题3分,共18分)9.(3分)如果单项式5x m+2n y n﹣2m+2与7x5y7是同类项,那么m n的值是﹣1.【分析】利用同类项的定义列出方程组,求出方程组的解得到m与n的值,代入原式计算即可求出值.【解答】解:∵单项式2x m+2n y n﹣2m+2与x5y7是同类项,∴,解得:,则原式=﹣1,故答案为:﹣1.10.(3分)如果二次三项式x2+kx+49是一个整式的平方,则k的值是±14.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k 的值.【解答】解:∵二次三项式x2+kx+49是一个整式的平方,∴kx=±2×7x,解得k=±14.故答案为:±14.11.(3分)如图,已知AD∥BC,CE=5,CF=8,且CE⊥AD,CF⊥AB垂足分别为E,F.则AD与BC间的距离是5.【分析】从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.【解答】解:∵AD∥BC,CE⊥AD于E,∴平行线AD与BC间的距离等于CE的长,∵CE=5,∴AD与BC间的距离是5.故答案为:5.12.(3分)数据1,2,3,4,5的方差为2.【分析】根据方差的公式计算.方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:数据1,2,3,4,5的平均数为(1+2+3+4+5)=3,故其方差S2=[(3﹣3)2+(1﹣3)2+(2﹣3)2+(4﹣3)2+(5﹣3)2]=2.故答案为:2.13.(3分)已知a m=2,a n=3(m,n为正整数),则a3m+2n=72.【分析】直接利用积的乘方运算法则以及同底数幂的乘法运算法则计算得出答案.【解答】解:∵a m=2,a n=3(m,n为正整数),∴a3m+2n=(a m)3×(a n)2=23×32=8×9=72.故答案为:72.14.(3分)甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+l)(x+9),则a﹣b的值是﹣3.【分析】直接利用多项式乘法结合已知进而得出a,b的值,进而得出答案.【解答】解:∵分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4),∴(x+2)(x+4)=x2+6x+8,则a=6,∵分解因式x2+ax+b时,乙看错了a,分解结果为(x+l)(x+9),∴(x+l)(x+9)=x2+10x+9,则b=9,故a﹣b=6﹣9=﹣3.故答案为:﹣3.三、解答题(共58分)15.(6分)解下列方程组:(1)(2)【分析】(1)方程组利用加减消元法求出解即可.(2)方程组利用加减消元法求出解即可.【解答】(1)解:,①+②得:8x=8,解得,x=1,把x=1代入①得:y=2,∴原方程组的解为,(2)原方程组可化为,①×3﹣②×4,得7y=14,∴y=2,把y=2代入①,得x=2,∴原方程组的解是.16.(6分)因式分解:(1)m3﹣16m;(2)xy3﹣10xy2+25xy.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=m(m2﹣16)=m(m+4)(m﹣4);(2)原式=xy(y2﹣10y+25)=xy(y﹣5)2.17.(6分)先化简,再求值:(2x﹣1)2﹣(2x+1)(2x﹣1)+(x+1)(3﹣x),其中x=.【分析】首先计算完全平方、平方差和多项式乘以多项式,然后再去括号,合并同类项,化简后,再代入x的值计算即可.【解答】解:原式=4x2﹣4x+1﹣(4x2﹣1)+(3x﹣x2+3﹣x),=4x2﹣4x+1﹣4x2+1+3x﹣x2+3﹣x,=﹣x2﹣2x+5,将代入,原式=.18.(6分)如图,AB∥DF,DE∥BC,∠1=65°,求∠2、∠3的度数.【分析】利用两直线平行,内错角相等,则∠1=∠2,两直线平行,同旁内角互补,则有∠2+∠3=180°,故可求出结论.【解答】解:∵DE∥BC∴∠1=∠2=65°∵AB∥DF∴∠2+∠3=180°,∴∠3=180°﹣65°=115°.故答案为∠2=65°,∠3=115°.19.(6分)三五三七鞋厂为了了解初中学生穿鞋的鞋号情况,对红华中学初二(1)班的20名男生所穿鞋号统计如下表:鞋号23.52424.52525.526人数344711(1)写出男生鞋号数据的平均数,中位数,众数;(2)在平均数,中位数和众数中,鞋厂最感兴趣的是什么?【分析】根据平均数、中位数、众数的概念计算和判断.【解答】解:(1)由题意知:男生鞋号数据的平均数==24.55;男生鞋号数据的众数为25;男生鞋号数据的中位数==24.5.∴平均数是24.55,中位数是24.5,众数是25.(2)厂家最关心的是众数.20.(6分)湘西自治州风景优美,物产丰富,一外地游客到某特产专营店,准备购买精加工的豆腐乳和猕猴桃果汁两种盒装特产.若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元.(1)请分别求出每盒豆腐乳和每盒猕猴桃果汁的价格;(2)该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需多少元?【分析】(1)设每盒豆腐乳x元,每盒猕猴桃果汁y元,根据若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元,列出方程组,求解即可;(2)将(1)中的每盒豆腐乳和每盒猕猴桃果汁的价格代入解得即可.【解答】解:(1)设每盒豆腐乳x元,每盒猕猴桃果汁y元,可得:,解得:,答:每盒豆腐乳和每盒猕猴桃果汁的价格分别为30元,45元;(2)把每盒豆腐乳和每盒猕猴桃果汁的价格分别为30元,45元代入,可得:4×30+2×45=210(元),答:该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需210元.21.(8分)先阅读材料:分解因式:(a+b)2+2(a+b)+1.解:令a+b=M,则(a+b)2+2(a+b)+1=M2+2M+1=(M+1)2所以(a+b)2+2(a+b)+1=(a+b+1)2.材料中的解题过程用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你运用这种思想方法解答下列问题:(1)分解因式:1﹣2(x+y)+(x+y)2=(1﹣x﹣y)2;(2)分解因式:(m+n)(m+n﹣4)+4;(3)证明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某个整数的平方.【分析】(1)将(x+y)看作一个整体进行因式分解;(2)将(m+n)看作一个整体进行因式分解;(3)先计算(n+1)(n+2)得n2+3n+2,再将n2+3n看做整体因式分解得原式=(n2+3n+1)2,继而由n2+3n+1为正整数可得答案.【解答】解:(1)原式=(1﹣x﹣y)2;故答案是:(1﹣x﹣y)2;(2)令A=m+n,则(m+n)(m+n﹣4)+4=A(A﹣4)+4=A2﹣4A+4=(A﹣2)2,所以,(m+n)(m+n﹣4)+4=(m+n﹣2)2.(3)(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2.∵n是正整数,∴n2+3n+1也为正整数.∴式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.22.(6分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°.(1)写出点A,B的对应点;(2)求∠AOB'和∠A'OB的度数.【分析】(1)由旋转的性质可得;(2)由旋转的性质可得∠AOA'=∠BOB'=45°,即可求解.【解答】解:(1)∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴点A的对应点A',点B的对应点B';(2)∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠AOA'=∠BOB'=45°,∴∠AOB'=30°,∠A'OB=60°.23.(8分)在综合与实践课上,老师计同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.(1)如图(1),若三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC间的数量关系;(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,∠CFG=β,则∠AEG与∠CFG的数量关系是什么?用含α,β的式子表示(不写理由).【分析】(1)根据平行线的性质可知∠1=∠EGD,依据∠2+∠FGE+∠EGD=180°,可求解∠1的度数;(2)过点F作FP∥AB,易得FP∥AB∥CD,通过平行线的性质把∠AEF和∠FGC转化到∠EFG上即可;(3)依据AB∥CD,可知∴∠AEF+∠CFE=180°,再代入∠AEF=α﹣30°,∠CFE=。
2020-2021学年七年级下期末考试数学试卷一.选择题(共12小题,满分36分,每小题3分)1.(3分)下列方程中,是二元一次方程的有()A.6x﹣2z=5y+3B.1x +1y=5C.x2﹣3y=1D.x=2y解:A、只含有3个未知数,不符合二元一次方程的定义;B、该方程不是整式方程;C、未知数的项的最高次数是2,不符合二元一次方程的定义;D、符合二元一次方程的定义;故选:D.2.(3分)下列说法:①“从13张黑桃扑克牌中随机抽取一张,抽出的牌上点数小于5的概率是313”;②“从装有无差别的5个红球,3个绿球的不透明袋子中抽出4个球,一定抽出3个绿球”;③“射击运动员射击一次,命中靶心的概率是0.5”,其中不正确的个数是()A.0B.1C.2D.3解:从13张黑桃扑克牌中随机抽取一张,抽出的牌上点数小于5的有4张,因此抽出的牌上点数小于5的概率是413,故①不正确;从装有无差别的5个红球,3个绿球的不透明袋子中抽出4个球,可能都是红球,因此②不正确;射击运动员射击一次,命中靶心的概率不一定是0.5,因此③不正确;综上所述,不正确的个数是3个,故选:D.3.(3分)下列事件是随机事件的是()A.只买一张彩票,就中了大奖B.威海市某天的最低气温为﹣150℃C.口袋中装的全是黑球,从中摸出一个球是黑球D.抛掷8枚硬币,结果是3个正面朝上与6个反面朝上解:A、只买一张彩票,就中了大奖,是随机事件;B、威海市某天的最低气温为﹣150℃,是不可能事件;C 、口袋中装的全是黑球,从中摸出一个球是黑球,是必然事件;D 、抛掷8枚硬币,结果是3个正面朝上与6个反面朝上,是不可能事件;故选:A .4.(3分)已知方程组{x −12y =2x −2y =n中的x ,y 互为相反数,则n 的值为( ) A .2 B .﹣2 C .0 D .4 解:由题意得:x +y =0,即y =﹣x ,代入x −12y =2得:x +12x =2,解得:x =43,即y =−43,代入得:n =x ﹣2y =43+83=4,故选:D .5.(3分)如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6+∠4=180°;其中能判断直线l 1∥l 2的有( )A .②③④B .②③⑤C .②④⑤D .②④解:①由∠1=∠2不能得到l 1∥l 2,故本条件不合题意;②∵∠4=∠5,∴l 1∥l 2,故本条件符合题意;③由∠2+∠5=180°不能得到l 1∥l 2,故本条件不合题意;④∵∠1=∠3,∴l 1∥l 2,故本条件符合题意.⑤由∠6+∠4=180°不能得到l 1∥l 2,故本条件不合题意.故选:D .6.(3分)在一个不透明的袋子中装有质地相同的若干个黄球和8个白球,若从中摸出黄球的概率为15,则袋中共有球( ) A .15个 B .10个 C .12个D .8个 解:设袋子中装有黄球x 个,根据题意得:x x+8=15, 解得:x =2,经检验x =2是方程的解,则袋中共有球2+8=10(个);故选:B .7.(3分)已知x >y ,则下列不等式不成立的是( )A .x ﹣2>y ﹣2B .2y >2xC .﹣2x <﹣2yD .x +2>y +2解:A 、不等式的两边都减2,不等号的方向不变,故A 正确;B 、不等式的两边都乘以2,不等号的方向不变,故B 错误;C 、不等式的两边都乘以负数,不等号的方向改变,故D 正确;D 、不等式的两条边都加2,不等号的方向不变,故C 正确;故选:B .8.(3分)下列命题正确的是( )A .若分式x 2−4x−2的值为0,则x 的值为±2B .一个正数的算术平方根一定比这个数小C .若b >a >0,则a b >a+1b+1D .若c ≥2,则一元二次方程x 2+2x +3=c 有实数根解:A 、若分式x 2−4x−2的值为0,则x 值为﹣2,故错误;B 、一个正数的算术平方根不一定比这个数小,故错误;C 、若b >a >0,则a b <a+1b+1,故错误;D 、若c ≥2,则一元二次方程x 2+2x +3=c 有实数根,正确,故选:D .9.(3分)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托,如果一托为5尺,那么索长( )尺.A .25B .20C .15D .10解:设索长x 尺,竿子长y 尺,依题意,得:{x −y =5y −12x =5,解得:{x =20y =15. 故选:B .10.(3分)如图,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列结论中正确的个数是( )①AD 是∠BAC 的平分线②∠ADC =60°;③AD =BD ;④点D 在AB 的垂直平分线上⑤S △ABD =S △ACDA .2个B .3个C .4个D .5个解:利用基本作图得AD 平分∠BAC ,所以①正确;∵∠C =90°,∠B =30°,∴∠BAC =60°,而AD 平分∠BAC ,∴∠CAD =∠DAB =30°,∴∠ADC =90°﹣∠CAD =60°,所以②正确;∵∠DAB =∠B =30°,∴DA =DB ,所以③正确;∴点D 在AB 的垂直平分线上,所以④正确;∵AD =2CD ,∴BD =2CD ,∴S △ABD =2S △ACD ,所以⑤错误.故选:C .11.(3分)不等式组{2−x ≥03x +2>−1的解集是( )A .﹣1<x ≤2B .﹣2≤x <1C .x <﹣1或x ≥2D .2≤x <﹣1解:{2−x ≥0①3x +2>−1②, 由①得,x ≤2,由②得,x >﹣1,故此不等式组的解集为:﹣1<x ≤2.故选:A .12.(3分)已知弹簧的长度y (cm )与所挂物体的质量x (kg )之间的函数关系如图所示,则弹簧不挂物体时的长度为( )A .12cmB .11cmC .10cmD .9cm解:设弹簧的长度y (cm )与所挂物体的质量x (kg )之间的函数关系式为y =kx +b , ∵该函数经过点(6,15),(20,22),∴{6k +b =1520k +b =22, 解得{k =0.5b =12, 即弹簧的长度y (cm )与所挂物体的质量x (kg )之间的函数关系式为y =0.5x +12, 当x =0时,y =12,即弹簧不挂物体时的长度为12cm ,故选:A .二.填空题(共6小题,满分18分,每小题3分)13.(3分)在平面直角坐标系中,点P (6﹣2m ,4﹣m )在第三象限,则m 的取值范围是m >4 .解:根据题意,得:{6−2m <0①4−m <0②, 解不等式①,得:m >3,解不等式②,得:m >4,则不等式组的解集为m >4,故答案为:m >4.14.(3分)如图,在矩形纸片上作随机扎针试验,针头扎在阴影区域内的概率为 12 .解:观察发现:图中阴影部分面积=12S 矩形,∴针头扎在阴影区域内的概率为12; 故答案为:12. 15.(3分)欢欢观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB ∥CD ,∠BAE =92°,∠DCE =115°,则∠E 的度数是 23 °.解:如图,延长DC 交AE 于F ,∵AB ∥CD ,∠BAE =92°,∴∠CFE =92°,又∵∠DCE =115°,∴∠E =∠DCE ﹣∠CFE =115°﹣92°=23°.故答案为:23.16.(3分)某种型号汽车每行驶100km 耗油10L ,其油箱容量为40L .为了有效延长汽车使用寿命,厂家建议每次加油时油箱内剩余油量不低于油箱容量的18,按此建议,一辆加满油的该型号汽车最多行驶的路程是 350 km .解:设行驶xkm ,∵油箱内剩余油量不低于油箱容量的18, ∴40−10100x ≥40×18. ∴x ≤350故该辆汽车最多行驶的路程是350km ,故答案为:350.17.(3分)如图,已知∠B =30°,则∠A +∠D +∠C +∠G = 210 °.解:∵∠B =30°,∴∠BEF +∠BFE =180°﹣30°=150°,∴∠DEF +∠GFE =360°﹣150°=210°.∵∠DEF =∠A +∠D ,∠GFE =∠C +∠G ,∴∠A +∠D +∠C +∠G =∠DEF +∠GFE =210°,故答案为:210.18.(3分)如图,在Rt △ABC 中,AB =3,AC =4,∠BAC =90°,BC 的中垂线DE 与∠BAC 的角平分线AF 交于点E ,则四边形ABEC 的面积为 494 .解:如图,过点E 作EH ⊥AB ,EG ⊥AC ,∵∠BAC =90°,EH ⊥AB ,EG ⊥AC ,∴四边形ABEG 是矩形,∴AH =EG ,∵AE 平分∠BAC ,EH ⊥AB ,EG ⊥AC ,∴EH =EG ,∴AG =AH =HE =EG ,∵DE 垂直平分BC ,∴BE =EC ,且EH =EG ,∴Rt △BEH ≌Rt △CEG (HL ),∴BH =GC ,S △BEH =S △CEG ,∴四边形ABEC 的面积=S 四边形AHEG ,∵AB +AC =AB +AG +GC =AB +BH +AG =AH +AG =2AG =7,∴AH =AG =72,∴S 四边形AHEG =AG •AH =494,故答案为:494.三.解答题(共7小题,满分66分)19.(10分)(1)解不等式组{−3(x −2)≥4−x 1+2x 3>x −1,并把解集表示在数轴上. (2)已知关于x ,y 的二元一次方程组{2x +y =−3m +2x +2y =4的解满足x +y >−32,求出满足条件的m 的所有正整数值.解:(1){−3(x −2)≥4−x①1+2x 3>x −1②解不等式①得:x ≤1,解不等式②得:x <4,所以不等式组的解集为:x ≤1,在数轴上表示为:(2){2x +y =−3m +2①x +2y =4②, ①+②得:3(x +y )=﹣3m +6,即x +y =﹣m +2,代入不等式得:﹣m +2>−32,解得:m <72,则满足条件m 的正整数值为1,2,3.20.(7分)已知,△ABC 中,AB =AC ,点D 在BC 边上,E 在△ABC 的外部,连接AD 、AE 、CE ,且AD =AE ,∠BAC =∠DAE .(1)如图1,求证:BD =CE .(2)如图2,当∠B =45°,∠BAD =22.5°时,连接DE 交AC 于点F ,作DG ⊥DE 交AB 于点G ,在不添加任何辅助线的情况下,请直接写出图2中四个顶角为45°的等腰三角形.证明(1)∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,在△BAD 和△CAE 中,{AD =AE ∠BAD =∠CAE AB =AC,∴△BAD ≌△CAE (SAS ),∴BD =CE ;(2)∵∠B=45°,AB=AC,∴∠B=∠ACB=45°,∴∠BAC=90°=∠DAE,又∵AD=AE,∴∠ADE=∠AED=45°,∵DG⊥DE,∴∠GDE=90°,∴∠GDA=45°,∵∠BAD=22.5°,∴∠DAF=67.5°,∠BGD=∠BAD+∠ADG=67.5°,∴∠BDG=180°﹣∠B﹣∠BGD=67.5°=∠BGD,∠AFD=180°﹣∠ADF﹣∠DAF=67.5°=∠DAF,∠ADC=180°﹣∠ACB﹣∠DAC=67.5°=∠DAC,∴△BDG,△ADC,△ADF都是顶角为45°的等腰三角形,∵△BAD≌△CAE,∴∠B=∠ACE=45°,又∵∠AFD=∠CFE=67.5°,∴∠CFE=∠CEF=67.5°,∴△CEF是顶角为45°的等腰三角形.21.(8分)有3张正面分别写有数字﹣2,0,1的卡片,它们的背面完全相同,现将这3张卡片背面朝上洗匀,小明先从中任意抽出一张卡片记下数字为x;小亮再从剩下的卡片中任意取出一张记下数字为y,记作P(x,y).(1)用列表或画树状图的方法列出所有可能的点P的坐标;(2)若规定:点P(x,y)在第二象限小明获胜;点P(x,y)在第四象限小亮获胜,游戏规则公平吗?解:(1)根据题意,列表如下:﹣210﹣2(1,﹣2)(0,﹣2)1(﹣2,1)(0,1)0(﹣2,0)(1,0)一共有6种等可能情况;(2)由表知,点P 在第二象限有1种结果,在第四象限的有1种结果,∴小明获胜的概率为16,小亮获胜的概率为16, 因此此游戏规则公平.22.(8分)已知一次函数y =ax +2与y =kx +b 的图象如图所示,且方程组{ax −y =−2kx −y =−b的解为{x =2y =1点B 坐标为(0,﹣1).求这两个一次函数的表达式.解:由题意可得A (2,1).把A 的坐标代入y =ax +2,得1=2a +2,解得a =−12,所以y =−12x +2;把A 、B 的坐标代入y =kx +b ,{2k +b =1b =−1,解得 {k =1b =−1,所以y =x ﹣1. ∴两个一次函数的表达式为y =−12x +2,y =x ﹣1.23.(10分)将一批抗疫物资运往武汉,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:甲种货车(辆) 乙种货车(辆) 总量(吨) 第一次4 5 31 第二次 3 6 30 (1)甲、乙两种货车每辆分别能装货多少吨?(2)现有45吨物资需要再次运往武汉,准备同时租用这两种货车,每辆均全部装满货物,问有哪几种租车方案?请全部设计出来.解:(1)设每辆甲种货车能装货x 吨,每辆乙种货车能装货y 吨,依题意,得:{4x +5y =313x +6y =30, 解得:{x =4y =3. 答:每辆甲种货车能装货4吨,每辆乙种货车能装货3吨.(2)设租用m 辆甲种货车,n 辆乙种货车,依题意,得:4m +3n =45,∴n =15−43m ,又∵m ,n 均为正整数,∴{m =3n =11或{m =6n =7或{m =9n =3, ∴共有3种租车方案,方案1:租用3辆甲种货车,11辆乙种货车;方案2:租用6辆甲种货车,7辆乙种货车;方案3:租用9辆甲种货车,3辆乙种货车.24.(11分)如图,在四边形ABCD 中,AB ∥CD ,对角线AC 与BD 相交于点E ,且∠DAC=∠DCA .(1)求证:AC 平分∠BAD ;(2)若∠AEB =125°,且∠ABD =2∠CBD ,DF 平分∠ADB 交AB 边于点F ,求∠BDF ﹣∠CBD 的值.解:(1)证明:∵AB ∥CD ,∴∠BAC =∠DCA ,又∵∠DAC =∠DCA ,∴∠BAC =∠DAC ,∴AC 平分∠BAD ;(2)∵∠BAC =∠DAC ,∠DAC +∠ADB =∠AEB =125°,∴∠ADB =125°﹣∠BAC ,又∵DF 平分∠ADB 交AB 边于点F ,∴∠BDF =125°−∠BAC 2, 由∠AEB =125°可得∠BAC =55°﹣∠ABD ,∵∠ABD =2∠CBD ,∴∠BAC =55°﹣2∠CBD ,∴∠CBD =55°−∠BAC 2, ∴∠BDF ﹣∠CBD =125°−∠BAC 2−55°−∠BAC 2=35°. 25.(12分)如图,△ABD 和△BCE 都是等边三角形,AE 与CD 相交于F ,连接BF .(1)求证:AE =CD ;(2)求证:BF 平分∠DFE .证明:(1)∵△ABD 和△BCE 都是等边三角形,∴DB =AB ,BC =BE ,∠DBA =∠CBE =60°,∴∠DBC =∠ABE ,在△DBC 和△ABE 中,{DB =AB ∠DBC =∠ABE BC =BE,∴△DBC ≌△ABE (SAS ),∴AE =CD ;(2)如图,过点B 作BM ⊥CD 于M ,BN ⊥AE 于E ,∵△DBC ≌△ABE ,∴S △DBC =S △ABE ,∴12CD ×BM =12AE ×BN , ∴BM =BN ,又∵BM⊥CD,BN⊥AE,∴BF平分∠DFE.。
山东省临沂市兰陵县2020-2021学年七年级下学期期末考试数学试题一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中只有一项是符合题目要求的1.81的算术平方根为()A.9 B.±9 C.3 D.±3【分析】直接根据算术平方根的定义进行解答即可.【点评】本题考查的是算术平方根的定义,即一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(﹣2,1) B.(﹣2,﹣1) C.(2,1) D.(2,﹣1)【专题】几何图形.【分析】让A点的横坐标减3,纵坐标加2即为点B的坐标.【解答】解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:A.【点评】本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.3.已知实数a,b,若a>b,则下列结论错误的是()A.a﹣7>b﹣7 B.6+a>b+6 C.D.﹣3a>﹣3b【专题】方程与不等式.【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:a>b,A、a-7>b-7,故A选项正确;B、6+a>b+6,故B选项正确;D、-3a<-3b,故D选项错误.故选:D.【点评】本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.4.不等式组的解集在数轴上表示正确的是()【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解不等式3-x≥2,得:x≤1,∴不等式组的解集为x<-2,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.已知面积为8的正方形边长是x,则关于x的结论中,正确的是() A.x是有理数B.x不能在数轴上表示C.x是方程4x=8的解D.x是8的算术平方根【专题】实数.【分析】根据算术平方根的意义,无理数的意义,实数与数轴的关系,可得答案.【解答】解:由题意,得A、x是无理数,故A不符合题意;B、x能在数轴上表示处来,故B不符合题意;C、x是x2=8的解,故C不符合题意;D、x是8的算术平方根,故D符合题意;故选:D.【点评】本题考查了实数与数轴,利用算术平方根的意义,无理数的意义,实数与数轴的关系是解题关键.6.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限B.第二象限C.第三象限D.第四象限【专题】常规题型.【分析】判断出P的横纵坐标的符号,进而判断出相应象限即可.【解答】解:当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限,当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,故选:D.【点评】此题主要考查了点的坐标,根据a的取值判断出相应的象限是解决本题的关键7.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于()A.40°B.45°C.50°D.60°【分析】根据两直线平行,同位角相等可得∠1=∠EGD=115°,再根据三角形内角与外角的性质可得∠C的度数.【解答】解:∵AB∥CD,∴∠1=∠EGD=115°,∵∠2=65°,∴∠C=115°-65°=50°,故选:C.【点评】此题主要考查了平行线的性质,以及三角形内角与外角的性质,关键是掌握两直线平行,同位角相等.8.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是()A.28°B.34°C.46°D.56°【专题】线段、角、相交线与平行线.【分析】延长DC交AE于F,依据AB∥CD,∠BAE=87°,可得∠CFE=87°,再根据三角形外角性质,即可得到∠E=∠DCE-∠CFE.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=87°,∴∠CFE=87°,又∵∠DCE=121°,∴∠E=∠DCE-∠CFE=121°-87°=34°,故选:B.【点评】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.9.如图,∠B=∠C,∠A=∠D,下列结论:①AB∥CD;②AE∥DF;③AE⊥BC;④∠AMC=∠BND,其中正确的结论有()A.①②④B.②③④C.③④D.①②③④【分析】由条件可先证明AB∥CD,再证明AE∥DF,结合平行线的性质及对顶角相等可得到∠AMC=∠BND,可得出答案.【解答】解:∵∠B=∠C,∴AB∥CD,∴∠A=∠AEC,又∵∠A=∠D,∴∠AEC=∠D,∴AE∥DF,∴∠AMC=∠FNM,又∵∠BND=∠FNM,∴∠AMC=∠BND,故①②④正确,由条件不能得出∠AMC=90°,故③不一定正确;故选:A.【点评】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.10.甲、乙两人从A地出发,沿同一方向练习跑步,如果甲让乙先跑10米,则甲跑5秒就可追上乙,如果甲让乙先跑2秒,那么甲跑4秒就能追上乙,设甲、乙每秒钟分别跑x米和y米,则可列方程组为()A.B.C.D.【专题】方程与不等式.【分析】本题的等量关系:(1)乙先跑10米,甲跑5秒就追上乙;(2)如果让乙先跑2秒,那么甲跑4秒就追上乙,可以列出方程组.【解答】解:设甲、乙每秒分别跑x米,y米,由题意知:故选:D.【点评】本题考查了二元一次方程组的实际应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.11.如图,根据2021﹣2021年某市财政总收入(单位:亿元)统计图所提供的信息,下列判断正确的是()A.2021~2021年财政总收入呈逐年增长B.预计2021年的财政总收入约为253.43亿元C.2021~2021年与2021~2021年的财政总收入下降率相同D.2021~2021年的财政总收入增长率约为6.3%【专题】统计的应用.【分析】根据题意和折线统计图可以判断选项中的说法是否正确【解答】解:根据题意和折线统计图可知,从2020-2021财政收入增长了,2020-2021财政收入下降了,故选项A错误;由折线统计图无法估计2021年的财政收入,故选项B错误;∵2020-2021年的下降率是:(230.68-229.01)÷230.68≈0.72%,2020-2021年的下降率是:(243.12-238.86)÷243.12≈1.75%,故选项C错误;2020-2021年的财政总收入增长率是:(230.68-217)÷217≈6.3%,故选项D正确;故选:D.【点评】本题考查折线统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件.12.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟0<x≤5 5<x≤10 10<x≤15 15<x≤20频数(通话次数) 20 16 9 5则5月份通话次数中,通话时间不超过15分钟的所占百分比是()A.10% B.40% C.50% D.90%【专题】常规题型;统计的应用.【分析】根据表格可以得到总的频数和通话时间不超过15分钟的频数,从而可以求得通话时间不超过15分钟的百分比.【解答】故选:D.【点评】本题考查频数分布表,解题的关键是明确题意,找出所求问题需要的条件.13.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()年级七年级八年级九年级合格人数270 262 254 A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少【分析】分析统计表,可得出各年级合格的人数,然后结合选项进行回答即可.【解答】解:∵七、八、九年级的人数不确定,∴无法求得七、八、九年级的合格率.∴A错误、C错误.由统计表可知八年级合格人数是262人,故B错误.∵270>262>254,∴九年级合格人数最少.故D正确.故选:D.【点评】本题主要考查的是统计表的认识,读懂统计表,能够从统计表中获取有效信息是解题的关键.14.若不等式组的解集为x<2m﹣2,则m的取值范围是() A.m≤2 B.m≥2 C.m>2 D.m<2【专题】计算题.【分析】根据不等式的性质求出不等式的解集,根据不等式和不等式组解集得出m≥2m-2,求出即可.【解答】由①得:x<2m-2,由②得:x<m,∵不等式组的解集为x<2m-2,∴m≥2m-2,∴m≤2.故选:A.【点评】本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据题意得出m≥2m-2是解此题的关键.二、填空题(每小题4分,共202115.(4分)计算:|2﹣|的相反数是.【专题】计算题.16.(4分)若方程x﹣y=﹣1的一个解与方程组的解相同,则k的值为.【专题】计算题;一次方程(组)及应用.【分析】联立不含k的方程组成方程组,求出方程组的解得到x与y的值,即可确定出k的值.【解答】代入方程得:2-6=k,解得:k=-4,故答案为:-4【点评】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.17.(4分)为了解植物园内某种花卉的生长情况,在一片约有3000株此类花卉的园地内,随机抽测了2021的高度作为样本,统计结果整理后列表如下:(每组数据可包括最低值,不包括最高值)高度(cm) 40~45 45~50 50~55 55~60 60~65 65~70 频数33 42 22 24 43 36试估计该园地内此类花卉高度小于55厘米且不小于45厘米的约为株.【专题】常规题型;统计的应用.【分析】用总人数300乘以样本中高度小于55厘米且不小于45厘米的数量占被调查株数的比例.【解答】故答案为:960.【点评】本题考查了统计表以及用样本估计总体的思想,此题主要考查从统计表中获取信息的能力.统计表可以将大量数据的分类结果清晰、一目了然地表达出来.18.(4分)如图,将长方形ABCD折叠,折痕为EF,且∠1=70°,则∠AEF的度数是.【专题】几何图形.【分析】再根据AD∥BC,即可得到∠AEF=180°-∠BFE=125°.【解答】解:∵∠1=70°,∴∠BFB'=110°,又∵AD∥BC,∴∠AEF=180°-∠BFE=125°.故答案为:125°【点评】本题主要考查了折叠问题以及平行线的性质的运用,解题时注意:两直线平行,同旁内角互补.19.(4分)在平面直角坐标系中,如果对任意一点(a,b),规定两种变换:f(a,b)=(﹣a,﹣b),g(a,b)=(b,﹣a),那么g[f(1,﹣2)]=.【专题】常规题型.【分析】首先根据变换方法可得f(1,-2)=(-1,2),再根据变换方法可得g(-1,2)=(2,1),从而可得答案.【解答】解:由题意得:f(1,-2)=(-1,2),g(-1,2)=(2,1),故答案为:(2,1).【点评】此题主要考查了点的坐标,关键是理解题意,掌握变换的方法.三、解答题(共58分)202110分)(1)计算:+﹣|﹣2|(2)解不等式组【专题】数与式;方程与不等式.【分析】(1)根据立方根、算术平方根、绝对值的性质化简计算即可;(2)先求出其中各不等式的解集,再求出这些解集的公共部分即可;【解答】(2)解:由①得,x≤3,由②得,x>0,不等式组的解集为0<x≤3.【点评】本题考查实数的运算、不等式组等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)如图,DE∥BF,∠1与∠2互补.(1)试说明:FG∥AB;(2)若∠CFG=60°,∠2=150°,则DE与AC垂直吗?请说明理由.【专题】线段、角、相交线与平行线.【分析】(1)依据同角的补角相等,可得∠1=∠DBF,即可得到FG∥AB;(2)依据FG∥AB,∠CFG=60°可得∠A=∠CFG=60°,再根据∠2是△ADE的外角,可得∠2=∠A+∠AED,进而得出∠AED=150°-60°=90°,可得DE⊥AC.【解答】解:(1)∵DE∥BF∴∠2+∠DBF=180°∵∠1与∠2互补∴∠1+∠2=180°∴∠1=∠DBF∴FG∥AB(2)DE与AC垂直理由:∵FG∥AB,∠CFG=60°∴∠A=∠CFG=60°∵∠2是△ADE的外角∴∠2=∠A+∠AED∵∠2=150°∴∠AED=150°-60°=90°∴DE⊥AC【点评】本题主要考查了平行线的性质与判断,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.22.(8分)为了庆祝即将到来的“五四”青年节,某校举行了书法比赛,赛后随机抽查部分参赛同学的成绩,并制作成图表如下:分数段频数频率60≤x<70 30 0.1570≤x<80 m 0.4580≤x<90 60 n90≤x≤100 20 0.1请根据以上图表提供的信息,解答下列问题:(1)这次随机抽查了名学生;表中的数m=,n=;(2)请在图中补全频数分布直方图;(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是;(4)全校共有600名学生参加比赛,估计该校成绩80≤x<100范围内的学生有多少人?【专题】常规题型;统计的应用.【分析】(1)根据60≤x<70的频数及其频率求得总人数,进而计算可得m、n的值;(2)根据(1)的结果,可以补全直方图;(3)用360°乘以样本中分数段60≤x<70的频率即可得;(4)总人数乘以样本中成绩80≤x<100范围内的学生人数所占比例.【解答】解:(1)本次调查的总人数为30÷0.15=2021,则m=20210.45=90,n=60÷20210.3,故答案为:202190、0.3;(2)补全频数分布直方图如下:(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是360°×0.15=54°,故答案为:54°;答:估计该校成绩80≤x<100范围内的学生有240人.【点评】本题考查条形统计图、图表等知识.结合生活实际,绘制条形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.23.(8分)在△ABC中,点D在边BA或BA的延长线上,过点D作DE∥BC,交∠ABC 的角平分线于点E.(1)如图1,当点D在边BA上时,点E恰好在边AC上,求证:∠ADE=2∠DEB;(2)如图2,当点D在BA的延长线上时,请直接写出∠ADE与∠DEB之间的数量关系,并说明理由.【专题】线段、角、相交线与平行线;三角形.【分析】(1)根据角平分线的定义可得出∠ABE=∠CBE,由平行线的性质可得出∠CBE=∠DEB、∠ADE=∠ABC,进而可得出∠ABE=∠DEB,再利用三角形外角的性质即可证出∠ADE=2∠DEB;(2)根据角平分线的定义可得出∠ABC=2∠CBE,利用平行线的性质可得出∠DEB=∠CBE,进而可得出∠ABC=2∠DEB,再利用“两直线平行,同旁内角互补”可证出∠ADE+2∠DEB=180°.【解答】证明:(1)∵BE平分∠ABC,∴∠ABE=∠CBE.∵DE∥BC,∴∠CBE=∠DEB,∠ADE=∠ABC,∴∠ABE=∠DEB,∴∠ADE=∠ABE+∠DEB=2∠DEB.(2)∠ADE+2∠DEB=180°.∵BE平分∠ABC,∴∠ABC=2∠CBE.∵DE∥BC,∴∠DEB=∠CBE,∠ADE+∠ABC=180°,∴∠ABC=2∠DEB,∴∠ADE+2∠DEB=180°.【点评】本题考查了三角形内角和定理、角平分线的定义、平行线的性质以及三角形的外角性质,解题的关键是:(1)利用角平分线的定义结合平行线的性质找出∠ABE=∠DEB;(2)利用角平分线的定义结合平行线的性质找出∠ADE+2∠DEB=180°.24.(12分)某校计划购买篮球、排球共2021购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.【专题】销售问题.【分析】(1)设篮球每个x元,排球每个y元,根据题意列出二元一次方程组,解方程组即可;(2)根据购买篮球不少于8个,所需费用总额不超过800元列出不等式,解不等式即可.【解答】解:(1)设篮球每个x元,排球每个y元,依题意,得答:篮球每个50元,排球每个30元;(2)设购买篮球m个,则购买排球(2021)个,依题意,得50m+30(2021)≤800.解得m≤10,又∵m≥8,∴8≤m≤10.∵篮球的个数必须为整数,∴m只能取8、9、10,∴满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球10个,排球10个,以上三个方案中,方案①最省钱.【点评】本题考查的是二元一次方程组、一元一次不等式的应用,根据题意正确列出方程组、一元一次不等式是解题的关键.25.(12分)甲、乙两商场以同样价格出售同样的商品,并且各自又推出不同的优惠方案:在甲商场累计购物超过2021后,超出2021的部分按90%收费;在乙商场累计购物超过100元后,超出100元的部分按95%收费.设小李在同一商场累计购物x元,其中x>2021(1)当x为何值时,小李在甲、乙两商场的实际花费相同?(2)根据小李购物花费的不同金额,请你确定在哪家商场购物更合算?【专题】方程与不等式.【分析】(1)根据已知得出甲商场2021(x-2021×90%以及乙商场100+(x-100)×95%,相等列等式,进而得出答案;(2)根据2021(x-2021×90%与100+(x-100)×95%大于、小于、等于,列三个式子,从而得出正确结论.【解答】解:(1)依题意,得2021(x-2021×90%=100+(x-100)×95%,…(2分)解得x=300.…(3分)即当x=300时,小李在甲、乙两商场的实际花费相同;…(4分)(2)①当2021(x-2021×90%>100+(x-100)×95%时,解得x<300.…(5分)②当2021(x-2021×90%<100+(x-100)×95%时,解得x>300.…(6分)③当2021(x-2021×90%=100+(x-100)×95%时,解得x=300.…(7分)答:当小李购物花费少于300元时,在乙商场购物合算;当小李购物花费多于300元时,在甲商场购物合算,当小李购物等于300元时,到两家商场花费一样多.…(8分)【点评】此题考查了一元一次不等式和一元一次方程的应用,关键是读懂题意,列出不等式,再根据实际情况进行讨论,不要漏项.。
2020-2021初一数学下期末试卷(及答案)一、选择题1.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=( )A .100°B .130°C .150°D .80°2.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°3.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折 4.点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( ) A .(0,﹣2)B .(0,﹣4)C .(4,0)D .(2,0) 5.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为 A .2B .3C .4D .5 6.已知是关于x ,y 的二元一次方程x-ay=3的一个解,则a 的值为( ) A .1 B .-1 C .2 D .-27.若|321|20x y x y --++-=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩8.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .210x +90(15﹣x )≥1.8B .90x +210(15﹣x )≤1800C .210x +90(15﹣x )≥1800D .90x +210(15﹣x )≤1.89.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个 10.在平面直角坐标系中,点B 在第四象限,它到x 轴和y 轴的距离分别是2、5,则点B 的坐标为( )A .()5,2-B .()2,5-C .()5,2-D .()2,5--11.若x <y ,则下列不等式中不成立的是( )A .x 1y 1-<-B .3x 3y <C .x y 22<D .2x 2y -<-12.如图,直线l 1∥l 2,被直线l 3、l 4所截,并且l 3⊥l 4,∠1=44°,则∠2等于( )A .56°B .36°C .44°D .46°二、填空题13.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,则m 的取值范围是____.14.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 cm .15.已知,如图,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N (下面是推理过程,请你填空).解:∵∠BAE+∠AED=180°(已知)∴ AB ∥ ( )∴∠BAE=(两直线平行,内错角相等)又∵∠1=∠2∴∠BAE﹣∠1=﹣∠2即∠MAE=∴∥NE()∴∠M=∠N()16.某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有种购买方案.17.如图5-Z-11是一块长方形ABCD的场地,长AB=102 m,宽AD=51 m,从A,B 两处入口的中路宽都为1 m,两小路汇合处路宽为2 m,其余部分种植草坪,则草坪的面积为________m2.18.若二元一次方程组3354x yx y+=⎧⎨-=⎩的解为x ay b=⎧⎨=⎩,则a﹣b=______.19.已知21xy=⎧⎨=⎩是方程组ax5{1bybx ay+=+=的解,则a﹣b的值是___________20.结合下面图形列出关于未知数x,y的方程组为_____.三、解答题21.为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)被抽样调查的学生有______人,并补全条形统计图;(2)每天户外活动时间的中位数是______(小时);(3)该校共有2000名学生,请估计该校每天户外活动时间超过1小时的学生有多少人?22.如图①,已知AB∥CD,点E、F分别是AB、CD上的点,点P是两平行线之间的一点,设∠AEP=α,∠PFC=β,在图①中,过点E作射线EH交CD于点N,作射线FI,延长PF到G,使得PE、FG分别平分∠AEH、∠DFl,得到图②.(1)在图①中,过点P作PM∥AB,当α=20°,β=50°时,∠EPM=度,∠EPF=度;(2)在(1)的条件下,求图②中∠END与∠CFI的度数;(3)在图②中,当FI∥EH时,请直接写出α与β的数量关系.23.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c 是13的整数部分. (1)求a ,b ,c 的值;(2)求3a b c -+的平方根.24.已知:如图,∠1=∠2,∠3=∠E .求证:AD ∥BE .25.某商场计划从厂家购进甲、乙两种不同型号的电视机,已知进价分别为:甲种每台1500元,乙种每台2100元.(1)若商场同时购进这两种不同型号的电视机50台,金额不超过76000元,商场有几种进货方案,并写出具体的进货方案.(2)在(1)的条件下,若商场销售一台甲、乙型号的电视机的销售价分别为1650元、2300元,以上进货方案中,哪种进货方案获利最多?最多为多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】1=1303=502=23=100∠︒∴∠︒∴∠∠︒ .故选A.2.A解析:A【解析】 试题分析:如图,过A 点作AB ∥a ,∴∠1=∠2,∵a ∥b ,∴AB ∥b ,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A .考点:平行线的性质.3.B解析:B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解. 4.D解析:D【解析】【分析】根据点在x 轴上的特征,纵坐标为0,可得m +1=0,解得:m =-1,然后再代入m +3,可求出横坐标.【详解】解:因为点 P (m + 3,m + 1)在x 轴上,所以m +1=0,解得:m =-1,所以m+3=2,所以P 点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征.5.D解析:D【解析】∵方程2x +a ﹣9=0的解是x =2,∴2×2+a ﹣9=0,解得a =5.故选D .6.B解析:B【解析】【分析】 把代入x-ay=3,解一元一次方程求出a 值即可.【详解】 ∵是关于x ,y 的二元一次方程x-ay=3的一个解,∴1-2a=3解得:a=-1故选B.【点睛】本题考查二元一次方程的解,使方程左右两边相等的未知数的值,叫做方程的解;一组数是方程的解,那么它一定满足这个方程.7.D解析:D【解析】分析:先根据非负数的性质列出关于x 、y 的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y 的值即可. 详解:∵32120x y x y --+-=,∴321020x y x y --⎧⎨+-⎩== 将方程组变形为32=1=2x y x y -⎧⎨+⎩①②, ①+②×2得,5x=5,解得x=1, 把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩. 故选:D .点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.8.C解析:C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x)≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.9.C解析:C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.A解析:A【解析】【分析】先根据点B所在的象限确定横纵坐标的符号,然后根据点B与坐标轴的距离得出点B的坐标.【详解】∵点B在第四象限内,∴点B的横坐标为正数,纵坐标为负数∵点B到x轴和y轴的距离分别是2、5∴横坐标为5,纵坐标为-2故选:A【点睛】本题考查平面直角坐标系中点的特点,在不同象限内,坐标点横纵坐标的正负是不同的:第一象限内,则横坐标为正,纵坐标为正;第二象限内,则横坐标为负,纵坐标为正;第三象限内,则横坐标为负,纵坐标为负;第四象限内,则横坐标为正,纵坐标为负.11.D解析:D【解析】【分析】利用不等式的基本性质判断即可.【详解】若x<y,则x﹣1<y﹣1,选项A成立;若x<y,则3x<3y,选项B成立;若x<y,则x2<y2,选项C成立;若x<y,则﹣2x>﹣2y,选项D不成立,故选D.【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.12.D解析:D【解析】解:∵直线l1∥l2,∴∠3=∠1=44°.∵l3⊥l4,∠2=90°-∠3=90°-44°=46°.故选D.二、填空题13.m>-2【解析】【分析】首先解关于x和y的方程组利用m表示出x+y代入x+y>0即可得到关于m的不等式求得m的范围【详解】解:①+②得2x+2y=2m+4则x+y=m+2根据题意得m+2>0解得m>解析:m>-2【解析】【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【详解】解:2133x y mx y-=+⎧⎨+=⎩①②,①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>﹣2.故答案是:m>﹣2.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.14.55【解析】【分析】利用长与高的比为8:11进而利用携带行李箱的长宽高三者之和不超过115cm得出不等式求出即可【详解】设长为8x高为11x由题意得:19x+20≤115解得:x≤5故行李箱的高的最解析:55【解析】【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm得出不等式求出即可.【详解】设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.【点睛】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.15.见解析【解析】【分析】由已知易得AB∥CD则∠BAE=∠AEC又∠1=∠2所以∠MAE=∠A EN则AM∥EN故∠M=∠N【详解】∵∠BAE+∠AED=180°(已知)∴AB∥CD(同旁内角互补两直线解析:见解析【解析】【分析】由已知易得AB∥CD,则∠BAE=∠AEC,又∠1=∠2,所以∠MAE=∠AEN,则AM∥EN,故∠M=∠N.【详解】∵∠BAE+∠AED=180°(已知)∴AB∥CD(同旁内角互补,两直线平行)∠BAE=∠AEC(两直线平行,内错角相等)又∵∠1=∠2,∴∠BAE−∠1=∠AEC−∠2,即∠MAE=∠NEA,∴AM∥EN,(内错角相等,两直线平行)∴∠M =∠N (两直线平行,内错角相等)【点睛】考查平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键.16.2【解析】设甲种运动服买了x 套乙种买了y 套根据准备用365元购买两种运动服其中甲种运动服20元/套乙种运动服35元/套在钱都用尽的条件下可列出方程且根据xy 必需为整数可求出解解:设甲种运动服买了x 套解析:2【解析】设甲种运动服买了x 套,乙种买了y 套,根据,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下可列出方程,且根据x ,y 必需为整数可求出解.解:设甲种运动服买了x 套,乙种买了y 套,20x+35y=365 x=,∵x ,y 必须为正整数, ∴>0,即0<y <,∴当y=3时,x=13当y=7时,x=6.所以有两种方案.故答案为2.本题考查理解题意的能力,关键是根据题意列出二元一次方程然后根据解为整数确定值从而得出结果.17.5000【解析】试题解析:由图片可看出剩余部分的草坪正好可以拼成一个长方形且这个长方形的长为102−2=100m 这个长方形的宽为:51−1=50m 因此草坪的面积故答案为:5000解析:5000【解析】试题解析:由图片可看出,剩余部分的草坪正好可以拼成一个长方形,且这个长方形的长为102−2=100m ,这个长方形的宽为:51−1=50m ,因此,草坪的面积2501005000m .=⨯=故答案为:5000.18.【解析】【分析】把xy 的值代入方程组再将两式相加即可求出a ﹣b 的值【详解】将代入方程组得:①+②得:4a ﹣4b=7则a ﹣b=故答案为【点睛】本题考查二元一次方程组的解解题的关键是观察两方程的系数从而解析:7 4【解析】【分析】把x、y的值代入方程组,再将两式相加即可求出a﹣b的值.【详解】将x ay b=⎧⎨=⎩代入方程组3354x yx y+=⎧⎨-=⎩,得:3354a ba b+=⎧⎨-=⎩①②,①+②,得:4a﹣4b=7,则a﹣b=74,故答案为74.【点睛】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a﹣b的值.19.4;【解析】试题解析:把代入方程组得:①×2-②得:3a=9即a=3把a=3代入②得:b=-1则a-b=3+1=4解析:4;【解析】试题解析:把21xy=⎧⎨=⎩代入方程组得:25{21a bb a++=①=②,①×2-②得:3a=9,即a=3,把a=3代入②得:b=-1,则a-b=3+1=4,20.【解析】【分析】根据图形列出方程组即可【详解】由图可得故答案为【点睛】本题考查了二元一次方程组解题的关键是根据实际问题抽象出二元一次方程组解析:250 325x yx y+=⎧⎨=+⎩.【解析】【分析】根据图形列出方程组即可.【详解】由图可得250 325 x yx y+=⎧⎨=+⎩.故答案为250 325 x yx y+=⎧⎨=+⎩.【点睛】本题考查了二元一次方程组,解题的关键是根据实际问题抽象出二元一次方程组.三、解答题21.(1)500;(2)1;(3)该校每天户外活动时间超过1小时的学生有800人.【解析】【分析】(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数,从而可以将条形统计图补充完整;(2)根据条形统计图可以得到这组数据的中位数;(3)根据条形统计图可以求得校共有1850名学生,该校每天户外活动时间超过1小时的学生有多少人.【详解】(1)0.5小时的有100人占被调查总人数的20%,∴被调查的人数有:10020%500÷=,22.(1)20,70;(2)80°;(3)90°;【解析】【分析】(1)由PM∥AB根据两直线平行,内错角相等可得∠EPM=∠AEP=20°,根据平行公理的推论可得PM∥CD,继而可得∠MPF=∠CFP=50°,从而即可求得∠EPF;(2)由角平分线的定义可得∠AEH=2α=40°,再根据AD∥BC,由两直线平行,内错角相等可得∠END=∠AEH=40°,由对顶角相等以及角平分线定义可得∠IFG=∠DFG=β=50°,再根据平角定义即可求得∠CFI的度数;(3)由(2)可得,∠CFI=180°-2β,由AB∥CD,可得∠END=2α,当FI∥EH时,∠END=∠CFI,据此即可得α+β=90°.【详解】(1)∵PM∥AB,α=20°,∴∠EPM=∠AEP=20°,∵AB∥CD,PM∥AB,∴PM∥CD,∴∠MPF=∠CFP=50°,∴∠EPF=20°+50°=70°,故答案为20,70;(2)∵PE平分∠AEH,∴∠AEH=2α=40°,∵AD∥BC,∴∠END=∠AEH=40°,又∵FG平分∠DFI,∴∠IFG=∠DFG=β=50°,∴∠CFI=180°-2β=80°;(3)由(2)可得,∠CFI=180°-2β,∵AB∥CD,∴∠END=∠AEN=2α,∴当FI∥EH时,∠END=∠CFI,即2α=180°-2β,∴α+β=90°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理是解题的关键. 23.(1)a=5,b=2,c=3;(2)±4.【解析】【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值.(2)将a、b、c的值代数式求出值后,进一步求得平方根即可.【详解】(1)∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c∴c=3,(2)∵a=5,b=2,c=3,∴3a-b+c=16,3a-b+c的平方根是±4.【点睛】考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.24.证明见解析.【解析】【分析】由∠1=∠2,得BD∥CE,所以∠4=∠E,又∠3=∠E,所以∠3=∠4,可得AD∥BE.【详解】证明:∵∠1=∠2,又∵∠3=∠E,∴BD∥CE,∴∠3=∠4,∴∠4=∠E,∴AD∥BE.【点睛】本题考核知识点:平行线的判定.解题关键点:理解平行线的判定.25.(1)有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机50台,乙种型号的电视机0台;(2)方案一的利润大,最多为7550元.【解析】【分析】(1)设购进甲种型号的电视机x台,则乙种型号的电视机y台.数量关系为:两种不同型号的电视机50台,金额不超过76000元;(2)根据利润=数量×(售价-进价),列出式子进行计算,即可得到答案.【详解】解:(1)设购进甲种型号的电视机x台,则乙种型号的电视机(50-x)台.则1500x+2100(50-x)≤76000,解得:x≥4813.则50≥x≥4813.∵x是整数,∴x=49或x=50.故有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机50台,乙种型号的电视机0台;(2)方案一的利润为:49×(1650-1500)+(2300-2100)=7550(元)方案二的利润为:50×(1650-1500)=7500(元).∵7550>7500∴方案一的利润大,最多为7550元.【点睛】本题考查了一元一次不等式的应用.解决问题的关键是读懂题意,依题意列出不等式进行求解.。
2020-2021学年七年级下期末考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列图形中,对称轴最少的图形是()A.B.C.D.解:A.圆有无数条对称轴;B.正七边形有7条对称轴;C.五角星有5条对称轴;D.等腰梯形有1条对称轴.故选:D.2.(3分)下列事件属于确定事件的是()A.今天日本新冠肺炎新增零人B.明天太阳从西边升起C.数学老师长得最好看D.掷一枚质地均匀的硬币正面朝上解:A、今天日本新冠肺炎新增零人,是随机事件;B、明天太阳从西边升起,是不可能事件,是确定事件;C、数学老师长得最好看,是随机事件;D、掷一枚质地均匀的硬币正面朝上,是随机事件;故选:B.3.(3分)如图,在△ABC中,AB=2020,AC=2018,AD为中线,则△ABD与△ACD的周长之差为()A.1B.2C.3D.4解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2020﹣2018=2,故选:B.4.(3分)在圆周长的计算公式C=2πr中,变量有()A.C,πB.C,r C.π,r D.C,2π解:在圆周长的计算公式C=2πr中,变量有C和r,故选:B.5.(3分)如图,把三角尺的直角顶点放在直尺的一边上,若∠1=32°,则∠2的度数为()A.68°B.58°C.48°D.32°解:如图所示:∵AD∥FE,∴∠2=∠3,又∵∠1+∠BAC+∠3=180°,∠BAC=90°,∴∠1+∠3=90°,又∵∠1=32°,∴∠3=58°,∴∠2=58°,故选:B.6.(3分)下列运算正确的是()A.a4•a2=a8B.a6÷a2=a3C.(2ab2)2=4a2b⁴D.(a3)2=a5解:A.a4•a2=a6,故本选项不合题意;B.a6÷a2=a4,故本选项不合题意;C.(2ab2)2=4a2b⁴,正确;D.(a3)2=a6,故本选项不合题意;故选:C.7.(3分)若三角形的三边长分别为3,1+2x,8,则x的取值范围是()A.2<x<5B.3<x<8C.4<x<7D.5<x<9解:根据三角形的三边关系可得:8﹣3<1+2x<3+8,解得:2<x<5.故选:A.8.(3分)如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,AS=AR,则这四个结论:①P A平分∠RPS;②PR=PS;③QP ∥AR;④∠ABC=∠QPS中正确的有()A.4个B.3个C.2个D.1个解:(1)在Rt△APS和Rt△APR中,{AP=APAR=AS,∴Rt△APR≌Rt△APS(HL),∴∠P AR=∠P AS,AS=AR,∴P A平分∠BAC,故①②正确;∵AQ=PR,∴∠P AQ=∠APQ,∴∠PQS=∠P AQ+∠APQ=2∠P AQ,又∵P A平分∠BAC,∴∠BAC=2∠P AQ,∴∠PQS=∠BAC,∴PQ∥AR,故③正确;∵PR⊥AB,PS⊥AC,∴∠BRP=∠CSP,∵PR=PS,∴△BRP不一定全等与△CSP(只具备一角一边的两三角形不一定全等),故④不正确.故选:B.9.(3分)如图,在△ABC中,∠C=90°,DE⊥AB于点E,CD=DE,∠CBD=26°,则∠A的度数为()A.40°B.34°C.36°D.38°解:∵DE⊥AB,DC⊥BC,DE=DC,∴BD平分∠ABC,∴∠EBD=∠CBD=26°,∴∠A=90°﹣∠ABC=90°﹣2×26°=38°.故选:D.10.(3分)一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如表数据:支撑物的高度h(cm)102030405060708090100小车下滑的时间t(s) 4.233.002.452.131.891.711.59 1.50 1.411.35下列说法正确的是()A.当h=70cm时,t=1.50sB.h每增加10cm,t减小1.23C.随着h逐渐变大,t也逐渐变大D.随着h逐渐升高,小车下滑的平均速度逐渐加快解;A、当h=70cm时,t=1.59s,故A错误;B、h每增加10cm,t减小的值不一定,故B错误;C、随着h逐渐升高,t逐渐变小,故C错误;D、随着h逐渐升高,小车的时间减少,小车的速度逐渐加快,故D正确;故选:D.二.填空题(共4小题,满分12分,每小题3分)11.(3分)自然界中,花粉的质量很小,一粒某种植物花粉的质量约为0.000042毫克,0.000042用科学记数法表示为 4.2×10﹣5.解:0.000042=4.2×10﹣5.故答案为:4.2×10﹣5.12.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是∠D=∠B.(只需添加一个条件即可)解:当∠D=∠B时,在△ADF和△CBE中∵{AD=BC ∠D=∠B DF=BE,∴△ADF≌△CBE(SAS),故答案为:∠D=∠B.(答案不唯一)13.(3分)某学习小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,小智绘制了如图所示的折线图,该事件最有可能是③(填写一个你认为正确的序号).①掷一枚硬币,正面朝上;②掷一个质地均匀的正六面体骰子,向上一面的点数是5;③暗箱中有1个黑球和2个白球,这些球除颜色外无差别,从中任取一球是黑球.解:由折线统计图知,随着试验次数的增加,频率逐渐稳定在0.33,即13左右, ①中掷一枚硬币,正面朝上的概率为12,不符合题意; ②掷一个质地均匀的正六面体骰子,向上一面的点数是5的概率是16,不符合题意; ③中从中任取一球是黑球的概率为11+2=13,符合题意, 故答案为:③. 14.(3分)在△ABC 中MP ,NO 分别垂直平分AB ,AC .若∠BAC =106°,则∠P AO 的度数是 32° .解:∵∠BAC =106°,∴∠B +∠C =180°﹣106°=74°,∵MP 是线段AB 的垂直平分线,∴P A =PB ,∴∠P AB =∠B ,同理,∠OAC =∠C ,∴∠P AO =∠BAC ﹣(∠P AB +∠OAC )=∠BAC ﹣(∠B +∠C )=32°,故答案为:32°.三.解答题(共11小题,满分1分)15.计算:2﹣1+√16−(3−√3)0+|√2−12|. 解:2﹣1+√16−(3−√3)0+|√2−12| =12+4﹣1+√2−12=3+√2.16.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.解:在Rt△ABF中,∠A=70°,CE,BF是两条高,∴∠EBF=20°,∠ECA=20°,又∵∠BCE=30°,∴∠ACB=50°,∴在Rt△BCF中∠FBC=40°.17.先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=−12.y=1.解:(2x+3y)2﹣(2x+y)(2x﹣y)=4x2+12xy+9y2﹣4x2+y2=12xy+10y2,当x=−12,y=1时,原式=12×(−12)×1+10×12=﹣6+10=4.18.(1分)在同一平面内,若点P与△ABC三个顶点中的任意两个顶点连接形成的三角形都是等腰三角形,则称点P是△ABC的巧妙点.(1)如图1,求作△ABC的巧妙点P(尺规作图,不写作法,保留作图痕迹).(2)如图2,在△ABC中,∠A=80°,AB=AC,求作△ABC的所有巧妙点P(尺规作图,不写作法,保留作图痕迹),并直接写出∠BPC的度数是40°,160°,140°,80°.(3)等边三角形的巧妙点的个数有C.(A)2(B)6(C)10(D)12解:(1)∴点P为所求.(2)∴P1,P2,P3,P4,P5,P6所求.∠BPC的度数分别为:40°,160°,140°,80°,40°,40°.综上所述,∠BPC的度数为40°,160°,140°,80°.(3)利用(2)中结论,可知等边三角形有10个巧妙点,故选C.19.完成推理填空如图,已知∠B=∠D,∠BAE=∠E.将证明∠AFC+∠DAE=180°的过程填写完整.证明:∵∠BAE=∠E,∴AB∥DE(内错角相等,两直线平行).∴∠B=∠BCE(两直线平行,内错角相等).又∵∠B=∠D,∴∠D=∠BCE(等量代换).∴AD∥BC(同位角相等,两直线平行).∴∠AFC+∠DAE=180°(两直线平行,同旁内角互补).证明:∵∠BAE=∠E,∴AB∥DE(内错角相等,两直线平行).∴∠B=∠BCE(两直线平行,内错角相等).又∵∠B=∠D,∴∠D=∠BCE(等量代换).∴AD∥BC(同位角相等,两直线平行).∴∠AFC+∠DAE=180°(两直线平行,同旁内角互补).故答案为:AB,DE,内错角相等,两直线平行;BCE,两直线平行,内错角相等;BCE,同位角相等,两直线平行;两直线平行,同旁内角互补.20.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点P,使P A+PC最小;(3)在DE上画出点M,使|MB﹣MC|最大.解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,点P即为所求;(3)如图所示,点M即为所求.21.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,请你运用自己所学知识说明他们的做法是正确的.证明:∵BF⊥AB,DE⊥BD,∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA),∴DE=BA.22.一个不透明的盒子里装有30个除颜色外其它均相同的球,其中红球有m个,白球有3m 个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜.(1)当m=4时,求小李摸到红球的概率是多少?(2)当m为何值时,游戏对双方是公平的?解:(1)当m=4时,红球有4个、白球有12个、黄球有14个,则小李摸到红球的概率是430=215;(2)若要是双方摸到红球和黄球的概率相等,则袋子中红球和黄球的数量相等,即m =30﹣m ﹣3m ,解得:m =6,即当m =6时,游戏对双方是公平的.23.为了加强公民的节水意识,某地规定用水收费标准如下:每户每月用水量不超过6m 3时,水费按每立方米1.1元收费,超过6m 3时,超过部分每立方米按1.6元收费,设每户每月用水量为xm 3,应缴水费为y 元.(1)写出y 与x 之间的函数表达式;(2)如果有两户家庭某月份需缴纳水费为5.5元和9.8元时,求这两户家庭这个月的用水量分别是多少?解:(1)由题意可得,当0≤x ≤6时,y =1.1x ,当x >6时,y =1.1×6+(x ﹣6)×1.6=1.6x ﹣3,即y 与x 之间的函数表达式是y ={1.1x (0≤x ≤6)1.6x −3(x >6); (2)∵5.5<1.1×6,∴缴纳水费为5.5元的用户用水量不超过6m 3,将y =5.5代入y =1.1x ,解得x =5;∵9.8>1.1×6,∴缴纳水费为9.8元的用户用水量超过6m 3,将y =9.8代入y =1.6x ﹣3,解得x =8;答:这两户家庭这个月的用水量分别是5m 3,8m 3.24.设a ,b ,c 为整数,且一切实数x 都有(x ﹣a )(x ﹣8)+1=(x ﹣b )(x ﹣c )恒成立,求a +b +c 的值.解:∵(x ﹣a )(x ﹣8)+1=x 2﹣(a +8)x +8a +1,(x ﹣b )(x ﹣c )=x 2﹣(b +c )x +bc又∵(x ﹣a )(x ﹣8)+1=(x ﹣b )(x ﹣c )恒成立,∴﹣(a +8)=﹣(b +c ),∴8a +1=bc ,bc﹣8(b+c)=﹣63,即(b﹣8)(c﹣8)=1,∵b,c都是整数,故b﹣8=1,c﹣8=1或b﹣8=﹣1,c﹣8=﹣1,解得b=c=9或b=c=7,当b=c=9时,解得a=10,当b=c=7时,解得a=6,故a+b+c=9+9+10=28或7+7+6=20,故答案为:20或28.25.(1)如图1,等腰△ABC和等腰△ADE中,∠BAC=∠DAE=90°,B,E,D三点在同一直线上,求证:∠BDC=90°;(2)如图2,等腰△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且∠BDC =90°,求证:∠ADB=45°;(3)如图3,等边△ABC中,D是△ABC外一点,且∠BDC=60°,①∠ADB的度数;②DA,DB,DC之间的关系.(1)证明:如图1,设BD与AC交于点F,∵∠BAC=∠DAE=90°,∴∠BAE=∠CAD,在△ABE和△ACD中,{∠BAE =∠CAD AE =AD∴△ABE ≌△ACD (SAS ),∴∠ABE =∠ACD ,∵∠ABE +∠AFB =90°,∠AFB =∠CFD ,∴∠ACD +∠CFD =90°,∴∠BDC =90°;(2)如图2,过A 作AE ⊥AD 交BD 于E ,∵∠BAC =∠DAE =90°,∴∠BAE =∠CAD ,∵∠BAC =∠BDC =90°,∠AFB =∠CFD ,∴∠ABE =∠ACD ,在△ABE 和△ACD 中,{∠BAE =∠CAD AB =AC ∠ABE =∠ACD,∴△ABE ≌△ACD (ASA ),∴AE =AD ,∴∠ADE =∠AED =45°;(3)①如图3,在形内作∠DAE =60°,AE 交BD 于E 点,与(2)同理△ABE ≌△ACD ,∴AE=DA,∴△ADE是等边三角形,∴∠ADE=60°;②∵BE=DC,∴DB=BE+DE=DA+DC.。
2020-2021七年级数学下期末试卷(含答案)一、选择题1.下列各式中计算正确的是( ) A .93=±B .2(3)3-=-C .33(3)3-=±D .3273=2.不等式x+1≥2的解集在数轴上表示正确的是( ) A . B . C .D .3.点M (2,-3)关于原点对称的点N 的坐标是: ( ) A .(-2,-3) B .(-2, 3) C .(2, 3) D .(-3, 2) 4.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( )A .k=-5B .k=5C .k=-10D .k=10 5.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为 A .2B .3C .4D .56.若|321|20x y x y --++-=,则x ,y 的值为( ) A .14x y =⎧⎨=⎩B .2x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩7.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( ) A .3<x <5B .-5<x <3C .-3<x <5D .-5<x <-38.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度 9.在平面直角坐标系中,点P(1,-2)在( )A .第一象限B .第二象限C .第三象限D .第四象限10.已知a ,b 为两个连续整数,且191<b,则这两个整数是( ) A .1和2B .2和3C .3和4D .4和511.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( )A .8B .6C .4D .212.如图,直线l 1∥l 2,被直线l 3、l 4所截,并且l 3⊥l 4,∠1=44°,则∠2等于( )A .56°B .36°C .44°D .46°二、填空题13.一棵树高h (m )与生长时间n (年)之间有一定关系,请你根据下表中数据,写出h (m )与n (年)之间的关系式:_____. n/年 2 4 6 8 … h/m2.63.23.84.4…14.a 的平方根是3±,则a =_________15.若a ,b 均为正整数,且a 7,b 32a +b 的最小值是_______________.16.已知21x y =⎧⎨=⎩是方程组ax 5{1by bx ay +=+=的解,则a ﹣b 的值是___________17.3的平方根是_________.18.现有2019条直线1232019a a a a ,,,,,⋯且有12233445a a a a a a a a ⊥⊥,,,,…,则直线1a 与2019a 的位置关系是___________. 19.若方程组23133530.9a b a b -=⎧⎨+=⎩的解为8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解为_______.20.步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打_____折.三、解答题21.为了扶贫户学生好读书,读好书,某实验学校校友会在今年开学初,到新华书店采购文学名著和自然科学两类图书.经了解,购买30本文学名著和50本自然科学书共需2350元,20本文学名著比20本自然科学书贵500元.(注:所采购的文学名著价格都一样,所采购的自然科学书价格都一样) (1)求每本文学名著和自然科学书的单价.(2)若该校校友会要求购买自然科学书比文学名著多30本,自然科学书和文学名著的总数不低于80本,总费用不超过2400元,请求出所有符合条件的购书方案.22.如图,已知∠A=∠AGE,∠D=∠DGC(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C的度数.23.如图,已知点D、F、E、G都在△ABC的边上,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.(请在下面的空格处填写理由或数学式)解:∵EF∥AD,(已知)∴∠2=()∵∠1=∠2,(已知)∴∠1=()∴∥,()∴∠AGD+=180°,(两直线平行,同旁内角互补)∵,(已知)∴∠AGD=(等式性质)24.如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4,求证:AD∥BE.25.某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案.【详解】A3=,此选项错误错误,不符合题意;B3=,此选项错误错误,不符合题意;C3=-,此选项错误错误,不符合题意;D3=,此选项正确,符合题意;故选:D.【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.2.A解析:A【解析】试题解析:∵x+1≥2,∴x≥1.故选A.考点:解一元一次不等式;在数轴上表示不等式的解集.3.B解析:B【解析】试题解析:已知点M(2,-3),则点M关于原点对称的点的坐标是(-2,3),故选B.4.A解析:A【解析】【分析】根据方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,可得方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x 、y 的值,再代入4x-3y+k=0即可求得k 的值. 【详解】∵方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,∴5320x y x y -=⎧⎨-=⎩ ,解得,1015x y =-⎧⎨=-⎩;把1015x y =-⎧⎨=-⎩代入4x-3y+k=0得,-40+45+k=0, ∴k=-5. 故选A. 【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值是解决问题的关键.5.D解析:D 【解析】∵方程2x +a ﹣9=0的解是x =2,∴2×2+a ﹣9=0, 解得a =5.故选D .6.D解析:D 【解析】分析:先根据非负数的性质列出关于x 、y 的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y 的值即可.详解:∵3210x y --=, ∴321020x y x y --⎧⎨+-⎩==将方程组变形为32=1=2x y x y -⎧⎨+⎩①②,①+②×2得,5x=5,解得x=1, 把x=1代入①得,3-2y=1,解得y=1, ∴方程组的解为11x y =⎧⎨=⎩.点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.7.A解析:A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.8.B解析:B【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P到直线l的距离是线段PB 的长度,故选B.9.D解析:D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点P(1,-2),横坐标大于0,纵坐标小于0,∴点P(1,-2)在第三象限,故选D.【点睛】本题考查了象限内点的坐标特征,关键是熟记平面直角坐标系中各个象限内点的坐标符号.10.C解析:C【解析】试题解析:∵45,∴3<4,∴这两个连续整数是3和4,11.D解析:D 【解析】 【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值. 【详解】两式相加得:3336x y a +=-; 即3()36,x y a +=-得2x y a +=- 即20,2a a -== 故选:D. 【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.12.D解析:D 【解析】解:∵直线l 1∥l 2,∴∠3=∠1=44°.∵l 3⊥l 4,∠2=90°-∠3=90°-44°=46°.故选D .二、填空题13.h =03n+2【解析】【分析】本题主要考查了用待定系数法求一次函数的解析式可先设出通式然后将已知的条件代入式子中求出未知数的值进而求出函数的解析式【详解】设该函数的解析式为h =kn+b 将n =2h =2解析:h =0.3n+2 【解析】 【分析】本题主要考查了用待定系数法求一次函数的解析式,可先设出通式,然后将已知的条件代入式子中求出未知数的值,进而求出函数的解析式. 【详解】设该函数的解析式为h =kn+b ,将n =2,h =2.6以及n =4,h =3.2代入后可得2 2.64 3.2k b k b +=⎧⎨+=⎩, 解得0.32k b =⎧⎨=⎩,∴h =0.3n+2,验证:将n =6,h =3.8代入所求的函数式中,符合解析式;将n =8,h =4.4代入所求的函数式中,符合解析式;因此h (m )与n (年)之间的关系式为h =0.3n+2. 故答案为:h =0.3n+2. 【点睛】本题主要考查用待定系数法求一次函数关系式的方法.用来表示函数关系的等式叫做函数解析式,也称为函数关系式.14.81【解析】【分析】根据平方根的定义即可求解【详解】∵9的平方根为∴=9所以a=81【点睛】此题主要考查平方根的性质解题的关键是熟知平方根的定义解析:81 【解析】 【分析】根据平方根的定义即可求解. 【详解】∵9的平方根为3±,, 所以a=81 【点睛】此题主要考查平方根的性质,解题的关键是熟知平方根的定义.15.4【解析】【分析】先估算的范围然后确定ab 的最小值即可计算a+b 的最小值【详解】∵<<∴2<<3∵a >a 为正整数∴a 的最小值为3∵<<∴1<<2∵b <b 为正整数∴b 的最小值为1∴a+b 的最小值为3+解析:4 【解析】 【分析】的范围,然后确定a 、b 的最小值,即可计算a+b 的最小值. 【详解】∴2<3,∵a ,a 为正整数,∴a的最小值为3,∴1<2,∵b,b为正整数,∴b的最小值为1,∴a+b的最小值为3+1=4.故答案为:4.【点睛】此题考查了估算无理数的大小,解题的关键是:确定a、b的最小值.16.4;【解析】试题解析:把代入方程组得:①×2-②得:3a=9即a=3把a=3代入②得:b=-1则a-b=3+1=4解析:4;【解析】试题解析:把21xy=⎧⎨=⎩代入方程组得:25{21a bb a++=①=②,①×2-②得:3a=9,即a=3,把a=3代入②得:b=-1,则a-b=3+1=4,17.【解析】试题解析:∵()2=3∴3的平方根是故答案为:解析:【解析】试题解析:∵(2=3,∴3的平方根是故答案为:18.垂直【解析】【分析】根据两直线平行同位角相等得出相等的角再根据垂直的定义解答进而得出规律:a1与其它直线的位置关系为每4个一循环垂直垂直平行平行根据此规律即可判断【详解】先判断直线a1与a3的位置关解析:垂直.【解析】【分析】根据两直线平行,同位角相等得出相等的角,再根据垂直的定义解答,进而得出规律:a1与其它直线的位置关系为每4个一循环,垂直、垂直、平行、平行,根据此规律即可判断.【详解】先判断直线a1与a3的位置关系是:a1⊥a3.理由如下:如图1,∵a 1⊥a 2, ∴∠1=90°, ∵a 2∥a 3, ∴∠2=∠1=90°, ∴a 1⊥a 3;再判断直线a 1与a 4的位置关系是:a 1∥a 4,如图2; ∵直线a 1与a 3的位置关系是:a 1⊥a 3, 直线a 1与a 4的位置关系是:a 1∥a 4, ∵2019÷4=504…3,∴直线a 1与a 2015的位置关系是:垂直. 故答案为:垂直. 【点睛】本题考查了平行公理的推导,作出图形更有利于规律的发现以及规律的推导,解题的关键是:结合图形先判断几组直线的关系,然后找出规律.19.【解析】【分析】主要是通过换元法设把原方程组变成进行化简求解ab 的值在将ab 代入求解即可【详解】设可以换元为;又∵∴解得故答案为【点睛】本题主要应用了换元法解二元一次方程组换元法是将复杂问题简单化时解析: 6.32.2x y =⎧⎨=⎩【解析】 【分析】主要是通过换元法设2,1x a y b +=-=,把原方程组变成23133530.9a b a b -=⎧⎨+=⎩,进行化简求解a,b 的值,在将a,b 代入2,1x a y b +=-=求解即可.【详解】设2,1x a y b +=-=,2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩可以换元为23133530.9a b a b -=⎧⎨+=⎩;又∵8.31.2a b =⎧⎨=⎩,∴ 28.31 1.2x y +=⎧⎨-=⎩,解得 2.2y ⎨=⎩. 故答案为 6.32.2x y =⎧⎨=⎩【点睛】本题主要应用了换元法解二元一次方程组,换元法是将复杂问题简单化时常用的方法,应用较为广泛.20.【解析】【分析】本题可设打x 折根据保持利润率不低于5可列出不等式:解出x 的值即可得出打的折数【详解】设可打x 折则有解得即最多打7折故答案为7【点睛】考查一元一次不等式的应用读懂题目找出题目中的不等关 解析:【解析】【分析】本题可设打x 折,根据保持利润率不低于5%,可列出不等式:12008008005%10x ,⨯-≥⨯ 解出x 的值即可得出打的折数. 【详解】 设可打x 折,则有12008008005%10x ,⨯-≥⨯ 解得7.x ≥即最多打7折.故答案为7.【点睛】考查一元一次不等式的应用,读懂题目,找出题目中的不等关系,列出不等式是解题的关键. 三、解答题21.(1)每本文学名著45元,每本自然科学书20元;(2)方案一:文学名著25本,自然科学书55本;方案二:文学名著26本,自然科学书56本;方案三:文学名著27本,自然科学书57本.【解析】【分析】(1)设每本文学名著x 元,每本自然科学书y 元,根据题意列出方程组解答即可; (2)根据学校要求购买自然科学书比文学名著多30本,自然科学书和文学名著的总数不低于80本,总费用不超过2400元,列出不等式组,解答即可.【详解】解:(1)设每本文学名著x 元,每本自然科学书y 元,可得:305023502020500x y x y +=⎧⎨-=⎩,解得:20y ⎨=⎩. 答:每本文学名著45元,每本自然科学书20元;(2)设学校要求购买文学名著z 本,自然科学书为(z+30)本,根据题意可得: 30804520(30)2400z z z z ++⎧⎨++⎩, 解得:36025z 13≤≤, 因为x 取整数,所以x 取25,26,27;方案一:文学名著25本,自然科学书55本;方案二:文学名著26本,自然科学书56本;方案三:文学名著27本,自然科学书57本.【点睛】此题主要考查了二元一次方程组的应用,一元一次不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.22.(1)证明见解析;(2)50°. 【解析】证明:(1)∵∠A =∠AGE ,∠D =∠DGC又∵∠AGE =∠DGC ∴∠A =∠D ∴AB ∥CD(2) ∵∠1+∠2 =180°又∵∠CGD +∠2=180°∴∠CGD =∠1∴CE ∥FB ∴∠C =∠BFD ,∠CEB +∠B =180°又∵∠BEC =2∠B +30° ∴2∠B +30°+∠B =180°∴∠B =50°又∵AB ∥CD ∴∠B =∠BFD∴∠C =∠BFD =∠B =50°. 23.见解析【解析】【分析】首先根据EF ∥AD 可得∠2=∠3,进而得到∠1=∠3,可判断出DG ∥AB ,然后根据两直线平行,同旁内角互补可得∠DGA+∠BAC=180°,进而得到答案.【详解】解:∵EF ∥AD ,(已知)∴∠2=∠3(两直线平行同位角相等)∵∠1=∠2,(已知)∴∠1=∠3(等量代换)∴DG ∥BA ,(内错角相等两直线平行)∴∠AGD+∠CAB=180°,(两直线平行,同旁内角互补)∵∠CAB=70°,(已知)∴∠AGD=110°(等式性质).【点睛】此题主要考查了平行线的判定与性质,关键是掌握平行线的判定与性质定理.24.证明见解析.【解析】试题分析:先根据平行线的性质得出∠4=∠BAE.再根据∠3=∠4可知∠3=∠BAE.由∠1=∠2,得出∠1+∠CAE=∠2+∠CAE即∠BAE=∠CAD,故∠3=∠CAD,由此可得出结论.试题解析:证明:∵AB∥CD,∴∠4=∠BAE.∵∠3=∠4,∴∠3=∠BAE.∵∠1=∠2,∴∠1+∠CAE=∠2+∠CAE,即∠BAE=∠CAD,∴∠3=∠CAD,∴AD∥BE.25.(1)每台电脑机箱、液晶显示器的进价各是60元,800元;(2)利润最大为4400元.【解析】【分析】(1)设每台电脑机箱的进价是x元,液晶显示器的进价是y元,根据“若购进电脑机箱10台和液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4120元”即可列方程组求解;(2)设购进电脑机箱z台,根据“可用于购买这两种商品的资金不超过22240元,所获利润不少于4100元”即可列不等式组求解.【详解】解:(1)设每台电脑机箱、液晶显示器的进价各是x,y元,根据题意得:1087000 254120x yx y+=⎧⎨+=⎩,解得:60800 xy=⎧⎨=⎩,答:每台电脑机箱、液晶显示器的进价各是60元,800元;(2)设该经销商购进电脑机箱m台,购进液晶显示器(50-m)台,根据题意得:60800(50)22240 10160(50)4100m mm m+-≤⎧⎨+-≥⎩,解得:24≤m≤26,因为m要为整数,所以m可以取24、25、26,从而得出有三种进货方式:①电脑箱:24台,液晶显示器:26台,②电脑箱:25台,液晶显示器:25台;③电脑箱:26台,液晶显示器:24台.∴方案一的利润:24×10+26×160=4400,方案二的利润:25×10+25×160=4250,方案三的利润:26×10+24×160=4100,∴方案一的利润最大为4400元.答:该经销商有3种进货方案:①进24台电脑机箱,26台液晶显示器;②进25台电脑机箱,25台液晶显示器;③进26台电脑机箱,24台液晶显示器.第①种方案利润最大为4400元.【点睛】考点:方案问题,方案问题是初中数学的重点,在中考中极为常见,一般难度不大,需熟练掌握.。
2020-2021学年度第二学期七年级(下)期末数学试卷一、选择题(本题共8个小题,每小题3分,共24分)1.(3分)下列各方程组中,是二元一次方程组的是()A.B.C.D.2.(3分)计算a2•a3的结果等于()A.a5B.a6C.a﹣1D.a233.(3分)下列各式中,与(a﹣1)2相等的是()A.a2﹣1B.a2﹣2a+1C.a2﹣2a﹣1D.a2+14.(3分)把多项式m2﹣16m分解因式,结果正确的是()A.(m+4)(m﹣4)B.m(m+4)(m﹣4)C.m(m﹣16)D.(m﹣4)25.(3分)如图,直线a,b被直线c所截,那么∠2的同旁内角是()A.∠1B.∠3C.∠4D.∠56.(3分)在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.7.(3分)若a+b=1,则a2﹣b2+2b的值为()A.4B.3C.1D.08.(3分)已知a﹣b=14,ab=6,则a2+b2的值是()A.196B.36C.20D.208二、填空题(本题共6个小题,每小题3分,共18分)9.(3分)如果单项式5x m+2n y n﹣2m+2与7x5y7是同类项,那么m n的值是.10.(3分)如果二次三项式x2+kx+49是一个整式的平方,则k的值是.11.(3分)如图,已知AD∥BC,CE=5,CF=8,且CE⊥AD,CF⊥AB垂足分别为E,F.则AD与BC间的距离是.12.(3分)数据1,2,3,4,5的方差为.13.(3分)已知a m=2,a n=3(m,n为正整数),则a3m+2n=.14.(3分)甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+l)(x+9),则a﹣b的值是.三、解答题(共58分)15.(6分)解下列方程组:(1)(2)16.(6分)因式分解:(1)m3﹣16m;(2)xy3﹣10xy2+25xy.17.(6分)先化简,再求值:(2x﹣1)2﹣(2x+1)(2x﹣1)+(x+1)(3﹣x),其中x=.18.(6分)如图,AB∥DF,DE∥BC,∠1=65°,求∠2、∠3的度数.19.(6分)三五三七鞋厂为了了解初中学生穿鞋的鞋号情况,对红华中学初二(1)班的20名男生所穿鞋号统计如下表:鞋号23.52424.52525.526人数344711(1)写出男生鞋号数据的平均数,中位数,众数;(2)在平均数,中位数和众数中,鞋厂最感兴趣的是什么?20.(6分)湘西自治州风景优美,物产丰富,一外地游客到某特产专营店,准备购买精加工的豆腐乳和猕猴桃果汁两种盒装特产.若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元.(1)请分别求出每盒豆腐乳和每盒猕猴桃果汁的价格;(2)该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需多少元?21.(8分)先阅读材料:分解因式:(a+b)2+2(a+b)+1.解:令a+b=M,则(a+b)2+2(a+b)+1=M2+2M+1=(M+1)2所以(a+b)2+2(a+b)+1=(a+b+1)2.材料中的解题过程用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你运用这种思想方法解答下列问题:(1)分解因式:1﹣2(x+y)+(x+y)2=;(2)分解因式:(m+n)(m+n﹣4)+4;(3)证明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某个整数的平方.22.(6分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°.(1)写出点A,B的对应点;(2)求∠AOB'和∠A'OB的度数.23.(8分)在综合与实践课上,老师计同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.(1)如图(1),若三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC间的数量关系;(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,∠CFG=β,则∠AEG与∠CFG的数量关系是什么?用含α,β的式子表示(不写理由).参考答案与试题解析一、选择题(本题共8个小题,每小题3分,共24分)1.(3分)下列各方程组中,是二元一次方程组的是()A.B.C.D.【分析】要正确地判断哪一个属于二元一次方程组,需要掌握二元一次方程及二元一次方程组的定义.所谓二元一次方程是指含有两个未知数,并且未知数的项的最高次数是1的整式方程;而二元一次方程组是指由两个二元一次方程组成的方程组.根据以上定义即可判断此题.【解答】解:A、b是二次,故不是二元一次方程组,故此选项错误;B、含有三个未知数,是三元而不是二元方程组,故此选项错误;C、xy是二次项,是二次而不是一次方程,故此选项错误;D、是二元一次方程组.故此选项正确;故选:D.2.(3分)计算a2•a3的结果等于()A.a5B.a6C.a﹣1D.a23【分析】根据同底数幂的乘法法则,求出a2•a3的结果等于多少即可.【解答】解:a2•a3=a5.故选:A.3.(3分)下列各式中,与(a﹣1)2相等的是()A.a2﹣1B.a2﹣2a+1C.a2﹣2a﹣1D.a2+1【分析】根据完全平方公式求出(a﹣1)2=a2﹣2a+1,即可选出答案.【解答】解:∵(a﹣1)2=a2﹣2a+1,∴与(a﹣1)2相等的是B,故选:B.4.(3分)把多项式m2﹣16m分解因式,结果正确的是()A.(m+4)(m﹣4)B.m(m+4)(m﹣4)C.m(m﹣16)D.(m﹣4)2【分析】直接提公因式m即可.【解答】解:m2﹣16m=m(m﹣16),故选:C.5.(3分)如图,直线a,b被直线c所截,那么∠2的同旁内角是()A.∠1B.∠3C.∠4D.∠5【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.【解答】解:∵直线a、b被直线c所截,∴∠2的同旁内角是∠4.故选:C.6.(3分)在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.7.(3分)若a+b=1,则a2﹣b2+2b的值为()A.4B.3C.1D.0【分析】首先利用平方差公式,求得a2﹣b2+2b=(a+b)(a﹣b)+2b,继而求得答案.【解答】解:∵a+b=1,∴a2﹣b2+2b=(a+b)(a﹣b)+2b=a﹣b+2b=a+b=1.故选:C.8.(3分)已知a﹣b=14,ab=6,则a2+b2的值是()A.196B.36C.20D.208【分析】根据完全平方公式,即可解答.【解答】解:a2+b2=(a﹣b)2+2ab=142+2×6=208,故选:D.二、填空题(本题共6个小题,每小题3分,共18分)9.(3分)如果单项式5x m+2n y n﹣2m+2与7x5y7是同类项,那么m n的值是﹣1.【分析】利用同类项的定义列出方程组,求出方程组的解得到m与n的值,代入原式计算即可求出值.【解答】解:∵单项式2x m+2n y n﹣2m+2与x5y7是同类项,∴,解得:,则原式=﹣1,故答案为:﹣1.10.(3分)如果二次三项式x2+kx+49是一个整式的平方,则k的值是±14.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k 的值.【解答】解:∵二次三项式x2+kx+49是一个整式的平方,∴kx=±2×7x,解得k=±14.故答案为:±14.11.(3分)如图,已知AD∥BC,CE=5,CF=8,且CE⊥AD,CF⊥AB垂足分别为E,F.则AD与BC间的距离是5.【分析】从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.【解答】解:∵AD∥BC,CE⊥AD于E,∴平行线AD与BC间的距离等于CE的长,∵CE=5,∴AD与BC间的距离是5.故答案为:5.12.(3分)数据1,2,3,4,5的方差为2.【分析】根据方差的公式计算.方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:数据1,2,3,4,5的平均数为(1+2+3+4+5)=3,故其方差S2=[(3﹣3)2+(1﹣3)2+(2﹣3)2+(4﹣3)2+(5﹣3)2]=2.故答案为:2.13.(3分)已知a m=2,a n=3(m,n为正整数),则a3m+2n=72.【分析】直接利用积的乘方运算法则以及同底数幂的乘法运算法则计算得出答案.【解答】解:∵a m=2,a n=3(m,n为正整数),∴a3m+2n=(a m)3×(a n)2=23×32=8×9=72.故答案为:72.14.(3分)甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+l)(x+9),则a﹣b的值是﹣3.【分析】直接利用多项式乘法结合已知进而得出a,b的值,进而得出答案.【解答】解:∵分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4),∴(x+2)(x+4)=x2+6x+8,则a=6,∵分解因式x2+ax+b时,乙看错了a,分解结果为(x+l)(x+9),∴(x+l)(x+9)=x2+10x+9,则b=9,故a﹣b=6﹣9=﹣3.故答案为:﹣3.三、解答题(共58分)15.(6分)解下列方程组:(1)(2)【分析】(1)方程组利用加减消元法求出解即可.(2)方程组利用加减消元法求出解即可.【解答】(1)解:,①+②得:8x=8,解得,x=1,把x=1代入①得:y=2,∴原方程组的解为,(2)原方程组可化为,①×3﹣②×4,得7y=14,∴y=2,把y=2代入①,得x=2,∴原方程组的解是.16.(6分)因式分解:(1)m3﹣16m;(2)xy3﹣10xy2+25xy.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=m(m2﹣16)=m(m+4)(m﹣4);(2)原式=xy(y2﹣10y+25)=xy(y﹣5)2.17.(6分)先化简,再求值:(2x﹣1)2﹣(2x+1)(2x﹣1)+(x+1)(3﹣x),其中x=.【分析】首先计算完全平方、平方差和多项式乘以多项式,然后再去括号,合并同类项,化简后,再代入x的值计算即可.【解答】解:原式=4x2﹣4x+1﹣(4x2﹣1)+(3x﹣x2+3﹣x),=4x2﹣4x+1﹣4x2+1+3x﹣x2+3﹣x,=﹣x2﹣2x+5,将代入,原式=.18.(6分)如图,AB∥DF,DE∥BC,∠1=65°,求∠2、∠3的度数.【分析】利用两直线平行,内错角相等,则∠1=∠2,两直线平行,同旁内角互补,则有∠2+∠3=180°,故可求出结论.【解答】解:∵DE∥BC∴∠1=∠2=65°∵AB∥DF∴∠2+∠3=180°,∴∠3=180°﹣65°=115°.故答案为∠2=65°,∠3=115°.19.(6分)三五三七鞋厂为了了解初中学生穿鞋的鞋号情况,对红华中学初二(1)班的20名男生所穿鞋号统计如下表:鞋号23.52424.52525.526人数344711(1)写出男生鞋号数据的平均数,中位数,众数;(2)在平均数,中位数和众数中,鞋厂最感兴趣的是什么?【分析】根据平均数、中位数、众数的概念计算和判断.【解答】解:(1)由题意知:男生鞋号数据的平均数==24.55;男生鞋号数据的众数为25;男生鞋号数据的中位数==24.5.∴平均数是24.55,中位数是24.5,众数是25.(2)厂家最关心的是众数.20.(6分)湘西自治州风景优美,物产丰富,一外地游客到某特产专营店,准备购买精加工的豆腐乳和猕猴桃果汁两种盒装特产.若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元.(1)请分别求出每盒豆腐乳和每盒猕猴桃果汁的价格;(2)该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需多少元?【分析】(1)设每盒豆腐乳x元,每盒猕猴桃果汁y元,根据若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元,列出方程组,求解即可;(2)将(1)中的每盒豆腐乳和每盒猕猴桃果汁的价格代入解得即可.【解答】解:(1)设每盒豆腐乳x元,每盒猕猴桃果汁y元,可得:,解得:,答:每盒豆腐乳和每盒猕猴桃果汁的价格分别为30元,45元;(2)把每盒豆腐乳和每盒猕猴桃果汁的价格分别为30元,45元代入,可得:4×30+2×45=210(元),答:该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需210元.21.(8分)先阅读材料:分解因式:(a+b)2+2(a+b)+1.解:令a+b=M,则(a+b)2+2(a+b)+1=M2+2M+1=(M+1)2所以(a+b)2+2(a+b)+1=(a+b+1)2.材料中的解题过程用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你运用这种思想方法解答下列问题:(1)分解因式:1﹣2(x+y)+(x+y)2=(1﹣x﹣y)2;(2)分解因式:(m+n)(m+n﹣4)+4;(3)证明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某个整数的平方.【分析】(1)将(x+y)看作一个整体进行因式分解;(2)将(m+n)看作一个整体进行因式分解;(3)先计算(n+1)(n+2)得n2+3n+2,再将n2+3n看做整体因式分解得原式=(n2+3n+1)2,继而由n2+3n+1为正整数可得答案.【解答】解:(1)原式=(1﹣x﹣y)2;故答案是:(1﹣x﹣y)2;(2)令A=m+n,则(m+n)(m+n﹣4)+4=A(A﹣4)+4=A2﹣4A+4=(A﹣2)2,所以,(m+n)(m+n﹣4)+4=(m+n﹣2)2.(3)(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2.∵n是正整数,∴n2+3n+1也为正整数.∴式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.22.(6分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°.(1)写出点A,B的对应点;(2)求∠AOB'和∠A'OB的度数.【分析】(1)由旋转的性质可得;(2)由旋转的性质可得∠AOA'=∠BOB'=45°,即可求解.【解答】解:(1)∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴点A的对应点A',点B的对应点B';(2)∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠AOA'=∠BOB'=45°,∴∠AOB'=30°,∠A'OB=60°.23.(8分)在综合与实践课上,老师计同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.(1)如图(1),若三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC间的数量关系;(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,∠CFG=β,则∠AEG与∠CFG的数量关系是什么?用含α,β的式子表示(不写理由).【分析】(1)根据平行线的性质可知∠1=∠EGD,依据∠2+∠FGE+∠EGD=180°,可求解∠1的度数;(2)过点F作FP∥AB,易得FP∥AB∥CD,通过平行线的性质把∠AEF和∠FGC转化到∠EFG上即可;(3)依据AB∥CD,可知∴∠AEF+∠CFE=180°,再代入∠AEF=α﹣30°,∠CFE=β﹣90°,即可求出α+β=300°.【解答】解:(1)∵AB∥CD,∴∠1=∠EGD.∵∠2+∠FGE+∠EGD=180°,∠2=2∠1,∴2∠1+60°+∠1=180°,解得∠1=40°;(2)如图,过点F作FP∥AB,∵CD∥AB,∴FP∥AB∥CD.∴∠AEF=∠EFP,∠FGC=∠GFP.∴∠AEF+∠FGC=∠EFP+∠GFP=∠EFG.∵∠EFG=90°,∴∠AEF+∠FGC=90°;(3)α+β=300°.理由如下:∵AB∥CD,∴∠AEF+∠CFE=180°.即α﹣30°+β﹣90°=180°,整理得α+β=180°+120°=300°.。
2020-2021初一数学下期末试题(及答案) 2020-2021初一数学下期末试题(及答案)一、选择题1.已知实数a,b,若a>b,则下列结论错误的是A。
a-7>b-7B。
6+a>b+6C。
a/5>b/5D。
-3a>-3b2.计算2-5+3-5的值是()A。
-1B。
1C。
-20D。
203.估计10+1的值应在()A。
3和4之间B。
4和5之间C。
5和6之间D。
6和7之间4.XXX对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示。
下列说法中正确的是()A。
喜欢乒乓球的人数(1)班比(2)班多B。
喜欢足球的人数(1)班比(2)班多C。
喜欢羽毛球的人数(1)班比(2)班多D。
喜欢篮球的人数(2)班比(1)班多5.黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5-1/2的值()A。
在1.1和1.2之间B。
在1.2和1.3之间C。
在1.3和1.4之间D。
在1.4和1.5之间6.已知关于x,y的二元一次方程组2ax+by=3ax-by=1y=-1的解为,则a-2b的值是()A。
-2B。
2C。
3D。
-37.在平面直角坐标系内,线段CD是由线段AB平移得到的,点A(-2,3)的对应点为C(2,5),则点B(-4,-1)的对应点D的坐标为()A。
(-8,-3)B。
(4,2)C。
(0,1)D。
(1,8)8.已知两个不等式的解集在数轴上如右图表示,那么这个解集为()A。
≥-1B。
1C。
-3< x ≤-1D。
-39.将点A(1,-1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B到达点D,使得点A到达点C(4,2),点B到达点D,则点D的坐标是()A。
(7,3)B。
(6,4)C。
(7,4)D。
(8,4)10.在平面直角坐标系中,点A的坐标为(0,1),点B 的坐标为(3,3),将线段AB平移,使得A到达点C(1,1),B到达点D,则点D的坐标为()A。
2020-2021学年七年级下期末考试数学试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)关于x 的方程3−3a−x 2=0与方程2x ﹣5=1的解相同,则常数a 是( ) A .2 B .﹣2 C .3 D .﹣3【解答】解:方程2x ﹣5=1,移项得:2x =1+5,合并得:2x =6,解得:x =3,把x =3代入得:3−3a−32=0,去分母得:6﹣3a +3=0,解得:a =3.故选:C .2.(4分)小成心里想了两个数字a ,b ,满足下列三个方程,那么不满足的那个方程是() A .a ﹣b =3 B .2a +3b =1 C .3a ﹣b =7 D .2a +b =5【解答】解:假设满足选项A 、B 两个方程,则{a −b =32a +3b =1.解得{a =2b =−1.把{a =2b =−1代入选项C 的方程,满足选项C 的方程,说明不满足的那个方程是选项D 的方程,故选:D .3.(4分)若二元一次方程3x ﹣y =7,2x +3y =1,y =kx ﹣9有公共解,则k 的取值为()A .3B .﹣3C .﹣4D .4【解答】解:解{3x −y =72x +3y =1得:{x =2y =−1,代入y =kx ﹣9得:﹣1=2k ﹣9,解得:k =4.故选:D .4.(4分)已知两个不等式的解集在数轴上如图表示,那么这个解集为()A.x≥﹣1B.x>1C.﹣3<x≤﹣1D.x>﹣3【解答】解:两个不等式的解集的公共部分是:﹣1及其右边的部分.即大于等于﹣1的数组成的集合.故选:A.5.(4分)如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.5米B.10米C.15米D.20米【解答】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B间的距离在5和25之间,∴A、B间的距离不可能是5米;故选:A.6.(4分)已知不等式2x﹣a≤0的正整数解恰好是1,2,3,4,5,那么a的取值范围是()A.a>10B.10≤a≤12C.10<a≤12D.10≤a<12【解答】解:解不等式2x﹣a≤0得:x≤12a.根据题意得:5≤12a<6,解得:10≤a<12.故选:D.7.(4分)解不等式1+x 2≤1+2x 3+1时,去分母步骤正确的是( )A .1+x ≤1+2x +1B .1+x ≤1+2x +6C .3(1+x )≤2(1+2x )+1D .3(1+x )≤2(1+2x )+6 【解答】解:1+x 2≤1+2x 3+1,去分母得:3(1+x )≤2(1+2x )+6,故选:D .8.(4分)下列说法中,正确的个数有( )①若三条线段中有两条线段之和大于第三条线段,则以这三条线段为边可作一个三角形; ②一个三角形中,至少有一个角不小于60°;③三角形的外角大于与它不相邻的任意一个内角;④一个多边形的边数每增加一条,这个多边形的内角和就增加180°.A .1个B .2个C .3个D .4个【解答】解:①若三条线段中有两条线段之和大于第三条线段,则以这三条线段为边可作一个三角形,说法错误;改正为:若任意两条线段之和大于第三条线段,则以这三条线段为边可作一个三角形;②一个三角形中,至少有一个角不小于60°,说法正确;③三角形的外角大于与它不相邻的任意一个内角,说法正确;④一个多边形的边数每增加一条,这个多边形的内角和就增加180°,说法正确. 所以正确的个数有3个.故选:C .9.(4分)下面四个化学仪器示意图中,是轴对称图形的是( )A .B .C .D .【解答】解:A 、不是轴对称图形,故本选项不合题意;B 、不是轴对称图形,故本选项不合题意;C 、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意.故选:D.10.(4分)下列说法不正确的是()A.旋转后图形的大小形状均不变B.平移后图形的大小形状均不变C.旋转后对应点所连线段平行D.平移后对应点所连线段相等【解答】解:∵旋转的性质为旋转后图形的大小形状均不变,旋转后对应点所连线段平行或共线,平移的性质为平移后图形的大小形状均不变,平移后对应点所连线段相等,∴选项A,B,D不符合题意,选项C符合题意,故选:C.二.填空题(共10小题,满分30分)11.(10分)如图所示,图中共有24个三角形.【解答】解:图中三角形的个数是24个.故答案是:24.12.(2分)若3x m+(n﹣2)y﹣5=0是关于x的一元一次方程,则m+n=3.【解答】解:∵3x m+(n﹣2)y﹣5=0是关于x的一元一次方程,∴m=1,n﹣2=0,解得m=1,n=2,∴m+n=1+2=3.故答案是:3.13.(8分)若a >b ,要使ac <bc ,则c < 0.【解答】解:∵a >b ,∴要使ac <bc ,必须c <0,故答案为:<.14.若a >b ,则2020﹣2a < 2020﹣2b (填>,=或<).【解答】解:∵a >b ,∴﹣2a <﹣2b ,∴2020﹣2a <2020﹣2b ,故答案为:<.15.设a >b ,则2a ﹣5 > 2b ﹣5(填“>”或“<”).【解答】解:∵a >b ,∴2a >2b ,∴2a ﹣5>2b ﹣5,故答案为:>.16.已知关于x 的不等式(2a ﹣b )x >a ﹣2b 的解是x >52,则关于x 的不等式ax +b <0的解为 x >﹣8 .【解答】解:∵关于x 的不等式(2a ﹣b )x >a ﹣2b 的解是x >52,∴2a ﹣b >0,x >a−2b 2a−b ∴2a >b ,a−2b 2a−b =52∴2a ﹣4b =10a ﹣5b∴8a =b∴2a >8a∴a <0∵ax +b <0∴ax <﹣b∴x >−b a∵8a =b∴x >﹣8故答案为:x >﹣8.17.(4分)等边三角形有 3 条对称轴.【解答】解:等边三角形有3条对称轴.故答案为:3.18.(2分)已知关于x 的不等式组{x −a >05−2x ≥−1无解,则a 的取值范围是 a ≥3 . 【解答】解:由x ﹣a >0,∴x >a ,由5﹣2x ≥﹣1移项整理得,2x ≤6,∴x ≤3,又不等式组{x −a >05−2x ≥−1无解, ∴a ≥3.19.(2分)已知{x =−2y =5是方程ax +y ﹣1=0的解,则a = 2 . 【解答】解:由题意,得﹣2a +5﹣1=0.解得a =2,故答案为:2.20.(2分)在一个直角三角形中,已知一个锐角比另一个锐角的4倍多15°,则两个锐角分别为 75°、15° .【解答】解:设另一个锐角是x ,则这个锐角是4x +15°,根据题意得,x +4x +15°=90°,解得x =15°,4x +15°=4×15°+15°=75°,所以,这两个锐角分别为75°、15°.故答案为:75°、15°.三.解答题(共6小题,满分50分)21.(10分)解方程(组):(1)15﹣(7﹣5x )=2x +(5﹣3x );(2)3+0.2x 0.2−0.2+0.03x 0.01=0.75;(3){3x −2y +4=03y +2x −19=0; (4){x+32+y+53=7x−43+2y−35=2. 【解答】解:(1)15﹣(7﹣5x )=2x +(5﹣3x ),去括号,得15﹣7+5x =2x +5﹣3x ,移项,得5x ﹣2x +3x =5﹣15+7,合并同类项,得6x =﹣3,系数化为1,得x =−12;(2)3+0.2x 0.2−0.2+0.03x 0.01=0.75, 方程变形,得30+2x 2−20+3x 1=34, 去分母,得2(30+2x )﹣4(20+3x )=3,去括号,得60+4x ﹣80﹣12x =3,移项,得4x ﹣12x =3﹣60+80,合并同类项,得﹣8x =23,系数化为1,得x =−238;(3)方程组变形,得{3x −2y =−4①2x +3y =19②, ①×3+②×2得13x =26,解得x =2,把x =2代入①得,y =5,所以方程组的解为{x =2y =5; (4)方程变形,得{3x +2y =23①5x +6y =59②, ①×3﹣②得x =52,把x =52代入①得,y =314,所以方程组的解为{x =52y =314.22.(10分)解不等式(组),并在数轴上表示它的解集.(1)6x+16>2x﹣4;(2){2x−3(x−1)≥−8 2x−13>x2+1.【解答】解:(1)6x+16>2x﹣4,6x﹣2x>﹣4﹣16,4x>﹣20,x>﹣5,在数轴上表示为:;(2){2x−3(x−1)≥−8①2x−13>x2+1②,解不等式①得:x≤11,解不等式②得:x>8,所以不等式组的解集是8<x≤11,在数轴上表示为:.23.(10分)某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?【解答】解:设应分配x人生产甲种零件,12x×2=23(62﹣x)×3,解得x=46,62﹣46=16(人).故应分配46人生产甲种零件,16人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套.24.(10分)已知a、b、c为三角形三边的长,化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|.【解答】解:∵a、b、c为三角形三边的长,∴a+b>c,a+c>b,b+c>a,∴原式=|a﹣(b+c)|+|b﹣(c+a)|+|c﹣(a+b)|=b+c﹣a+a+c﹣b+a+b﹣c=a+b+c.25.如图,已知在△ABC中,BD是∠ABC的角平分线,∠A=60°,∠BDC=80°,求∠DBC的度数.【解答】解:∵∠A=60°,∠BDC=80°,∴∠ABD=∠BDC﹣∠A=80°﹣60°=20°.又∵BD是∠ABC的角平分线,∴∠DBC=∠ABD=20°.26.(10分)如图,在△ABC中,∠ACB=90°,CD是斜边上的高线,CE是∠ACB的角平分线,且∠CEB=105°,分别求∠ECB,∠ECD的大小.【解答】解:∵∠ACB=90°,CE是∠ACB的角平分线,∴∠ECB=12∠ACB=12×90°=45°.∵∠AEC+∠CEB=180°,∴∠AEC=180°﹣∠CEB=75°.在△CDE中,∠CDE+∠CED+∠ECD=180°,∴∠ECD=180°﹣∠CDE﹣∠CED=180°﹣90°﹣75°=15°.。
2020-2021初一数学下期末试卷含答案(2)一、选择题1.如图,直线BC 与MN 相交于点O ,AO ⊥BC ,OE 平分∠BON ,若∠EON =20°,则∠AOM 的度数为( )A .40°B .50°C .60°D .70°2.下面不等式一定成立的是( )A .2a a <B .a a -<C .若a b >,c d =,则ac bd >D .若1a b >>,则22a b > 3.如图已知直线//AB CD ,134∠=︒,272∠=︒,则3∠的度数为( )A .103︒B .106︒C .74︒D .100︒ 4.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( ) A .k=-5 B .k=5 C .k=-10 D .k=105.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x 人,买鸡的钱数为y ,依题意可列方程组为( )A .8374x y x y +=⎧⎨+=⎩B .8374x y x y -=⎧⎨-=⎩C .8374x y x y +=⎧⎨-=⎩D .8374x y x y -=⎧⎨+=⎩ 6.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣57.点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA =4cm ,PB =5cm ,PC =2cm ,则点P 到直线m 的距离为( )A .4cmB .2cm ;C .小于2cmD .不大于2cm8.已知关于x 的不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩恰有3个整数解,则a 的取值范围为( ) A .12a <≤B .12a <<C .12a ≤<D .12a ≤≤ 9.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-2 10.如图所示,下列说法不正确的是( )A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角11.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4D .()8,4 12.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135°二、填空题13.若264a =3a =______.14.已21x y =⎧⎨=-⎩是关于x 、y 的二次元方程39ax y +=的解,则a 的值为___________ 15.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 cm .16.若点P(2−a,2a+5)到两坐标轴的距离相等,则a的值为____.17.已知,如图,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N(下面是推理过程,请你填空).解:∵∠BAE+∠AED=180°(已知)∴ AB ∥()∴∠BAE=(两直线平行,内错角相等)又∵∠1=∠2∴∠BAE﹣∠1=﹣∠2即∠MAE=∴∥NE()∴∠M=∠N()18.已知方程x m﹣3+y2﹣n=6是二元一次方程,则m﹣n=_____.a b,点B在直线上b上,且AB⊥BC,∠1=55°,则∠2的度数为19.如图,直线//______.20.如图,将周长为10的三角形ABC沿BC方向平移1个单位长度得到三角形DEF,则四边形ABFD的周长为__________.三、解答题AB CD,点E在直线AB与CD之间,连接AE、CE,21.(1)(感知)如图①,//∠=∠+∠.下面给出了这道题的解题过程,请完成下面的解题过程试说明AEC A DCE(填恰当的理由).证明:如图①过点E 作//EF AB .1A ∴∠=∠( ),//AB CD (已知),EF //AB (辅助线作法),//EF CD ∴( ),2DCE ∴∠=∠( ),12AEC ∠=∠+∠,AEC A DCE ∴∠=∠+∠ ( ).(2)(探究)当点E 在如图②的位置时,其他条件不变,试说明360A AEC C ∠+∠+∠=︒.(3)(应用)如图③,延长线段AE 交直线CD 于点M ,已知130A ∠=︒,120DCE ∠=︒,则MEC ∠的度数为 .(请直接写出答案)22.已知△ABC 在平面直角坐标系中的位置如图所示.将△ABC 向右平移6个单位长度,再向下平移6个单位长度得到△A 1B 1C 1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A1B1C1;(2)直接写出△A1B1C1各顶点的坐标(3)求出△A1B1C1的面积23.快递公司准备购买机器人来代替人工分拣已知购买- 台甲型机器人比购买-台乙型机器人多2万元;购买2台甲型机器人和3台乙型机器人共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型、乙型机器人每台每小时分拣快递分别是1200件、1000件,该公司计划最多用41万元购买8台这两种型号的机器人.该公司该如何购买,才能使得每小时的分拣量最大?24.某停车场的收费标准如下:小型汽车10元/辆,中型汽车15元/辆,现停车场共有50辆中、小型汽车,共缴纳停车费560元,中、小型汽车各有多少辆?25.如图,已知点D、F、E、G都在△ABC的边上,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.(请在下面的空格处填写理由或数学式)解:∵EF∥AD,(已知)∴∠2=()∵∠1=∠2,(已知)∴∠1=()∴∥,()∴∠AGD+=180°,(两直线平行,同旁内角互补)∵,(已知)∴∠AGD=(等式性质)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先根据角的平分线的定义求得∠BON ,然后根据对顶角相等求得∠MOC ,然后根据∠AOM =90°﹣∠COM 即可求解.【详解】∵OE 平分∠BON ,∴∠BON =2∠EON =40°,∴∠COM =∠BON =40°,∵AO ⊥BC ,∴∠AOC =90°,∴∠AOM =90°﹣∠COM =90°﹣40°=50°.故选B .【点睛】本题考查了垂直的定义、角平分线的定义以及对顶角的性质,正确求得∠MOC 的度数是关键.2.D解析:D【解析】【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A. 当0a ≤时,2a a ≥,故A 不一定成立,故本选项错误; B. 当0a ≤时,a a -≥,故B 不一定成立,故本选项错误; C. 若ab >,当0cd =≤时,则ac bd ≤,故C 不一定成立,故本选项错误;D. 若1a b >>,则必有22a b >,正确;故选D .【点睛】主要考查了不等式的基本性质.“0”是很特殊的数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.3.B解析:B【解析】【分析】先算BAC ∠的度数,再根据//AB CD ,由直线平行的性质即可得到答案.【详解】解:∵134∠=︒,272∠=︒,∴18012180347274BAC ∠=-∠-∠=︒-︒-︒=︒∵//AB CD ,∴3180BAC ∠+∠=︒(两直线平行,同旁内角互补),∴318018074106BAC ∠=︒-∠=︒-︒=︒,故选B .【点睛】本题主要考查了直线平行的性质(两直线平行,同旁内角互补),掌握直线平行的性质是解题的关键.4.A解析:A【解析】【分析】根据方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,可得方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值,再代入4x-3y+k=0即可求得k 的值.【详解】∵方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,∴5320x y x y -=⎧⎨-=⎩ , 解得,1015x y =-⎧⎨=-⎩ ; 把1015x y =-⎧⎨=-⎩代入4x-3y+k=0得, -40+45+k=0,∴k=-5.故选A.本题考查了解一元二次方程,根据题意得出方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值是解决问题的关键.5.D解析:D【解析】【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有x人,买鸡的钱数为y,根据题意,得:8374x y x y-=⎧⎨+=⎩.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.6.A解析:A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.7.D解析:D【解析】【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥l时,PC是点P到直线l的距离,即点P到直线l的距离2cm,当PC不垂直直线l时,点P到直线l的距离小于PC的长,即点P到直线l的距离小于2cm,综上所述:点P到直线l的距离不大于2cm,【点睛】考查了点到直线的距离,利用了垂线段最短的性质.8.A解析:A【解析】【分析】先根据一元一次不等式组解出x 的取值范围,再根据不等式组只有三个整数解,求出实数a 的取值范围即可.【详解】3211230x x x a --⎧≤-⎪⎨⎪-<⎩①②, 解不等式①得:x≥-1,解不等式②得:x<a , ∵不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩有解, ∴-1≤x<a ,∵不等式组只有三个整数解,∴不等式的整数解为:-1、0、1,∴1<a≤2,故选:A【点睛】本题考查一元一次不等式组的整数解,解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.A解析:A【解析】【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->x b ∴>综合上述可得32b -≤<-故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.10.A解析:A【解析】【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选:A.【点睛】此题考查对顶角,邻补角,同位角,内错角,同旁内角,解题关键在于掌握各性质定义. 11.C解析:C【解析】【分析】根据A和C的坐标可得点A向右平移4个单位,向上平移1个单位,点B的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D的坐标.【详解】解:∵点A(0,1)的对应点C的坐标为(4,2),即(0+4,1+1),∴点B(3,3)的对应点D的坐标为(3+4,3+1),即D(7,4);故选:C.【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.12.D解析:D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.二、填空题13.±2【解析】【分析】根据平方根立方根的定义解答【详解】解:∵∴a=±8∴=±2故答案为±2【点睛】本题考查平方根立方根的定义解题关键是一个正数的平方根有两个他们互为相反数解析:±2【解析】【分析】根据平方根、立方根的定义解答.【详解】解:∵264a=,∴a=±8.3a2故答案为±2【点睛】本题考查平方根、立方根的定义,解题关键是一个正数的平方根有两个,他们互为相反数.. 14.6【解析】【分析】把x与y的值代入方程组求出a的值代入原式计算即可求出值【详解】解:把代入得解得:故答案为:6【点睛】此题考查了解二元一次方程掌握方程的解是解答本题的关键解析:6【解析】【分析】把x与y的值代入方程组求出a的值,代入原式计算即可求出值.【详解】解:把21xy=⎧⎨=-⎩,代入得239a-=,解得:6a=故答案为:6此题考查了解二元一次方程,掌握方程的解是解答本题的关键.15.55【解析】【分析】利用长与高的比为8:11进而利用携带行李箱的长宽高三者之和不超过115cm得出不等式求出即可【详解】设长为8x高为11x由题意得:19x+20≤115解得:x≤5故行李箱的高的最解析:55【解析】【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm得出不等式求出即可.【详解】设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.【点睛】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.16.a=-1或a=-7【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|求出a的值即可【详解】解:∵点P到两坐标轴的距离相等∴|2-a|=|2a+5|∴2-a=2a+52-a=-(解析:a=-1或a=-7.【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.【详解】解:∵点P到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-a=2a+5,2-a=-(2a+5)∴a=-1或a=-7.故答案是:a=-1或a=-7.【点睛】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出|2-a|=|2a+5|,注意不要漏解.17.见解析【解析】【分析】由已知易得AB∥CD则∠BAE=∠AEC又∠1=∠2所以∠MAE=∠AEN则AM∥EN故∠M=∠N【详解】∵∠BAE+∠AED=180°(已知)∴AB∥CD(同旁内角互补两直线解析:见解析【分析】由已知易得AB∥CD,则∠BAE=∠AEC,又∠1=∠2,所以∠MAE=∠AEN,则AM∥EN,故∠M=∠N.【详解】∵∠BAE+∠AED=180°(已知)∴AB∥CD(同旁内角互补,两直线平行)∠BAE=∠AEC(两直线平行,内错角相等)又∵∠1=∠2,∴∠BAE−∠1=∠AEC−∠2,即∠MAE=∠NEA,∴AM∥EN,(内错角相等,两直线平行)∴∠M=∠N(两直线平行,内错角相等)【点睛】考查平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键.18.3【解析】试题分析:先根据二元一次方程的定义得出关于mn的方程求出mn的值再代入m-n进行计算即可∵方程xm-3+y2-n=6是二元一次方程∴m-3=1解得m=4;2-n=1解得n=1∴m-n=4-解析:3【解析】试题分析:先根据二元一次方程的定义得出关于m、n的方程,求出m、n的值,再代入m-n进行计算即可.∵方程x m-3+y2-n=6是二元一次方程,∴m-3=1,解得m=4;2-n=1,解得n=1,∴m-n=4-1=3.考点:二元一次方程的定义.19.【解析】【分析】先根据∠1=55°AB⊥BC求出∠3的度数再由平行线的性质即可得出结论【详解】解:∵AB⊥BC∠1=55°∴∠3=90°-55°=35°∵a∥b∴∠2=∠3=35°故答案为:35°【解析:【解析】【分析】先根据∠1=55°,AB⊥BC求出∠3的度数,再由平行线的性质即可得出结论【详解】解:∵AB⊥BC,∠1=55°,∴∠3=90°-55°=35°.∵a∥b,∴∠2=∠3=35°.故答案为:35°.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等。
2020-2021学年七年级下学期期末数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)若√25.36=5.036,√253.6=15.925,则√253600=()A.50.36B.503.6C.159.06D.1.5906解:∵√25.36=5.036,∴√253600=√25.36×√10000=5.036×100=503.6,故选:B.2.(3分)如图,过直线l1外一点P作它的平行线l2,其作图依据是()A.两直线平行,同位角相等B.两直线平行,内错角相等C.同位角相等,两直线平行D.内错角相等,两直线平行解:由图可知,直线l1和直线l2之间的内错角相等,则可以判定这两条直线平行,故选:D.3.(3分)下列四个图形中,不能通过基本图形平移得到的是()A.B.C.D.解:A、能通过其中一个菱形平移得到,不符合题意;B、能通过其中一个正方形平移得到,不符合题意;C、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意;D、能通过其中一个圆平移得到,不符合题意.故选:C .4.(3分)以方程组{y =x +1y =−x −32的解为坐标的点(x ,y )所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解:{y =x +1①y =−x −32②, 把①代入②得:x +1=﹣x −32,移项合并得:2x =−52,解得:x =−54,把x =−54代入①得:y =−14,∴点的坐标为(−54,−14),则点所在象限为第三象限,故选:C .5.(3分)为了了解我县初一4300名学生在疫情期间“数学空课”的学习情况,全县组织了一次数学检测,从中抽取100名考生的成绩进行统计分析,以下说法正确的是( )A .这100名考生是总体的一个样本B .4300名考生是总体C .每位学生的数学成绩是个体D .100名学生是样本容量解:A .这100名考生的数学成绩是总体的一个样本,故本选项不合题意;B .4300名考生的数学成绩是总体,故本选项不合题意;C .每位学生的数学成绩是个体,故本选项符合题意;D .100是样本容量,故本选项不合题意.故选:C .6.(3分)相传Hippasus 是Pythagoras 的学生,他发现边长为1的正方形的对角线的长不能用整数或整数之比来表示.这个发现动摇了毕达哥拉斯学派的“万物皆数”的信条,引起了信徒们的恐慌,从而导致了第一次数学危机.这里所说的“边长为1的正方形的对角线的长”是一个( )A.有理数B.自然数C.无理数D.分数解:整数属于有理数,整数的比是分数,属于有理数,故“不能用整数或整数的比表示的数”指的是无理数.故选:C.7.(3分)有一个数值转换器,原理如下:当输入的x为16时,输出的y是()A.√2B.√4C.4D.8解:由题中所给的程序可知:把16取算术平方根,结果为4,因为4是有理数,所以把4取算术平方根,结果为2,因为2是有理数,所以把2取算术平方根,结果为√2,因为结果√2为无理数,所以y=√2.故选:A.8.(3分)如图,小亮从A到达E,路线为A→B→C→D→E.由A到B和由D到E都是正北方向中间经历了3次拐弯,第一次拐弯后,行进方向变为南偏东35°,若∠D=105°,则∠BCD的度数为()A.100°B.105°C.110°D.115°解:如图,∵小亮从A到达E,路线为A→B→C→D→E.由A到B和由D到E都是正北方向中间经历了3次拐弯,∴∠1=∠B=35°,∠2=180°﹣∠CDE=75°,∴∠BCD=∠1+∠2=110°.故选:C.9.(3分)若关于x的不等式3x+1<m的正整数解是1,2,3,则整数m的最大值是()A.10B.11C.12D.13解:解不等式3x+1<m,得x<13(m﹣1).∵关于x的不等式3x+1<m的正整数解是1,2,3,∴3<13(m﹣1)≤4,∴10<m≤13,∴整数m的最大值是13.故选:D.10.(3分)“共享单车”为人们提供了一种经济便捷、绿色低碳的共享服务,成为城市交通出行的新方式,小文对他所在小区居民当月使用“共享单车”的次数进行了抽样调查,并绘制成了如图所示的频数分布直方图(每一组含前一个边界值,不含后一个边界值),则下列说法正确的是()A.小文一共抽样调查了20人B.样本中当月使用“共享单车”40~50次的人数最多C.样本中当月使用“共享单车”不足30次的人数有14人D.样本中当月使用次数不足30次的人数多于50~60次的人数解:小文一共抽样调查了4+8+14+20+16+12=74(人),故A 选项错误,样本中当月使用“共享单车”30~40次的人数最多,有20人,故B 选项错误,样本中当月使用“共享单车”不足30次的人数有26人,故C 选项错误,样本中当月使用“共享单车”50~60次的人数为12人,当月使用“共享单车”不足30次的人数有26人,所以样本中当月使用次数不足30次的人数多于50~60次的人数,故D 选项正确, 故选:D .二.填空题(共5小题,满分15分,每小题3分)11.(3分)在括号内填写一个二元一次方程,使所成方程组{5x −2y =1()的解是{x =1y =2, x +y =3,本题答案不唯一 .解:∵{x =1y =2,∴x +y =3, 故答案为:x +y =3,本题答案不唯一.12.(3分)计算:|√2−2|+√2−1= 1 .解:原式=2−√2+√2−1=1.故答案为:1.13.(3分)如果一元一次方程的解是一元一次不等式组的解,那么称该一元一次方程为该不等式组的关联方程.若方程3﹣x =2x ,3+x =2(x +12)都是关于x 的不等式组{x <2x −mx −2≤m的关联方程,试求m 的取值范围是 0≤m <1 .解:方程的解为x =1,x =2,不等式的解为m <x ≤m +2,∴m <1且m +2≥2,∴0≤m <1.故答案为:0≤m <1.14.(3分)如图,在矩形中ABCD ,AB =3,BC =5,将矩形ABCD 沿EF 折叠,使点C 与点A 重合,点D 落在点D ′处,则△AD ′F 的周长为 8 .解:∵将矩形ABCD沿EF折叠,∴CD=AD',DF'=DF,∵△AD′F的周长=AF+AD'+D'F=AF+CD+DF=AD+CD,∴△AD′F的周长=5+3=8,故答案为8.15.(3分)如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA、OC分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2020的纵坐标为(﹣21010,﹣21010).解:∵正方形OABC边长为1,∴OB=√2,∵正方形OBB1C1是正方形OABC的对角线OB为边,∴OB1=2,∴B1点坐标为(0,2),同理可知OB2=2√2,∴B2点坐标为(﹣2,2),同理可知OB3=4,B3点坐标为(﹣4,0),B4点坐标为(﹣4,﹣4),B5点坐标为(0,﹣8),B6(8,﹣8),B7(16,0),B8(16,16),B9(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的√2倍,∵2020÷8=252…4,∴B 2020的横纵坐标符号与点B 4相同,横纵坐标相同,且都在第三象限,∴B 2020的坐标为(﹣21010,﹣21010).故答案为:(﹣21010,﹣21010).三.解答题(共8小题,满分75分)16.(10分)已知关于x 的一元二次方程k 2x 2+(2k +1)x +1=0有两个实数根.(1)求k 的取值范围;(2)若此方程至少有一个有理数根,写出一个k 的值,并求此时方程的根.解:(1)∵关于x 的一元二次方程(k 2x 2+(2k +1)x +1=0有实数根,∴{k 2≠0△=(2k +1)2−4k 2≥0, 解得:k ≥−14且k ≠0.(2)关于x 的一元二次方程k 2x 2+(2k +1)x +1=0的解为x =−(2k+1)±√4k+12k 2, ∵此方程至少有一个有理数根,∴4k +1是完全平方数,当k =2(不唯一)时,方程的根为x =−5±38, ∴x 1=﹣1,x 2=−14.17.(8分)解下列方程组:(1){2x +3y =−1y =4x −5(2){3x +2y =204x −5y =19解:(1){2x +3y =−1①y =4x −5②将②代入①得:2x +3(4x ﹣5)=﹣1解得:x =1③将③代入②得:y =4×1﹣5=﹣1∴方程组的解为:{x =1y =−1.(2){3x +2y =20①4x −5y =19②①×5+②×2得:15x +8x =100+38∴x =6③将③代入①得:3×6+2y =20∴y =1∴原方程组的解为:{x =6y =1. 18.(8分)(1)解方程组:{3x −y =3①x 2+y 3=2②; (2)已知关于x ,y 的二元一次方程组{2x +y =−3m +2x +2y =4的解满足x +y >−32,求出满足条件的m 的所有正整数值.解:(1){3x −y =3①x 2+y 3=2②, 由②得3x +2y =12 ③由③﹣①得,3y =9,解得:y =3,把y =3代入①得,x =2.所以这个方程组的解是{x =2y =3; (2){2x +y =−3m +2①x +2y =4②, ①+②得:3(x +y )=﹣3m +6,即x +y =﹣m +2,代入不等式得:﹣m +2>−32,解得:m <72,则满足条件m 的正整数值为1,2,3.19.(7分)如图,EF ⊥BC 于点F ,∠1=∠2,DG ∥BA ,若∠2=40°,则∠BDG 是多少度?解:∵∠1=∠2,∴EF∥AD,∵EF⊥BC,∴AD⊥BC,即∠ADB=90°,又∵DG∥BA,∠2=40°,∴∠ADG=∠2=40°,∴∠BDG=∠ADG+∠ADB=130°.20.(8分)学校准备在各班设立图书角以丰富同学们的课余文化生活.为了更合理的搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图①和图②提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了300名学生;(2)请把折线统计图补充完整;(3)在统计图②中,求出“体育”部分所对应的圆心角的度数;(4)若该校有学生2400人,估计喜欢“科普”书籍的有多少人?解:(1)这次调查一共调查学生90÷30%=300(名),故答案为:300;(2)喜欢“艺术”书籍的人数为300×20%=60(名),其它人数为300×10%=30(名), 补全图形如下:(3)喜欢“体育”书籍部分所对应的圆心角的度数为360°×40300=48°; (4)估计喜欢“科普”书籍的有2400×80300=640(人).21.(10分)某校为了普及推广冰雪活动进校园,准备购进速滑冰鞋和花滑冰鞋用于开展冰上运动,若购进30双速滑冰鞋和20双花滑冰鞋共需8500元;若购进40双速滑冰鞋和10双花滑冰鞋共需8000元.(1)求速滑冰鞋和花滑冰鞋每双购进价格分别为多少元?(2)若该校购进花滑冰鞋的数量比购进速滑冰鞋数量的2倍少10双,且用于购置两种冰鞋的总经费不超过9000元,则该校至多购进速滑冰鞋多少双?解:(1)设每双速滑冰鞋购进价格是x 元,每双花滑冰鞋购进价格是y 元,由题意,得{30x +20y =850040x +10y =8000. 解得{x =150y =200. 答:每双速滑冰鞋购进价格是150元,每双花滑冰鞋购进价格是200元;(2)设该校购进速滑冰鞋a 双,根据题意,得 150a +200(2a ﹣10)≤9000.解得 a ≤20.答:该校至多购进速滑冰鞋20双.22.(12分)在Rt △ABC 中,∠ACB =90°,CA =CB ,点D 是直线AB 上的一点,连接CD ,将线段CD绕点C逆时针旋转90°,得到线段CE,连接EB.(1)操作发现如图1,当点D在线段AB上时,请你直接写出AB与BE的位置关系为AB⊥BE;线段BD、AB、EB的数量关系为AB=BD+BE;(2)猜想论证当点D在直线AB上运动时,如图2,是点D在射线AB上,如图3,是点D在射线BA 上,请你写出这两种情况下,线段BD、AB、EB的数量关系,并对图2的结论进行证明;(3)拓展延伸若AB=5,BD=7,请你直接写出△ADE的面积.解:(1)如图1中,∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,∵CA=CB,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE,∠CBE=∠A,∵CA=CB,∠ACB=90°,∴∠A=∠CBA=45°,∴∠CBE=∠A=45°,∴∠ABE=90°,∵AB=AD+BD,AD=BE,∴AB=BD+BE,故答案为AB⊥BE,AB=BD+BE.(2)①如图2中,结论:BE=AB+BD.理由:∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,∵CA=CB,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE,∵AD=AB+BD,AD=BE,∴BE=AB+BD.②如图3中,结论:BD=AB+BE.理由:∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,∵CA=CB,CD=CE,∴△ACD≌△BCE(SAS)∴AD=BE,∵BD=AB+AD,AD=BE,∴BD=AB+BE.(3)如图2中,∵AB=5,BD=7,∴BE=AD=5+7=12,∵BE⊥AD,∴S△AED=12•AD•EB=12×12×12=72.如图3中,∵AB=5,BD=7,∴BE=AD=BD﹣AB=7﹣5=2,∴S△AED=12•AD•EB=12×2×2=2.23.(12分)数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.(1)探究√x2+y2的几何意义:如图①,在直角坐标系中,设点M的坐标为(x,y),过M作MP⊥x轴于P,作MQ⊥y轴于Q,则P点坐标为(x,0),Q点坐标为(0,y),即OP=|x|,OQ=|y|,在△OPM中,PM=OQ=|y|,则MO=√OP2+PM2=√|x|2+|y|2=√x2+y2,因此,√x2+y2的几何意义可以理解为点M(x,y)与点O(0,0)之间的距离OM.①√(−2)2+32的几何意义可以理解为点N1(﹣2,3)或(3,﹣2)(填写坐标)与点O(0,0)之间的距离N1O;②点N2(5,﹣1)与点O(0,0)之间的距离ON2为√26.(2)探究√(x−1)2+(y−5)2的几何意义:如图②,在直角坐标系中,设点A′的坐标为(x﹣1,y﹣5),由探究(1)可知,A′O=√(x−1)2+(y−5)2,将线段A′O先向右平移1个单位,再向上平移5个单位,得到线段AB,此时点A的坐标为(x,y),点B 的坐标为(1,5),因为AB=A′O,所以AB=√(x−1)2+(y−5)2,因此√(x−1)2+(y−5)2的几何意义可以理解为点A(x,y)与点B(1,5)之间的距离.(3)探究√(x+2)2+(y−3)2的几何意义:请仿照探究二(2)的方法,在图③中画出图形,那么√(x+2)2+(y−3)2的几何意义可以理解为点C(﹣2,3)(填写坐标)与点D(x,y)之间的距离.(4)拓展应用:①√(x−1)2+(y+4)2+√(x+2)2+(y+3)2的几何意义可以理解为:点A(x,y)与点E(1,﹣4)的距离与点A(x,y)与点F(﹣2,﹣3)(填写坐标)的距离之和.②√(x−1)2+(y+4)2+√(x+2)2+(y+3)2的最小值为√10(直接写出结果)解:(1)①√(−2)2+32的几何意义可以理解为点N1(﹣2,3)或(3,﹣2)与点O(0,0)之间的距离N1O,故答案为:(﹣2,3)或(3,﹣2);②点N2(5,﹣1)与点O(0,0)之间的距离ON2为:√52+(−1)2=√26,故答案为:√26;(3)设点D′的坐标为(x+2,y﹣3),如图③所示:由探究(2)可知,D′O=√(x+2)2+(y−3)2,将线段D′O先向左平移2个单位,再向上平移3个单位,得到线段CD,此时,D的坐标为(x,y),点C的坐标为(﹣2,3),∵CD=D'O,∴CD=√(x+2)2+(y−3)2,∴√(x+2)2+(y−3)2的几何意义为点C(﹣2,3)到点D(x,y)之间的距离;故答案为:(﹣2,3);(4)①由(2)可知:√(x−1)2+(y+4)2+√(x+2)2+(y+3)2的几何意义可以理解为:点A(x,y)与点E(1,﹣4)的距离与点A(x,y)与点F(﹣2,﹣3)的距离之和,故答案为:(﹣2,﹣3);②当A(x,y)位于直线EF外时,此时点A、E、F三点组成△AEF,∴由三角形三边关系可知:EF<AF+AE,当点A位置线段EF之间时,此时EF=AF+AE,∴√(x−1)2+(y+4)2+√(x+2)2+(y+3)2的最小值为EF的距离,∴EF=√(1+2)2+(−4+3)2=√10,故答案为:√10.。
第 1 页 共 22 页
2020-2021学年七年级下学期期末考试数学试卷
一.选择题(共12小题,满分36分,每小题3分)
1.(3分)已知:点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点
P 的坐标为( )
A .(2,3)
B .(3,2)
C .(2,3)或(﹣2,3)
D .(3,2)或(﹣3,2)
2.(3分)若x <y ,则下列不等式中不成立的是( )
A .x ﹣1<y ﹣1
B .3x <3y
C .x 2<y 2
D .﹣2x <﹣2y
3.(3分)为了解某校3000名学生的视力情况,从中抽取了350名学生的视力,就这个问
题来说,说法正确的是( )
A .3000名学生的视力是总体
B .3000名学生是总体
C .每个学生是个体
D .350名学生是所抽取的一个样本
4.(3分)在式子x +6y =9,x +6y =2,3x ﹣y +2z =0,7x +4y ,5x =y 中,二元一次方程有( )
A .1个
B .2个
C .3个
D .4个 5.(3分)已知方程组{x +2y =k 2x +y =2
的解满足x +y =2,则k 的算术平方根为( ) A .4 B .﹣2 C .﹣4 D .2
6.(3分)用直尺和圆规画一个角等于已知角,是运用了“全等三角形的对应角相等”这一
性质,其运用全等的方法是( )
A .SAS
B .ASA
C .AAS
D .SSS
7.(3分)如图:DE 是△ABC 中AC 边的垂直平分线,若BC =8厘米,AB =10厘米,则△
EBC 的周长为( )厘米.。
2020-2021学年北京171中七年级(下)期末数学模拟试卷(2)一、选择题(每题3分,共30分)1.下列各式计算正确的是()A.B.C.D.2+2.下列数学表达式中是不等式的是()A.5x=4B.2x+5y C.6<2x D.03.下列数据中不能确定物体的位置的是()A.南偏西40°B.幸福小区3号楼701号C.平原路461号D.东经130°,北纬54°4.把不等式﹣1<x≤2的解集表示在数轴上,正确的是()A.B.C.D.5.下列说法正确的有()(1)带根号的数都是无理数;(2)立方根等于本身的数是0和1;(3)﹣a一定没有平方根;(4)实数与数轴上的点是一一对应的;(5)两个无理数的差还是无理数;(6)若面积为3的正方形的边长为a,a一定是一个无理数.A.1个B.2个C.3个D.4个6.在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是()A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格7.老师对某班全体学生在电脑培训前后进行了一次水平测试,考分以同一标准划分为“不合格”、“合格”、“优秀”三个等级,成绩见下表.下列说法错误的是()成绩培训前培训后不合格4010合格825优秀215A.培训前“不合格”的学生占80%B.培训前成绩“合格”的学生是“优秀”学生的4倍C.培训后80%的学生成绩达到了“合格”以上D.培训后优秀率提高了30%8.已知是二元一次方程组的解,则的值为()A.±2B.C.2D.49.如图,能判断直线AB∥CD的条件是()A.∠1+∠3=180°B.∠3+∠4=180°C.∠1=∠2D.∠3=∠4 10.下列x,y的各对数值中,是方程组的解的是()A.B.C.D.二、填空题(每题3分,共18分)11.二元一次方程3x+2y=10的非负整数解是.12.如图,若AB∥CD,EF⊥CD,∠1=54°,则∠2=.13.①了解全国中小学生每天的零花钱;②了解一批灯泡的平均使用寿命;③调查20~25岁年轻人最崇拜的偶像;④对患甲型H7N9的流感患者同一车厢的乘客进行医学检查.上述调查适合做普查的是:.14.已知点P(﹣3,0),若x轴上的点Q与点P的距离等于2,则点Q的坐标为.15.已知关于x,y的二元一次方程组,则x﹣y的值是16.已知关于x的不等式(m﹣1)x>6,两边同除以m﹣1,得x<,则化简:|m﹣1|﹣|2﹣m|=.三、解答题(共52分)17.解方程组.(1);(2).18.解不等式组:,并写出它的所有正整数解.19.初一年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初一学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)如果全市有6000名初一学生,那么在试卷评讲课中,“独立思考”的初一学生约有多少人?20.如图,四边形ABCD各个顶点的坐标分别为(﹣2,8),(﹣11,6),(﹣14,0),(0,0).(1)确定这个四边形的面积,你是怎么做的?(2)如果把原来ABCD各个顶点纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?21.某酒店的客房有三人间和双人间两种,三人间每间225元,双人间每间210元,一个50人的旅游团到了该酒店住宿,住了若干间客房,且每间客房恰好住满,一天共花去4530元,求两种客房各住了多少间?22.如图,直线a∥b,AB与a,b分别相交于点A,B,且AC⊥AB,AC交直线b于点C.(1)若∠1=70°,求∠2的度数;(2)若AC=3,AB=4,BC=5,求直线a与b的距离.参考答案与试题解析一.选择题(共10小题)1.下列各式计算正确的是()A.B.C.D.2+【分析】根据同类二次根式的概念与合并法则及二次根式的性质和化简逐一计算可得.【解答】解:A.=2≠﹣2,此选项错误;B.与不能合并,即,此选项错误;C.=2,此选项正确;D.2与2不是同类二次根式,不能合并,此选项错误;故选:C.2.下列数学表达式中是不等式的是()A.5x=4B.2x+5y C.6<2x D.0【分析】主要依据不等式的定义(用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式)来判断.【解答】解:A、5x=4属于等式.故本选项错误;B、2x+5y中不含有不等号,属于它不是不等式.故本选项错误;C、6<2x符合不等式的定义.故本选项正确;D、0中不含有不等号,属于它不是不等式.故本选项错误;故选:C.3.下列数据中不能确定物体的位置的是()A.南偏西40°B.幸福小区3号楼701号C.平原路461号D.东经130°,北纬54°【分析】确定一个物体的位置,要用一个有序数对,即用两个数据.找到一个数据的选项即为所求.【解答】解:A.南偏西40°,不是有序数对,不能确定物体的位置,故本选项符合题意;B.幸福小区3号楼701号,相当于一个数据,是有序数对,能确定物体的位置,故本选项不合题意;C.平原路461号,是有序数对,能确定物体的位置,故本选项不合题意;D.东经130°,北纬54°,是有序数对,能确定物体的位置,故本选项不合题意;故选:A.4.把不等式﹣1<x≤2的解集表示在数轴上,正确的是()A.B.C.D.【分析】根据不等式的解集在数轴上表示方法画出图示即可求得.【解答】解:不等式﹣1<x≤2的解集表示在数轴上为:,故选:D.5.下列说法正确的有()(1)带根号的数都是无理数;(2)立方根等于本身的数是0和1;(3)﹣a一定没有平方根;(4)实数与数轴上的点是一一对应的;(5)两个无理数的差还是无理数;(6)若面积为3的正方形的边长为a,a一定是一个无理数.A.1个B.2个C.3个D.4个【分析】根据无理数的意义,实数与数轴的关系,立方根的意义,算术平方根可得答案.【解答】解:(1)无限不循环小数都是无理数,带根号的数有的是无理数,有的是有理数,如=2是有理数,是无理数,故(1)不符合题意;(2)立方根等于本身的数是0和1、﹣1,故(2)不符合题意;(3)当a=0时,﹣a=0,此时﹣a有平方根,所以﹣a可能有平方根,故(3)不符合题意;(4)实数与数轴上的点是一一对应的,故(4)符合题意;(5)两个无理数的差可能是无理数、也可能是有理数,故(5)不符合题意;(6)若面积为3的正方形的边长为a,则a=,是一个无理数,故(6)符合题意;故选:B.6.在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是()A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格【分析】根据题意,结合图形,由平移的概念求解.【解答】解:根据平移的概念,图形先向下移动2格,再向左移动1格或先向左移动1格,再向下移动2格.结合选项,只有C符合.故选:C.7.老师对某班全体学生在电脑培训前后进行了一次水平测试,考分以同一标准划分为“不合格”、“合格”、“优秀”三个等级,成绩见下表.下列说法错误的是()成绩培训前培训后不合格4010合格825优秀215A.培训前“不合格”的学生占80%B.培训前成绩“合格”的学生是“优秀”学生的4倍C.培训后80%的学生成绩达到了“合格”以上D.培训后优秀率提高了30%【分析】此题只需根据统计表分别计算要求的数据,即可进行正确判断.【解答】解:A、×100%=80%,故正确;B、“优秀”学生为2人,所以培训前成绩“合格”的学生是“优秀”学生的4倍,故正确;C、×100%=80%,故正确;D、培训后优秀率:×100%=30%,培训前优秀率:×100%=4%,30%﹣4%=26%,所以培训后优秀率提高了26%,故错误.故选:D.8.已知是二元一次方程组的解,则的值为()A.±2B.C.2D.4【分析】把x=2,y=1代入方程组得出关于m、n的方程组,求出m=3,n=2,代入求出即可.【解答】解:把x=2,y=1代入方程组得:,解方程组得:m=3,n=2,==2,故选:C.9.如图,能判断直线AB∥CD的条件是()A.∠1+∠3=180°B.∠3+∠4=180°C.∠1=∠2D.∠3=∠4【分析】根据平行线的判定可得结论.【解答】解:A、∵∠1+∠3=180°,不能判定直线AB∥CD,不符合题意;B、∵∠3+∠4=180°,∵∠3+∠5=180°,∴∠4=∠5,∴AB∥CD,符合题意;C、∵∠1=∠2,不能判定直线AB∥CD,不符合题意;D、∵∠3=∠4,不能判定直线AB∥CD,不符合题意;故选:B.10.下列x,y的各对数值中,是方程组的解的是()A.B.C.D.【分析】求出方程组的解,即可做出判断.【解答】解:,②﹣①得:y=1,把y=1代入①得:x=1,则方程组的解为.故选:C.二.填空题(共6小题)11.二元一次方程3x+2y=10的非负整数解是或.【分析】利用列举法,列举出方程的所有非负正整数解即可.【解答】解:当x=0时,2y=10,解得y=5;当x=1时,2y=7,解得y=3.5(不合题意舍去);当x=2时,2y=4,解得:y=2;当x=3时,y=(不合题意舍去);当x≥4时,y<0(不合题意).故答案为:或.12.如图,若AB∥CD,EF⊥CD,∠1=54°,则∠2=36°.【分析】首先根据AB∥CD,可得∠1=∠3=54°,然后根据EF⊥CD,求得∠2=90°﹣∠3.【解答】解:∵AB∥CD,∴∠1=∠3=54°,∵EF⊥CD,∴∠2=90°﹣∠3=90°﹣54°=36°.故答案为:36°.13.①了解全国中小学生每天的零花钱;②了解一批灯泡的平均使用寿命;③调查20~25岁年轻人最崇拜的偶像;④对患甲型H7N9的流感患者同一车厢的乘客进行医学检查.上述调查适合做普查的是:④对患甲型H7N9的流感患者同一车厢的乘客进行医学检查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:①了解全国中小学生每天的零花钱;②了解一批灯泡的平均使用寿命;③调查20~25岁年轻人最崇拜的偶像;④对患甲型H7N9的流感患者同一车厢的乘客进行医学检查.上述调查适合做普查的是:④对患甲型H7N9的流感患者同一车厢的乘客进行医学检查,故答案为:④对患甲型H7N9的流感患者同一车厢的乘客进行医学检查.14.已知点P(﹣3,0),若x轴上的点Q与点P的距离等于2,则点Q的坐标为(﹣1,O)或(﹣5,O.【分析】分点Q在点P的左边与右边两种情况求解即可.【解答】解:若点Q在点P的左边,则﹣3﹣2=﹣5,此时点Q为(﹣5,0),若点Q在点P的右边,则﹣3+2=﹣1,此时点Q为(﹣1,0),所以,点Q(﹣1,O)或(﹣5,O).故答案为:(﹣1,O)或(﹣5,O).15.已知关于x,y的二元一次方程组,则x﹣y的值是1【分析】利用加减消元法,将二元一次方程组转化为关于y的一元一次方程,求得y的值,再代入求得x的值,即可得到答案.【解答】解:,①﹣②×2得:3y=3k﹣3,解得:y=k﹣1,把y=k﹣1代入②得:x﹣2(k﹣1)=﹣k+2,解得:x=k,x﹣y=k﹣(k﹣1)=1,故答案为:116.已知关于x的不等式(m﹣1)x>6,两边同除以m﹣1,得x<,则化简:|m﹣1|﹣|2﹣m|=﹣1.【分析】首先根据不等式的两边同时乘(或除以)同一个负数,不等号的方向改变,可得m﹣1<0,所以m<1;然后判断出2﹣m的正负,求出|m﹣1|﹣|2﹣m|的值是多少即可.【解答】解:因为(m﹣1)x>6,两边同除以m﹣1,得x<,所以m﹣1<0,m<1,所以2﹣m>0,所以|m﹣1|﹣|2﹣m|=(1﹣m)﹣(2﹣m)=1﹣m﹣2+m=﹣1.故答案为:﹣1.三.解答题(共6小题)17.解方程组.(1);(2).【分析】(1)用加减消元法解方程组即可;(2)先将方程组变形,然后再加减消元法解方程组即可.【解答】解:(1),②﹣①,得2x=10,∴x=5,将x=5代入①,得y=2,∴方程组的解为;(2),①×得,9x+12y=48③,②×2得,10x﹣12y=66④,④+③得,19x=114,∴x=6,将x=6代入①得,y=﹣,∴方程组的解为.18.解不等式组:,并写出它的所有正整数解.【分析】分别求出每一个不等式的解集,根据口诀:“大小小大中间找“确定不等式组的解集,在该解集内确定正整数即可.【解答】解:由①得,x>1;由②得,x≤3;∴不等式组的解集为:1<x≤3,∴它的所有正整数解有:2,3.19.初一年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初一学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题(1)在这次评价中,一共抽查了560名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;(3)如果全市有6000名初一学生,那么在试卷评讲课中,“独立思考”的初一学生约有多少人?【分析】(1)根据专注听讲的人数和所占的百分比,可以求得本次抽查的人数;(2)根据统计图中的数据,可以计算出项目“主动质疑”所在的扇形的圆心角的度数;(3)根据统计图中的数据,可以计算出在试卷评讲课中,“独立思考”的初一学生约有多少人.【解答】解:(1)在这次评价中,一共抽查了224÷40%=560名学生,故答案为:560;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为:360°×=54°,故答案为:54;(3)6000×=1800(人),即“独立思考”的初一学生约有1800人.20.如图,四边形ABCD各个顶点的坐标分别为(﹣2,8),(﹣11,6),(﹣14,0),(0,0).(1)确定这个四边形的面积,你是怎么做的?(2)如果把原来ABCD各个顶点纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?【分析】利用分割法,把四边形分割成两个三角形加上一个梯形后再求面积,或补直角三角形成长方形.【解答】解:(1)过点B,A分别作BF,AE垂直于x轴,所以四边形的面积=×3×6+×(6+8)×9+×2×8=80;(2)根据平移的性质可知,平移后的图形形状和大小不变,所以所得的四边形面积是80.21.某酒店的客房有三人间和双人间两种,三人间每间225元,双人间每间210元,一个50人的旅游团到了该酒店住宿,住了若干间客房,且每间客房恰好住满,一天共花去4530元,求两种客房各住了多少间?【分析】设三人间有x间,二人间有y间,根据“三人间人数+二人间人数=50、三人间费用+二人间费用=4530”列方程组求解可得.【解答】解:设三人间有x间,二人间有y间,根据题意,得:,解得:,答:三人间有8间,二人间有13间.22.如图,直线a∥b,AB与a,b分别相交于点A,B,且AC⊥AB,AC交直线b于点C.(1)若∠1=70°,求∠2的度数;(2)若AC=3,AB=4,BC=5,求直线a与b的距离.【分析】(1)根据平行线的性质和垂直定义,∠1=70°,即可求∠2的度数;(2)根据AC=3,AB=4,BC=5,利用三角形的面积即可求直线a与b的距离.【解答】解:(1)∵a∥b,∴∠3=∠1=70°,∵AC⊥AB,∴∠2+∠3=90°,∴∠2=90°﹣70°=20°.答:∠2的度数为20°;(2)∵AC=3,AB=4,BC=5,设直线a与b的距离为h,∴S△ABC=AC×AB=BC×h,即5h=3×4,∴h=.答:直线a与b的距离为.。