2018-2019学年最新华东师大版九年级数学上册《比例线段》教学设计-评奖教案
- 格式:doc
- 大小:292.52 KB
- 文档页数:5
23.1.1成比例线段教学目标:1. 了解成比例线段的意义,会判断四条线段是否成比例。
2. 利用比例的性质,会求出未知线段的长。
教学重点:成比例线段的意义与比例的基本性质 教学难点:1. 会判断四条线段是否成比例2. 利用比例的性质,会求出未知线段的长导学过程: 一、 导入新课1 •挂上两张大小不同的中国地图,问:这两个图形有什么联系?(它们都是平面图形,是相似形,它们的形状相同,大小不同。
)2 •相似的图形有哪些共同点呢 ?为了探究这个问题,本节课先学习成比例的线段二、 自学探究概括结论:1. ________________________________________________________ 对于四条线段 a 、b 、c 、d ,女口果 ___________________________________________________________________________ ,女口 二(或 _______________ )那么,这四条线段叫做 成比例线段,简称比例线段。
【对于四条线段 a 、b 、c 、d ,如果其中两条线段的长度的比等于另外两条线段的比,如- -b d(或a : b = c : d ),那么,这四条线段叫做 成比例线段 ,简称比例线段(proportionalsegments ).此时也称这四条线段成比例.】2 .应用上面得出的结论判断下列线段a 、b 、c 、d 是否是成比例线段:(1) a = 4, b = 6, c = 5, d = 10;1 •由下面的格点图可知,AB A BBC B C,这样上B 与-BC 之间有关系A B B CA' B'D'C'(2) a = 2, b = ... 5 , c = 2 15 , d = 5. 3 .路标:阅读课本例1,总结判断四条线段是否成比例的解题步骤:【解:(1): a4 2c5 1b6 3d10 2.a cb d'•线段 a 、b 、 c 、d 不是成比例线段.学生先独立思考,之后小组合作交流 【证明(1)v 旦 c ,b d在等式两边同加上 1,a (2)v -bad = bc ,<55 2V55 2• a cb d ,•线段a 、b 、c 、d 是成比例线段.】 注意:对于成比例线段我们有下面的结论:a c如果--,那么ad =bc .如果ad = bc (a 、b 、c 、d 都不等于0),那么——b d以上的结论称为比例的基本性质.三、试■试:1.证明:(1)如果-b c那么d(2)如果旦b在等式两边同加上 ac ,••• ad + ac = bc + ac , ••• ac — ad = ac — bc ,• a (c — d ) = ( a — b ) c , 两边同除以(a — b ) (c — d ),• _______ .】a b c d2. 谈出你的感悟与困惑.四、比一比:1. 判断下列线段是否成比例(1) a=2, b=4, c=3,d=6 (2) a=0.8 , b=3 , c=1, d=2.4a b2. 线段a = 15厘米,b = 20厘米,c = 75毫米,d = 0.1米,求:二与-,这四条线段会成比b c例吗?⑵指出图中成比例的线段。
23.1 成比例线段1.成比例线段1.知道线段的比的概念,会计算两条线段的比;(重点)2.理解成比例线段的概念;(重点)3.掌握成比例线段的判定方法.(难点)一、情景导入请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?这些例子都是形状相同、大小不同的图形.它们之所以大小不同,是因为它们图上对应的线段的长度不同.二、合作探究探究点一:线段的比【类型一】 求线段的比已知线段AB =2.5m ,线段CD =400cm ,求线段AB 与CD 的比.解析:要求AB 和CD 的比,只需要根据线段的比的定义计算即可,但注意要将AB 和CD 的单位统一.解:∵AB =2.5m =250cm ,∴AB CD =250400=58. 方法总结:求线段的比时,首先要检查单位是否一致,不一致的应先统一单位,再求比.【类型二】 比例尺在比例尺为1:50 000的地图上,量得甲、乙两地的距离是3cm ,则甲、乙两地的实际距离是 m.解析:根据“比例尺=图上距离实际距离”可求解. 设甲、乙两地的实际距离为x cm ,则有1:50 000=3:x ,解得x =150 000. 150 000cm=1500m.故答案为1500.方法总结:理解比例尺的意义,注意实际尺寸的单位要进行恰当的转化.探究点二:成比例线段【类型一】 判断线段成比例下列四组线段中,是成比例线段的是( )A.3cm ,4cm ,5cm ,6cmB.4cm ,8cm ,3cm ,5cmC.5cm ,15cm ,2cm ,6cmD.8cm ,4cm ,1cm ,3cm解析:将每组数据按从小到大的顺序排列,前两条线段的比和后两条线段的比相等的四条线段成比例.四个选项中,只有C 项排列后有25=615.故选C. 方法总结:判断四条线段是否成比例的方法:(1)把四条线段按从小到大顺序排好,计算前两条线段的比和后两条线段的比,看是否相等做出判断;(2)把四条线段按从小到大顺序排好,计算前后两个数的积与中间两个数的积,看是否相等作出判断.【类型二】 由线段成比例求线段的长已知:四条线段a 、b 、c 、d ,其中a =3cm ,b =8cm ,c =6cm.(1)若a 、b 、c 、d 是成比例线段,求线段d 的长度;(2)若b 、a 、c 、d 是成比例线段,求线段d 的长度.解析:紧扣成比例线段的概念,利用比例式构造方程并求解.解:(1)由a 、b 、c 、d 是成比例线段,得a b =c d ,即38=6d,解得d =16. 故线段d 的长度为16cm ;(2)由b 、a 、c 、d 是成比例线段,得b a =cd ,即83=6d ,解得d =94. 故线段d 的长度为94cm. 方法总结:利用比例线段关系求线段长度的方法:根据线段的关系写出比例式,并把它作为相等关系构造关于要求线段的方程,解方程即可求出线段的长.已知三条线段长分别为1cm ,2cm ,2cm ,请你再给出一条线段,使得它的长与前面三条线段的长能够组成一个比例式.解析:因为本题中没有明确告知是求1,2,2的第四比例项,因此所添加的线段长可能是前三个数的第四比例项,也可能不是前三个数的第四比例项,因此应进行分类讨论.解:若x :1=2:2,则x =22;若1:x =2:2,则x =2;若1:2=x :2,则x =2;若1:2=2:x ,则x =2 2.所以所添加的线段的长有三种可能,可以是22cm ,2cm ,或22cm. 方法总结:若使四个数成比例,则应满足其中两个数的比等于另外两个数的比,也可转化为其中两个数的乘积恰好等于另外两个数的乘积.三、板书设计成比例线段⎩⎪⎪⎨⎪⎪⎧线段的比:如果选用同一长度单位量得两条线段AB ,CD 的长度分别是m ,n ,那么这两条线段的比就是它们长度的比,即AB :CD =m :n ,或写成AB CD =mn 成比例线段:四条线段a ,b ,c ,d ,如果a 与b 的比 等于c 与d 的比,即a b =c d ,那么这 四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段从丰富的实例入手,引导学生进行观察、发现和概括.在自主探究和合作交流过程中,适时引入新知识,并通过引导学生建立新的数学模型,开拓思维,提升学生认知能力.。
比例线段及比例的基本性质[内容]教学目标1.理解比例线段的概念,能说出比例关系式中比例的内项、外项、第四比例项或比例中项.2.掌握比例的基本性质,初步会用它进行简单的比例变形,并会判断四条线段是否成比例.3.培养学生将比例式看成是关于末知数的方程的观点,利用方程思想来解决问题. 教学重点和难点重点是比例线段的概念及基本性质的应用;难点是应用比例的基本性质进行比例变形. 教学过程设计一、复习四个数成比例的有关知识1.四个数a ,b ,c ,d 成比例的定义,比例的项、内项及外项的含义.2.比例的基本性质的内容.二、类比联想、定义比例线段的有关概念1.复习两条线段的比的有关知识.投影:如图5-4,矩形ABCD 与矩形A ¢B ¢C ¢D ¢中,AB=50,CD=25,A ¢B ¢=20,C ¢D ¢=10.求出''''CB B A BC AB 及的值,并回答它们的大小关系. 答:12''''==C B B A BC AB 由此引出比例线段的概念.2.用类比的方法学习比例线段的概念.(1)比例线段的概念.在四条线段中,如果其中两条线段比等于另外两条线段比,那么这两条线段叫做成比例线段,简称比例线段.(2)比例线段的符号表示及有关名称.① 四条线段?a ,b ,c ,d 成比例,记作a :b=c :d .组成比例的项是a ,b ,cd ,其中比例外项为a ,b ,比例内项为b ,c ,d 称为a ,b ,c 的第四比例项.② 特殊情况:若作为比例内项的两条线段相同,即a :b=c :d .则线段b 叫a ,c 的比例中项.③ (3)教师应强调四条线段才能成比例,而且有顺序关系. 如图5-4中,''''BA CB BC AB ≠,即AB ,BC ,B ¢C ¢,A ¢B ¢四条线段不成线段,而AB ,BC ,A ¢B ¢ ,B ¢C ¢四条线段成比例.三、比例的基本性质的证明及应用教师应指出,将四条线段成比例转化成四条线段的长度成比例,它具有数的成比例的所有性质,本节先学习比例的基本性质对于线段的应用.1.比例的基本性质的内容及推导.(1) 内容:bc ad dc b a =<=>= (2) 特例:ac b c b b a =<=>=2 (3) 说明:①引导学生根据等式的性质从正、反两方面进行证明.②教师强调,它的作用是将等积式与比例式互化,由于线段的长度都是正数,因此由一个等积式可得到八种比例式.2.比例基本性质的应用.应用(1) 判断四条线段是否成比例:将已知四条线段按大小顺序排列,如a >b >c >d ,若最长(a )和最短(d )的两条线段长之积等于其余两条线段长(b,c )之积,则这四条线段a ,b ,c ,d 成比例.例1 判断下列四条线段是否成比例.① a=2,b=5,c=15,d=32;② a=2,b=3, c=2,d=3;③ a=4,b=6, c=5,d=10;④ a=12,b=8, c=15,d=10.说明:教师示范一个例子,其余请学生来巩固练习.如第①题排序时,将a 改写成4,d 改写成12ab <b <d <c ,而ac =4×15;bd=5×12,ad=bd ,a ,b ,c ,d 四条线段成比例.答案:②不成比例;③不成比例;④b ,d ,a ,c 四条线段成比例.应用(2)按要求将等积式改写成比例式.教给学生等积式化比例式的方法.按照分类讨论的思想以及“内项积等于外项积”,同时可写出8个比例式,也可根据需要写出其中某一个比例式,要求学生熟练掌握这种比例变形. 例2已知:ad=bc .(1) 将其改写成比例式;(2) 写出所有以a ,d 为内项的比例式;(3) 写出使b 作为第四项比例项的比例式;(4)若db c a =;写出以c 作第四比例项的比例式; 分析:教给学生等积式化比例式的方法.(1)分类讨论.认准等积式中的一条线段,它可以在比例的内项、外项共四个位置出现,以a 为例: ()()()()()()()()()()()()a a a a ====,,, (2)找出与a 作乘积的项d ,放在相应位置上 . ()()()()()()()()ad a d d a d a====,,, (3)写出其余两项,分别有两种情况,同时交换比例的内项或外项,共可得到八个比例式: ①()()d c b a =②()()d b c a = ③()()c d a b = ④()()b d a c = ⑤()()c d a b = ⑥()()b d ac = ⑦()()a c bd = ⑧()()ab c d = 解(1)见分析(3)(2)(4)可以先将比例式化为等积式ab=bc ,转化为第(3)题再处理,也可以这样处理:①直接同时交换每个比的前项和后项,②交换比例的内项或外项.应用(3)检查所作的比例变形是否正确,把比例式化为等积式,看与原式所得的等积式是否 桢即可. 如将d c b a =变形为bc d a =,由于各自可化为等积式ad=bc ,ad=cd ,它们不相等,因此所作的比例变形不正确.四、应用举例、变式练习例3 计算.(1)已知:x ∶y=5∶4,y ∶z=3∶7.求x ∶y ∶z.(2)已知:a ,b ,c 为三角形三边长,(a-c) ∶(c+b) ∶(c-d)=2∶7∶(-1),周长为24.求三边长.分析:将比例式转化为方程(或方程组)来解决问题.第(1)题可将已知分别看成含同一字母y 的方程,表示出x=45y ,z=37y ,得x ∶y ∶z=45∶1∶37=15∶12∶28.或利用分数的基本性质,将两个比例式中y 的对应项系数化成它们的最小公倍数,如x ∶y=5∶4=15∶12,y ∶z=3∶7=12∶28,得出x ∶y ∶z=15∶12∶28. 第(2)小题可将比例式改为两个等积式,结合周长得到关于a ,b ,c 的三元一次方程组;例4 在相同时刻的物高与影长成比例,如果一古塔在地面上影长为50m ,同时,高为的测竿的影长为,那么,古塔的高是多么米?分析:(1)利用比例的知识测量不可直接到达的物体的高度,是比例的很重要的一个应用;(2)“相同时刻的物高与影长成比例”的实际含义是指同一时刻,两物体的高与它们对应的影长的比相等;(3)列出比例式,得到关于古塔高度的方程求解(古塔高为30m).例5(选用)已知:如图5-5,EFBE AD AB =,AB=10cm ,AD=2cm ,BC=,E 为BC 中点.求EF ,BF 的长.(答:,分析:应着重培养学生的分析能力,分析图中哪些线段可知长度,并列出关于一个末知数的方程来解决问题.练习 课本第204页第1,2题.补充练习如图5-6,AG·BC=DE·AH.(1) 写出由以上等积式得到的八个比例式;(2)若DE=12,BC=15,GH=3.求AH的长.(15)五、师生共同小结在学生尝试总结的基础上,教师强调:1.比例线段的有关概念和注意事项.2.比例的基本性质的内容.它是怎样证明的?有哪些应用?应用时有哪些需要注意的问题?3.将比例式看成方程解决问题的观点.六、作业课本第207页第4题,第203页第1,2,3题.1.成比例线段的顺序性课本虽然强调了,但学生体会不深,需要教师课堂举例让学生理解透彻,而且如何判断四条线段成比例,最好教给学生切实可行的措施.2.比例的基本性质是后边证明三角形相似以及证明等积式、比例式经常用到的基础知识,教师应教给学生如何熟练利用性质进行比例变形,如何检查变形是否正确.例如根据需要化乘积式为比例式的方法,使学生能逐渐熟练巩固这些性质,为后边“相似三角形”的学习扫清障碍,打好基础.。
第23章图形的相似23.1成比例线段23.1.1成比例线段●教学目标知识与技能1.理解比例线段的概念和比例的基本性质.2.掌握比例线段的判定方法,会运用比例的基本性质进行变形.过程与方法通过图形来推导成比例线段,发展学生的逻辑推理能力.通过例题的学习,培养学生的灵活运用知识能力.情感态度与价值观学生通过经历、观察、操作、欣赏,感受图形的相似,让学生自己去体会生活中的相似,从而理解相似的概念,探索它的基本特征,学会在实践中发现规律.●教学重点重点比例线段及比例的基本性质的应用.难点比例性质的推导与应用.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标你瞧,日常生活中,我们经常会看到这种相似的图形,那么它们有什么主要特征与关系呢?从今天开始,我们来学习图形的相似,研究它们的特征和性质.二、自主学习,指向目标1.预习课本48页和49页.2.做《名师学案》的“知识储备”部分.三、合作探究,达成目标探究点一图形的相似活动一日常生活中,我们会碰到很多形状相同、大小不一定相同的图形,例如下面两张照片,右边的照片是由左边的照片放大得来的,尽管它们大小不同,但形状相同.你还能举出类似的例子吗?【展示点评】我们把这种具有相同形状的图形称为相似图形(similar figures).同一底片扩印出来的不同尺寸的照片是相似图形,放电影时胶片上的图像和它映射到屏幕上的图像,也是彼此相似的.活动二由图23.1.1的格点图可知,ABA′B′=________,BCB′C′=________.这样ABA′B′与BCB′C′之间有什么关系?图23.1.1【展示点评】通过计算我们知道ABA′B′=BC B′C′.对于给定的四条线段a、b、c、d,如果其中两条线段的长度之比等于另外两条线段的长度之比,如ab=cd(或a∶b=c∶d),那么,这四条线段叫做成比例线段,简称比例线段(proportional segments),此时也称这四条线段成比例.【反思小结】1.相似图形的特征:形状相同,大小可以相同,也可以不同.如果是两个相似多边形,那么它们的对应角也相同,对应边成比例.2.四条线段成比例,它们是有顺序的,比如a,b,c,d成比例,我们必须写成式子:a∶b=c∶d.【例题讲解】例1判断下列线段a、b、c、d是否是成比例线段:(1)a=4,b=8,c=5,d=10;(2)a=2,b=215,c=5,d=5 3.解:(1)∵a b =48=12,c d =510=12,∴a b =cd ,∴线段a 、b 、c 、d 是成比例线段.(2)∵a c =25=255,b d =21553=255,∴a c =bd ,∴这四条线段是成比例线段.【针对训练】1.判断下列线段a 、b 、c 、d 是否是成比例线段: (1)a =4,b =6,c =5,d =10;(不是成比例线段) (2)a =2,b =5,c =15,d =53;(是成比例线段) (3)a =2cm ,b =4cm ,c =3m ,d =6m ;(是成比例线段) (4)a =0.8,b =3,c =0.64,d =2.4.(是成比例线段) 探究点二 比例的性质【活动】求证:已知a ,b ,c ,d 是四条线段. (1)如果a b =cd (或a :b =c :d),那么ad =bc ;(2)如果ad =bc ,那么a b =cd.【展示点评】我们首先证明(1),根据等式的基本性质二,我们在等式的两边同时乘以bd ,就得到ad =bc.我们再来证明(2),在等式ad =bc 两边同时除以bd ,就得到a b =cd.【反思小结】 比例的基本性质:如果a b =c d ,那么ad =bc. 如果ad =bc ,那么a b =c d .【例题讲解】例2 证明(1)如果a b =c d ,那么a +b b =c +d d ;(2)如果a b =c d ,那么a a -b =c c -d (a ≠b).证明:(1)∵a b =c d ,在等式两边同加上1,得a b +1=cd +1,∴a +b b =c +d d.(2)∵a b =cd ,∴ad =bc ,在等式两边同减去ac ,得ad -ac =bc -ac.∴ac -ad =ac -bc ,∴a(c -d)=(a -b)c.由a ≠b ,且a b =cd ,知c ≠d ,从而a -b ≠0,且c -d ≠0,在上式两边同除以(a -b)(c -d),得a a -b =cc -d.【针对训练】已知a b =c d ,求证:(1)a +b b =c +d d ;(2)a a -b =cc -d.四、总结梳理,内化目标1.相似图形:形状相同的图形叫相似图形.2.成比例线段的概念:如果四条线段a ,b ,c ,d ,满足a ∶b =c ∶d ,则a 、b 、c 、d 四条线段成比例.3.比例的基本性质:对于四条线段a ,b ,c ,d.如果a b =cd (或a :b =c :d),那么ad =bc ;如果ad =bc ,那么a b =cd.4.比例性质的应用方法和过程 五、达标检测,反思目标1.判断下列各组线段是否成比例 (1)4cm 、6cm 、8cm 、2cm(2)1.5cm 、4.5cm 、2.5cm 、7.5cm (3)1.1cm 、2.2cm 、3.3cm 、6.6cm (4)2cm 、4cm 、4cm 、8cm.2.已知线段x 、y 、z ,x +y +z =54,且x 2=y 3=z4,求x 、y 、z 的值.3.已知a b =cd (b±d ≠0),求证:a +c a -c =b +d b -d.六、布置作业,巩固目标教科书55页习题2、4、5、6 ●教学反思从丰富的实例入手,引导学生进行观察、发现和概括.通过引导学生建立新的数学模型,开拓思维,提升学生认知能力.23.1.2 平行线分线段成比例●教学目标 知识与技能1.使学生掌握平行线分线段成比例定理及推论.2.会用平行线分线段成比例定理及推论进行计算或者证明.3.通过定理的变式图形,进一步提高学生分析问题和解决问题的能力. ●教学重点 重点 平行线等分线段定理. 难点 平行线等分线段定理.教学设计一师一优课 一课一名师 (设计者: )教学过程设计一、创设情景,明确目标1.同学们,我们的作业本每一页都是由一些距离相等的平行线组成,下面请同学们在作业本上画一条直线m 和相邻的三条平行线交于A ,B ,C 三点,AB 与BC 相等吗?2.再画一条直线n 与这三条平行线交于点D ,E ,F ,DE 与EF 相等吗?图23.1.2 图23.1.3我们发现AB =BC ,DE =EF ,所以有:AB BC =DEEF,是不是任意几条平行线被两条直线截得的对应线段都成比例呢?二、自主学习,指向目标1.预习课本第51页至第52页;2.做《名师学案》的“知识储备”部分. 三、合作探究,达成目标探究点一 平行线分线段成比例活动选择作业本上不相邻的三条平行线,任意画两条直线m 、n 与它们相交.如果m 、n 这两条直线平行(如图23.1.4),观察并思考这时所得的AD 、DB 、FE 、EC 这四条线段的长度有什么关系;如果m 、n 这两条直线不平行(如图23.1.5),你再观察一下,也可以量一量,算一算,看看它们是否存在类似的关系.图23.1.4 图23.1.5【展示点评】经过测量和计算,我们知道AD DB =EFEC.所以我们可以得到如下事实:两条直线被一组平行线所截,所得的对应线段成比例. (简称“平行线分线段成比例”) 【反思小结】1.在使用平行线分线段成比例定理时,一定要注意对应线段的对应关系. 2.在写比例式时,也可以将两条直线上的对应线段作比,如:AD EF =DBCE .【针对训练】1.如图,直线l 1∥l 2∥l 3,若AB =2,BC =3,DE =1,则EF 的值为( B ) A.23 B.32 C .6 D.16第1题图第2题图2.如图,若AB ∥CD ∥EF ,则下列结论中,与ADAF 相等的是( D )A.AB EFB.CD EFC.BO OED.BC BE探究点二 平行线分线段成比例定理的推论 活动一如图23.1.6,当点A 与点F 重合时,就形成一个三角形的特殊情形,此时AD 、DB 、AE 、EC 这四条线段之间会有怎样的关系呢?【展示点评】如图23.1.6,在△ABC 中,DE ∥BC ,过点A 作DE 的平行线,那么根据平行线分线段成比例的基本事实,可以得到AD DB =AE EC ,再根据比例的有关性质,就有AD AB =AE AC 和DB AB =ECAC 等结论.活动二如图23.1.7,当直线m 、n 相交于第二条平行线上某点时,是否也有类似的成比例线段呢?【展示点评】类似于上面的思考方法,过点A 做直线BC 的平行线,根据平行线分线段成比例定理可得:AB AD =ACAE ,等等.由此,我们得到如下结论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.【例题讲解】例1 如图23.1.9,l 1∥l 2∥l 3,AB =4,DE =3,EF =6.求BC 的长.解:∵l 1∥l 2∥l 3, ∴AB BC =DEEF(平行线分线段成比例). ∵AB =4,DE =3,EF =6, ∴4BC =36,∴BC =8.例2 如图23.1.10,E 为ABCD 的边CD 延长线上的一点,连结BE ,交AC 于点O ,交AD 于点F.求证:BO FO =EOBO.证明:∵AF ∥BC ,∴BO FO =COAO (平行线分线段成比例).∵AB ∥CE.∴EO BO =COAO(平行线分线段成比例). ∴BO FO =EO BO【针对训练】1.(中考·包头)如图,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE ∥BC ,EF ∥AB.若AD =2BD ,则CFBF的值为( A )A.12B.13C.14D.232.在图中,DE ∥AF ∥BC ,根据上面的结论,试找出图中成比例的线段,与你的同伴比一比,看谁找得快,找得多.四、总结梳理,内化目标1.平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例. 2.平行线分线段成比例定理的推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.3.在使用这两个定理时,一定要注意对应线段不要写错. 五、达标检测,反思目标1.如图,已知EF ∥CD ,DE ∥BC ,下列结论中不一定正确的是( B ) A.AF AD =AD AB B.AE AD =AF AC C.AF AD =AE AC D.AB AD =AC AE2.如图所示:△ABC 中,DE ∥BC ,AD =5,BD =10,AE =3.则CE 的值为( B ) A .9 B .6 C .3 D .4六、布置作业,巩固目标见课本第55页练习第1,2题. ●教学反思通过教学,培养学生的观察、分析、概括能力,了解特殊与一般的辩证关系.再次锻炼类比的数学思想,能把一个复杂的图形分成几个基本图形,通过应用锻炼识图能力和推理论证能力.在探索过程中,积累数学活动的经验,体验探索结论的方法和过程,发展学生的合情推理能力和有条理的说理表达能力.。
成比例线段-华东师大版九年级数学上册教案一、教学目标1.了解成比例线段的定义、性质及判定方法。
2.掌握使用成比例线段的性质和判定方法解题。
3.培养学生抽象思维能力,培养问题解决能力。
二、教学重难点1.成比例线段的判定方法。
2.应用成比例线段的性质解题。
三、教学过程1. 导入(5分钟)教师引入本节课的主要内容:成比例线段的性质和判定方法。
2. 讲解成比例线段的定义(15分钟)1.定义:在同一直线上,若AB:CD=AE:CF,则有AB∥CD(A、B在同侧于CD),即线段AB与CD成比例线段。
2.讲解成比例线段的图形表示。
3.举例说明成比例线段的定义。
3. 讲解成比例线段的判定方法(20分钟)1.定理1:在三角形ABC中,若AD是BC的中线,且AD平分角BAC,则BD∥AC,即BD与AC成比例线段。
2.定理2:在三角形ABC中,若BD∥AC,则有AB:BC=AD:DC,即线段AB与BC成比例线段。
3.讲解两个定理的图形表示和证明过程。
4. 应用成比例线段的性质解题(30分钟)1.给出一些简单的例题,引导学生理解成比例线段的性质和判定方法。
2.给出一些较难的例题,让学生运用所学知识独立解题。
5. 拓展应用(10分钟)1.让学生自己举一些实际生活中应用成比例线段的例子。
2.搜集成比例线段的应用场景,让学生展示或讲解。
四、教学评价1.几个简单的作业题,检验学生对成比例线段的掌握情况。
2.课堂小测,检验学生对成比例线段的理解和应用情况。
3.口头提问,检验学生的掌握情况。
五、板书设计1.成比例线段的定义2.定理1:在三角形ABC中,若AD是BC的中线,且AD平分角BAC,则BD∥AC3.定理2:在三角形ABC中,若BD∥AC,则有AB:BC=AD:DC六、教学反思本节课的难度略微较高,需要老师进行详细的讲解和演示,以便让学生掌握成比例线段的定义、性质及判定方法。
同时,在应用方面,需要老师给出充足的例题来让学生自主解题。
华师大版九年级上册23.1成比例线段教案教学内容:课本P47页~P51页。
教学目标:1、了解成比例线段的概念,能判断四条线段成比例;2、掌握比例的基本性质,会用比例的基本性质调整成比例线段;3、通过观察与归纳的过程,体验数学的简洁美。
教学重点:线段的基本性质教学难点:线段基本性质的灵活应用教学准备:课件教学方法:讲授法一、相似图形1、观察下列两个图形,找出它们的共同点。
2、相似图形:形状相同的图形,叫做相似图形。
二、成比例线段1、试一试。
由上图的格点图可知,AB A B ''= ,BC B C ''= , AB A B ''=BC B C ''=2 2、概括对于给定的四条线段,,,a b c d ,如果其中两条线段的长度之比等于另外两条线段的长度之比,如a c b d=(或a:b=c:d ),那么,这四条线段叫做成比例线段,简称比例线段。
此时也称这四条线段成比例。
3、应用例1、判断下列线段,,,a b c d 是否是成比例线段。
(1)4,8,5,10;a b c d ====(2)2,215,5,53;a b c d ==== 解:(1)∵4151,;82102a cb d==== ∴;a c b d = ∴,,,a b c d 是成比例线段。
(1)∵22521525,;55553ac bd ==== ∴;ac bd =∴,,,a b c d 是成比例线段。
学生练习:课本P51页第1题。
三、比例的基本性质1、比例的基本性质 如果ac b d=,那么ad bc =;如果ad bc =,那么a c b d =;2、应用 例2、已知a cb d=,求证: (1)a b c d b d++=; (2),()a c a b a b c d =≠-- 证明:设a c b d ==k ,则a=bk,d=ck;(1) ∵(1)1,(1)1,a b bk b b k k b b b c d dk d d k k d d d+++===++++===+ ∴a b c d b d ++=(2)∵,(1)1,(1)1a bk bk k ab bk b b k kc dk dk k cd dk d d k k ===----===---- ∴,()a c a b a b c d=≠-- 例3、已知2322x x x x +=++,求x 的值。
沪教版九年级数学上22.1比例线段(共4课时)优秀教学设计第22章相似形22.1比例线段第1课时相似多边形教学目标【知识与技能】知道相似图形的两个特征:对应边成比例,对应角相等.掌握判断两个多边形是否相似的方法——“如果两个多边形满足对应角相等、对应边的比相等,那么这两个多边形相似”.【过程与方法】经历从生活中的事物中抽象出几何图形的过程,体会由特殊到一般的思想方法,感受图形世界的丰富多彩.【情感、态度与价值观】在探索中培养学生与他人交流、合作的意识和品质.重点难点【重点】知道相似图形的对应角相等、对应边的比相等.【难点】能运用相似图形的性质解决问题.教学过程一、问题引入活动1:观察图片,体会开关相同的图形.(多媒体出示)师:同学们,请观察下列几幅图片,你能发现什么?你能对观察到图片特点进行归纳吗?生:这些图形的开关相同,而大小不同.二、新课教授活动2:思考:如图是人们从平面镜及哈哈镜里看到的不同镜像,它们的形状相同吗?生:形状不同.教师出示图片,提出问题.学生细心观察,认真思考,小组讨论后回答问题.教师对学生的回答进行评价,总结:哈哈镜里看到的不同镜像,它们的形状不同,它们的形状发生了改变.形状相同而大小不同的两个平面图形,较大的图形可以看成是由较小的图形“放大”得到的,较小的图形可以看成是由较大的图形“缩小”得到的.在这个过程中,两个图形上的相应线段也被“放大”或“缩小”,因此,对于形状相同而大小不同的两个图形,我们可以用相应线段长度的比来描述它们的大小关系.活动3:探究.如图(1)的两个正方形,应有∠A=∠A1,∠B=∠B1,∠C=∠C1,∠D=∠D1;=====.如图(2)的两个等边三角形,应有∠A=∠A1,∠B=∠B1,∠C=∠C1;====.(1)(2)一般地,两个边数相同的多边形,如果它们的对应角相等,对应边长度的比相等,那么这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比或相似系数.师生总结:相似多边形的对应角相等,对应边的比相等.(1)如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似;(2)相似多边形的对应边的比称为相似比;(3)当相似比为1时,两个多边形全等.三、例题讲解【例1】如图所示,四边形ABCD和四边形EFGH相似,求角α和β的大小以及EH的长度x.教师出示例题,提出问题.学生通过运用相似多边形的性质正确解答出角α和β的大小以及EH的长度x.解:四边形ABCD和四边形EFGH相似,它们的对应角相等.由此可得∠α=∠C=83°,∠A=∠E=118°,在四边形ABCD中,∠β=360°-(78°+83°+118°)=81°.四边形ABCD和四边形EFGH相似它们的对应边成比例.由此可得=,即=.解得:x=28(cm).【例2】已知四边形ABCD与四边形A1B1C1D1相似,且A1B1∶B1C1∶C1D1∶D1A1=7∶8∶11∶14.若四边形ABCD的周长为40,求四边形ABCD各边的长.分析:因为两个四边形相似,因此可根据相似多边形的对应边的比相等来解题.解:∵四边形ABCD与四边形A1B1C1D1相似,∴AB∶BC∶CD∶DA=A1B1∶B1C1∶C1D1∶D1A1.∵A1B1∶B1C1∶C1D1∶D1A1=7∶8∶11∶14,∴AB∶BC∶CD∶DA=7∶8∶11∶14.设AB=7m,则BC=8m,CD=11m,DA=14m.∵四边形ABCD的周长为40,∴7m+8m+11m+14m=40,∴m=1,∴AB=7,则BC=8,CD=11,DA=14.四、巩固练习1.在比例尺为1∶10 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离,【答案】3 000 km2.如图所示的两个直角三角形相似吗?为什么?【答案】相似,因为它们的对应角相等,对应边的比相等.3.如图所示的两个五边形相似,求求知边a、b、c、d的长度.【答案】a=3,b=,c=4,d=6.五、课堂小结本节课主要学习了以下内容:1.相似多边形的定义:如果两个多边形的对应角相等、对应边的比相等,那么这两个多边形相似.2.相似多边形的性质:相似多边形的对应角相等,对应边的比相等.教学反思本节课主要教学对相似图形的认识.在相似图形的探究过程中,让学生运用“观察—比较—猜想”的方法分析问题,让学生经历探究过程.以学生的自主探究为主线,让学生经历实验操作、探究发现、证明论证获得知识.教师只在关键处进行点拨,不足处进行补充.鼓励学生大胆猜测、大胆验证.让学生在研究过程中渗透教学思想,有意识地培养学生的解题能力.第2课时成比例线段(1)教学目标【知识与技能】从生活中形状相同的图形的实例中认识成比例的线段,理解成比例线段的概念.【过程与方法】在成比例线段的探究过程中,让学生运用“观察—比较—猜想”的方法分析问题.【情感、态度与价值观】在探究成比例线段的过程中,培养学生与他人交流、合作的意识.重点难点【重点】认识成比例的线段.【难点】理解成比例线段的概念.教学过程一、复习回顾,引入新课师:同学们还记得我们上节课学习了什么知识吗?生:学习了相似多边形.师:是的,你能说说什么是相似多边形吗?生:一般地,两个边数相同的多边形,如果它们的对应角相等,对应边长度的比相等,那么这两个多边形叫做相似多边形.师:很好!由于多边形的边是线段,所以在研究图形相似之前,这节课我们先要学习成比例线段的有关知识.二、讲授新课如果选用同一个长度单位量得两条线段AB、CD的长度分别是m、n,那么这两条线段的比就是它们长度的比,即AB∶CD=m∶n,或写成=.其中,线段AB、CD分别叫做这个线段比的前项和后项.如果把表示成比值k,那么=k,或AB=k·CD,两条线段的比实际上就是两个数的比.活动:如果把老师手中的教鞭与铅笔分别看成是两条线段AB和CD,那么这两条线段的长度比是多少?师生活动.教师出示图片,提出问题.学生考虑如何求得这两条线段的比.学生求出的值不唯一,只要方法恰当,教师都要给予肯定.1.两条线段的比,就是两条线段长度的比.2.成比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另外两条线段的比相等,如=(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.这时,线段a、b、c、d叫做组成比例的项,线段a、d叫做比例外项,线段b、c叫做比例内项.注意:(1)两条线段的比与所采用的长度单位没有关系,但在计算时要注意统一单位;(2)线段的比是一个没有单位的正数;(3)四条线段a、b、c、d成比例,记作=或a∶b=c∶d;(4)若四条线段满足=,则有ad=bc;(5)如果ad=bc(a、b、c、d都不等于0),那么=.三、例题讲解【例1】如图,下面右边的四个图形中,与左边的图形形状相同的是()解:C【例2】一张桌面长a=1.25 m,宽b=0.75 m,那么长与宽的比是多少?解:=小结:上面分别采用m、cm、mm三种不同的长度单位,求得的的值是相等的,所以说,两条线段的比与所采用的长度单位无关,但求此时两条线段的长度单位必须一致.【例3】已知:一张地图的比例尺是1∶32 000 000,量得北京到上海的图上距离大约为3.5 cm,北京到上海的实际距离大约是多少km?分析:根据比例尺=,可求出北京到上海的实际距离.解:设北京到上海的实际距离大约是x cm.则=,得x=112 000 000(cm).又112 000 000 cm=1 120 km.答:北京到上海的实际距离大约是1 120 km.【例4】如图,一块矩形绸布的长AB=a m,宽AD=1 m,按照图中所示的方式将它裁成相同的一面矩形彩旗,且使裁出的每面彩旗的宽与长的比与原绸布的宽与长的比相同,即=,那么a 的值应当是多少?解:根据题意可知,AB=a m,AE=a m,AD=1 m.由=,得=,即a2=1,∴a2=3.开平方,得a=(a=-舍去).四、课堂小结本节课主要学习了:成比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另外两条线段的比相等,如=(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.这时,线段a、b、c、d叫做组成比例的项,线段a、d叫做比例外项,线段b、c叫做比例内项.教学反思本节课是在上节课的基础上认识成比例线段,理解成比例线段的概念.在相似图形的探究过程中,让学生运用“观察—比较—猜想”的方法分析问题,让学生经历探究过程.以学生的自主探究为主线,让学生经历实验操作、探究发现、证明论证获得知识.教师只在关键处进行点拨,不足处进行补充.鼓励学生大胆猜测、大胆验证,让学生在研究过程中渗透数学思想,有意识地培养学生的解题能力.第3课时成比例线段(2)教学目标【知识与技能】1.进一步理解并掌握比例、比例线段的概念.2.会辨认比例式中的“项”.3.会求常见图形中的线段比.4.会进行黄金分割的有关计算.【过程与方法】1.经历探究比例、比例线段的性质的过程,体会类比的思想,促进探究、质疑、归纳能力的发展.2.经历黄金分割的引入以及黄金分割点的探究过程.3.通过问题情境的创设和解决过程进一步体会数学与生活的紧密联系,体会数学的思维方式,增进数学学习的情感.【情感、态度与价值观】在交流协作中,体会生生交往与师生交往的乐趣;在解决问题的过程中接受挑战、战胜困难,增强学习数学的兴趣.重点难点【重点】比例及比例线段的性质;黄金分割点的有关计算.【难点】比例及比例线段的应用;黄金分割点的有关计算.教学过程一、复习回顾,引入新课师:在上一节,我们学习了成比例线段,同学们现在能画出两条线段、量出长度并求出它们的比值吗?学生作图后测量并求出比值.师:用同一个单位去度量两条线段a、b,得到它们的长度,我们把这两条线段长度的比叫做这两条线段的比,记作或a∶b.在四条线段a、b、c、d中,如果其中两条线段a、b的比,等于另外两条线段c、d的比,即=(或a∶b=c∶d),那么这四条线段叫做成比例线段,简称比例线段.二、探究新知师:两条线段的比是它们长度的比,也就是两个数的比,因此也应具有关于两个数成比例的性质.如果=,你能把这个式子改写成乘积的形式吗?生:两边同乘以bd,得到ad=bc.师:反之,如果ad=bc(b、d≠0)我们是否能得到=呢?生:能,两边同除以bd.师:比例的这个性质叫做比例的基本性质.教师多媒体课件出示:师:现在请同学们看这三个图形.图形(1)和图形(2)对应边是成比例的,图形(3)的长等于图形(1)的长加上图形(2)的长,图形(3)的宽等于图形(1)的宽加上图形(2)的宽,你能判断图形(1)和图形(3)的边是否成比例吗?学生思考,讨论.师:你怎么判断这两个长方形的边是否是成比例的呢?生:计算3.6∶2和2.7∶1.5是否相等.师:现在就请同学们算一下是否相等.学生计算后回答:相等.师:所以我们有=.对于式子=,能否得到=呢?学生思考,讨论.生:在=的两边都加上1,然后通分就得到了=.师:对!所以我们得到了这个结论:如果=,那么=(b、d≠0).这叫做比例的合比性质.如果=,b1+b2≠0,你能否证明=呢?教师提示:我们可以倒着推:要证=,可先证(a1+a2)×b1=(b1+b2)×a1,即a1b1+a2b1=b1a1+b2a1,两边都减去a1b1,两边都减去a1b1,得a2b1=b2a1,你能证明a2b1=b2a1吗?学生思考后回答:能.师:怎么证明?生:因为=,两边同乘以b1b2,就证出来了.师:现在你知道怎么证明=了吗?生:知道了.师:请同学们想想有没有其他的证法?学生思考.教师提示:的值与的值相等,我们要证的是的值也与的值相等,如果我现在设==k,你能否证出=k呢?学生思考,讨论.师:a1、a2能否用含b1、b2的代数式表示?生:能.师:怎样表示?生:a1=b1k,a2=b2k.师:你知道怎样证明了吗?生:知道,将a1=b1k,a2=b2k代入中.师:我们有了两种证法,哪两位同学愿意上来写出证明过程?学生举手,教师从举手的同学中找两生板演.生1板书:证明:∵=(已知),两边同乘以得=.∴=(合比性质).两边同乘以得=.两边取倒数,得=,即=.生2板书:设==k,得a1=b1k,a2=b2k,代入得===k=.师:你能总结一下以上两种方法吗?生:第一种方法是先倒推,再证明;第二种方法是设定值.师:同学们总结得很好!再遇到证明两式相等的问题时要记起这两种方法,其中设定值的方法一般适用于设比值为定值.如果我把这个式子推广,===…=成立,且b1+b2+b3+…+b n≠0,你能否推出所有分子之和与所有分母之和的比是等于呢?生:能.教师找一生板演,其余同学在下面做,教师巡视指导.师:所以我们得到比例的又一性质:如果==…=,且b1+b2+b3+…+b n≠0,那么=.三、例题讲解【例1】已知:如图,在△ABC中,=.师:请同学们看这道题.学生读题思考.师:哪位同学能证明这道题,跟大家说说你的思路.学生举手.教师找一生回答第(1)题.生:因为=,由合比性质得=,即=.教师找另一生回答第(2)题.师:你是怎样考虑的呢?生:AB可以写成AD+DB,AC可以写成AE+EC.因为合比性质是分子加分母,要证明=,可先证=,然后两边取倒数,就得到要证的结果了.师:很好!现在请你把证明步骤写在黑板上,其余同学在下面做.学生证明后集体订正.教师多媒体课件出示:【例2】在地图或工程图纸上,都标有比例尺,比例尺就是图上长度与实际长度的比.现在一张比例尺为1∶5 000的图纸上,量得一个△ABC的三边:AC=3 cm,BC=4 cm,AB=5 cm.问这个图纸所反映的实际△A'B'C'的周长是多少?解:根据题意,得===.即=.又∵AB+BC+AC=5+4+3=12(cm),∴A'B'+B'C'+A'C'=12×5 000=60 000(cm)=600(m).答:实际△A'B'C'的周长是600 m.【例3】如图所示,已知线段AB长度为a,点P是AB上一点,且使AB∶AP=AP∶PB.求线段AP的长和的值.解:设AP=x,那么PB=a-x.根据题意,得a∶x=x∶(a-x),即x2+ax-a2=0.解方程,得x=a.因为线段长度不能是负值,所以取x=a.即AP=a.于是==≈0.618.把一条线段分成两部分,使其中较长线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,分割点叫做这条线段的黄金分割点,比值叫做黄金数.四、巩固练习1.若6x=5y,则x∶y=.【答案】2.已知ab=cd,则=.【答案】3.若==,则=.【答案】4.已知x===,则x的值是.解析:∵x===,∴a2+ab=bc+c2.①b2+bc=a2+ac.②ac+c2=ab+b2③将③式减去②式得ab-bc=c2-a2.④将②式减去①式得ac-ab=b2-c2.⑤将③式减去①式得b2-a2=ac-bc.⑥由④⑤⑥式都可得出a+b+c=0.∴a+b=-c,b+c=-a,a+c=-b.∴x====-1.【答案】-15.点P在线段AB上,AP2=AB·PB.若PB=4,则AP的长为. 解析:设AP=x,∴x2=(x+4)×4,x2-4x-16=0.∴x=2±2.又∵x>0,∴AP长取2+2.【答案】2+26.已知点M将线段AB黄金分割(AM>BM),则下列各式中不正确的是()A.AM∶BM=AB∶AMB.AM=ABC.BM=ABD.AM≈0.618AB【答案】C7.已知x∶y=3∶5,y∶z=4∶7,求x∶y∶z.【答案】∵x∶y=3∶5,∴x=y.又∵y∶z=4∶7,∴z=y.∴x∶y∶z=y∶y∶y=12∶20∶35.五、课堂小结师:本节课你学习了什么内容?有什么收获?学生回答,教师点评.教学反思首先,从回顾上节已学的比例知识入手,运用类比的方法得到实数范围的比和比例,再类比得到比例线段的概念,这样会比较直观、易学.其次,尽可能体现数学与生活的紧密联系,如课题的引出及知识的应用,尽可能让学生感悟到数学源于实际,并且数学知识和方法能很好地解决实际生活中的问题,激起学生学习数学的欲望.总的来说,本节课是在轻松愉快的氛围中完成的,学生的热情也比较高涨,由于所涉及的问题是每个学生触手可及的,因而学生在活跃的课堂气氛中也各有所获.第4课时平行线分线段成比例教学目标【知识与技能】1.使学生在理解的基础上掌握平行线分线段成比例定理及其推论,并会灵活应用.2.使学生掌握三角形一边的平行线的判定定理.【过程与方法】通过学习定理再次锻炼类比的数学思想,能把一个稍复杂的图形分成几个基本图形,通过应用锻炼识图能力和推理论证能力.【情感、态度与价值观】通过定理的学习知道认识事物的一般规律是从特殊到一般,并能欣赏数学表达式的对称。
华师版九年级上成比例线段的教案教案:成比例线段教学目标:1.能够理解成比例线段的概念和性质,掌握比例线段与比例的关系。
2.能够应用成比例线段的知识解决实际问题。
3.能够运用比例线段的性质正确进行证明。
教学重点和难点:1.掌握成比例线段的定义和性质。
2.理解比例线段与比例的关系。
3.运用比例线段的知识解决实际问题。
4.运用比例线段的性质进行证明。
教学准备:1.教材:华师版九年级上册数学教材。
2.教具:黑板、彩色粉笔、直尺、实物示例。
教学过程:Step 1:导入新知(10分钟)1.引入问题:小明用直尺测量了一下,电视屏幕的宽度是40厘米,屏幕的高度是30厘米,那么屏幕的对角线长度是多少厘米呢?2.学生思考并交流解决方法。
引导学生发现屏幕的对角线和屏幕的宽高之间存在某种比例关系。
3.针对这个问题,引导学生思考、讨论与屏幕的宽高成比例的线段之间的关系。
Step 2:引入新概念(15分钟)1.引导学生观察、感知成比例线段的性质。
通过展示不同长度的线段,鼓励学生发现线段之间存在某种比例关系。
2.定义成比例线段的概念:若线段AB与线段CD成比例,则称线段AB与线段CD成比例。
3.引导学生总结成比例线段的条件。
Step 3:学习成比例线段的性质(20分钟)1.引导学生通过实例分析成比例线段的性质:若线段AB与线段CD 成比例,则有以下性质:-对应线段比值相等:AB/CD = BC/DE = AC/CE-内分点的分点比相等:若点E是线段AC的内分点,则AE/EC = AB/BD-外分点的分点比相等:若点E是线段AD的外分点,则AE/ED = AB/BC2.引导学生通过实例练习,运用成比例线段的性质验证成比例线段。
Step 4:应用成比例线段解决实际问题(25分钟)1.教师引导学生通过例题,学习运用成比例线段解决实际问题。
2.学生进行个别和小组练习,解决相关实际问题,如改变物体的尺寸等。
3.学生展示解题思路并进行讨论,教师给予指导和反馈。
成比例线段-华东师大版九年级数学上册教案一、知识点概述成比例线段是指两个线段在同一直线上,且与第三个线段成比例关系。
在本节课中将涉及到以下几个知识点:•成比例线段的定义及判定;•比例线段的性质。
二、教学目标1.了解成比例线段的定义,掌握判定成比例线段的方法。
2.了解比例线段的性质,掌握利用比例线段解决问题的方法。
3.能够独立解决简单的成比例线段问题。
三、教学重点难点重点:成比例线段的定义及判定,解决简单问题。
难点:比例线段的性质,解决复杂问题。
四、教学环节及课时安排1.引入例子(15min)–通过日常生活中的例子引入成比例线段的定义及判定。
–引导学生思考如何判断两个线段成比例关系。
2.讲解(30min)–讲解成比例线段的定义,及判定方法。
–讲解比例线段的性质,例如:比例线段的比例相等,等比例线段中的角度相等等等。
3.练习(35min)–进行简单的例题练习,巩固成比例线段的判定方法。
–分组进行复杂问题的练习,帮助学生理解比例线段的性质及应用。
4.总结(10min)–通过课堂上的例题和练习,总结比例线段的定义及性质。
–引导学生思考比例线段在现实中有怎样的应用。
五、教学策略本课程将会采用以下教学策略:1.通过日常生活中的例子引导学生理解成比例线段和比例线段的意义和应用。
2.通过简单和复杂的例子分别帮助学生理解成比例线段和比例线段的性质及应用。
3.分组讨论练习,培养学生的合作意识和团队合作能力。
4.引导学生按照用途分类,综合应用所学知识去解决现实生活中的问题,提高吸收知识后的应用能力。
六、教学板书1.成比例线段的定义–两个线段在同一直线上且与第三个线段成比例2.成比例线段的判定–同一直线上两点的距离比相等–两个线段的比与第三个线段相等3.比例线段的性质–比例相等–等比例线段中的角度相等七、教学资源及参考资料教材:华东师大版九年级数学上册参考资料:教学PPT, 练习题八、教学评估与调整教师将采用定期评估方式,对学生的学习情况进行跟踪和反馈,并根据学生的表现和反馈进行适当地调整教学策略和任务布置,以提升学生的学习效果。
沪教版数学九年级上册24.2《比例线段》教学设计一. 教材分析《比例线段》是沪教版数学九年级上册第24章第2节的内容。
本节内容是在学生已经掌握了线段的基本知识,以及比例的基本概念的基础上进行教学的。
本节课主要让学生了解比例线段的定义,会求解比例线段,并能够运用比例线段解决实际问题。
教材通过例题和练习题的形式,帮助学生理解和掌握比例线段的知识。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和数学基础,对于线段和比例的概念已经有了一定的了解。
但是,对于比例线段的运用和解决实际问题可能还存在一定的困难。
因此,在教学过程中,需要注重学生的实际操作和实践,通过具体的例题和练习题,让学生理解和掌握比例线段的知识。
三. 教学目标1.知识与技能:理解比例线段的定义,掌握求解比例线段的方法,能够运用比例线段解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和积极的学习态度。
四. 教学重难点1.重点:比例线段的定义和求解方法。
2.难点:运用比例线段解决实际问题。
五. 教学方法1.情境教学法:通过具体的例题和练习题,让学生在实际情境中理解和掌握比例线段的知识。
2.合作学习法:通过小组讨论和合作,培养学生的团队合作意识和解决问题的能力。
3.引导发现法:教师引导学生观察和思考,发现比例线段的规律和方法。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示例题和练习题。
2.练习题:准备一些相关的练习题,用于巩固和拓展学生的知识。
3.教学工具:准备尺子、直尺等教学工具,方便学生实际操作。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾线段和比例的知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT展示比例线段的定义和例题,让学生观察和思考,引导学生发现比例线段的规律和方法。
沪教版数学九年级上册24.2《比例线段》教学设计一. 教材分析《比例线段》是沪教版数学九年级上册第24章的一部分,主要介绍了比例线段的概念、性质和应用。
本节内容是在学生已经掌握了相似三角形的性质和坐标与图形的性质的基础上进行学习的,对于学生来说,比例线段是一个比较抽象的概念,需要通过具体实例和实践活动来理解和掌握。
教材通过丰富的例题和练习题,帮助学生逐步理解和运用比例线段的知识,为后续学习相似三角形和解析几何打下基础。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于相似三角形的性质和坐标与图形的性质有一定的了解。
但是,比例线段作为一个新的概念,对学生来说还是相对抽象的,需要通过具体实例和实践活动来理解和掌握。
此外,学生的学习兴趣和动机也是影响教学效果的重要因素,因此,在教学过程中,需要通过设计有趣的教学活动和实例,激发学生的学习兴趣和动机。
三. 教学目标1.知识与技能:使学生理解比例线段的概念,掌握比例线段的性质,能够运用比例线段的知识解决实际问题。
2.过程与方法:通过观察、操作、交流等活动,培养学生的观察能力、动手能力和表达能力。
3.情感态度与价值观:激发学生对数学的兴趣和好奇心,培养学生的合作意识和创新精神。
四. 教学重难点1.重点:比例线段的概念和性质。
2.难点:比例线段的运用和实际问题的解决。
五. 教学方法1.启发式教学:通过设计有趣的问题和实例,激发学生的思考和探索兴趣,引导学生主动学习和参与。
2.实践活动:通过观察、操作、交流等活动,让学生在实践中学习和体验,提高学生的动手能力和观察能力。
3.合作学习:鼓励学生之间进行合作和交流,共同解决问题,培养学生的合作意识和团队精神。
六. 教学准备1.教学PPT:制作相关的教学PPT,包括教材内容、实例、练习题等。
2.教学素材:准备一些相关的图片和实例,用于引导学生观察和操作。
3.练习题:准备一些练习题,用于巩固和检验学生的学习效果。
七. 教学过程1.导入(5分钟)通过一个实际问题引入比例线段的概念,例如:“在一条直线上,有两点A和B,点A到直线的距离是6cm,点B到直线的距离是8cm,请问点A和点B之间的距离是多少?”让学生思考和讨论,引出比例线段的概念。
《平行线分线段成比例》教案教学目标知识与技能:1、掌握平行线分线段成比例定理的推论.2、用推论进行有关计算和证明.教学思考:通过探究平行线分线段成比例定理的推论,培养学生数学思维能力.解决问题:学生经历观察、操作、探究、交流、归纳、总结过程获得结论,体验解决问题的多样性,感悟比例中间量的作用. 教学重点推论及应用.教学难点推论的应用.教学过程【活动一】引入新课问题1:上节我们学习了什么内容?本节将研究什么?学生共同手工拼图,通过思考探究得出结论.在本次活动中,教师应重点关注:1、操作过程中学生是否把被截得两直线交点放在相应位置.2、学生是否有探究本节所学内容的兴趣和欲望.设计意图:使学生通过动手操作、观察、直观得出初步结论.【活动二】探究推论问题2:被截直线的交点若落在第一条或第二条平行线上,平行线分线段成比例定理是否还成立?问题3:若上述问题成立,可得什么特殊结论?321123教师提问,引导学生猜想,并在拼好的图上测量、计算、证明.推论:投影出示.在本次活动中,教师应重点关注:1.学生是否认真、仔细的测量和计算.2.学生能否用定理证明所得推论.设计意图:培养学生大胆猜测,从实践中得出结论.【活动三】教学例3问题4:已知:如图:BC∥DE,AB=15,AC=9,BD=4,求:AE.E学生独立思考后,分组交流得出多种解题途径,老师引导学生找出最佳方案.在本次活动中,教师应重点关注:1、学生能否顺利写出解决问题的比例式;2、在小组交流中学生能否在探究中发现解决问题的多种途径及最佳方案.设计意图:以学生分组讨论方式展开探究活动,培养学生探索、发现、找出多种解决问题的方法的能力.【活动四】问题5:如图:DE∥BC,AB=15,AC=7,AD=2,求EC.老师引导学生独立思考后,说思路,说方法.在本次活动中,教师应重点关注:1、学生是否能顺利说出较简便的解题途径.2、学生在语言表达上是否规范.设计意图:培养学生快速解决问题的能力.【活动五】教学例4问题6:如图:⊿APM中,AM∥BN,CM∥DN,求证:PA:PB=PC:PD分析:师生共同完成.过程:由学生自己写出.在本次活动中,教师应重点关注:1、学生是否能在复杂图形中找出相应的比例式.2、学生能否体会到比例中间量的作用.设计意图:培养学生识别图形的能力.【活动六】问题7:如图:P是四边形OACB对角线的任意一点,且PM∥C B,PN∥CA,MB求证:OA:AN=OB:同桌交流、研讨,由学生分析讲解,写出过程.在本次活动中,教师应重点关注:1、学生是否快速找到比例的中间量.2、学生书写解题过程是否规范.设计意图:培养学生的语言表达能力.课堂小结我们本节课学习了哪些知识,通过探究你有哪些收获?你认为自己的表现如何?老师重点关注:1、学生归纳总结能力;2、能否发表自己的见解,倾听他人的意见,反思学习过程;3、学生对推论的理解及应用程度.思考题:如果一条直线截三角形的两边(或两边的延长线),所得对应线段成比例,那么这条直线是否平行于第三边?。
23. 1成比例线段23. 1.1 成比例线段【知识与技能】1 •掌握比例线段的概念及其性质.2•会求两条线段的比及判断四条线段是否成比例. 【过程与方法】能够灵活运用比例线段的性质解决问题. 【情感态度】感知知识的实际应用,增强对知识就是力量的客观认识, 习方法.进一步加强理论联系实际的学么? 重点难点【教学重点】线段的比和成比例线段,以及比例线段的基本性质. 【教学难点】用引入比值k 的方法,探索比例的性质.教学过程一、创设情境,导入新知1.如何确定四个数成比例?数的比例式有什么基本性质? 2 •下面格点中的两个矩形相似吗? 二、合作探究,理解新知 探究一:成比例线段 1.做一做(1)①在上面的格点图中, —,BC=_ ②计算靑 如果设水平 ,A B = _ BC---- ,B ,C'Mt 一*一D (** lC*(或竖直)的相邻两格点间的距离为 1,那么AB= —,B ,C ,=③显然AB B B学生通过交流(2)思考:换AD _ CD A D' = C ,D'2•结论线段的比:如果选用同一个长度单位度量两条线段 AB CD 的长度,它们的长度比就是这两条线段的比.成比例线段:对于四条线段 a 、b 、c 、d ,如果其中两条线段的长度的比等于另两条线a c段的比,女口 b = d (或a : b = c : d ),那么,这四条线段叫做成比例线段,简称比例线段•此外也称这四条线段成比例.3. 议一议(1) 在上面的格点图中,如果把格点去掉,通过度量,你还能验证上面的结论成立吗? (2) 如果在测量时,AB 的长度单位采用厘米而 A' B'的长度单位采用分米, 那么它们的比有没有变化?(3) 两条线段长度的比与所采用的长度单位有没有关系? 4. 知识运用例1:判断下列线段a 、b 、c 、d 是否是成比例线段: (1) a =4, b = 6, c = 5, d = 10 ; (2) a = 2, b = 5, c = 2y 15, d = 5 *J 3.分析:利用成比例线段的定义求.a cb d .•••线段a 、b 、c 、d 不是成比例线段.a = 2 = 2护 c = 2护 2远b = 5 = 5 ,d = 5 .3= 5 ac b =d .•线段a 、b 、c 、d 是成比例线段.解:由图可知:AC = 1 cm , CD= 2 cm , DB= 4 cm , CB= C 內 DB= 6 cm ,AC 1 AC 1 CD 2CD T 2,CB" 6,DB" 4所以AC CD CD DB 是成比例线段.4 2c 6= 3,d5 = 1 10 = 2,例2 :根据图示求线段的比:AC CD AC CDCB DB 并指出图中成4 i :m1 2.则有AC =CD CD DB探究二:比例的性质a c1.在数的比例式中,若四个数a、b、c、d满足b= c,那么我们就说这四个数成比例, 4.a c a c并且知道若a = c ,则有ad = bc ;若ad = bc ,则£= c .那么若线段成比例,是否也有上述结论? b d b d通过学生类比、讨论得出比例的基本性质.2•比例的基本性质a c a c 如果=二,那么ad = bc .如果ad = bc (a 、b 、c 、d 都不等于0),那么 =.b db d3. 议一议 (1)你会证明这两个命题吗?(引导学生从正反两个方面去证明)a c(2) 由ad = bc ,除了得到/外,你还能得到哪些比例式? 4. 知识运用a c a +bc +d 例3:证明(1)如果匚=,那么 ———;b db da c a c(2)如果 b = d (a * b),那么 a —b = c —d . a c证明:⑴••• b =d 在等式的两边同时加上1,.a + b c + d=~d~a c⑵••• J : ad = be.在等式的两边同时加上 ac ,: ad — ac = bc + ac .••• ac — ad = ac — bc , a (c — d ) = c (a — b ), a c•••a z b , 由 b =d 得 c 丰 d ,:a — b z 0,且 c — d z 0.引导学生练习,总结解题方法,最后教师归纳用设 k 值的方法解与比例有关的题目.三、尝试练习,掌握新知1.若x 是3和12的比例中项,贝U 3、x 、8的第四比例项为_土 16_e 3 a + 2c — 3e ,亠f = 4(b + 2d — 3f 主0),求 b + 2d — 3f 的值•若=C ^a = a ^~ = k (a + b + c 丰0),试求 k 的值.(答案:2)a b c两边同时除以 (a — b)( c —d),a ca —b =c — d' 练习:已知a2佶+ b 3,求〒、a a — b的值.2.已知:3a = 4b ,则 a + b7 —3—.3(答案:4)AB AC BC 324 5•如图,已知AD^= AE= 阿2,且厶ABC勺周长为36術,求厶ADE勺周长.(答案:cm)6•请同学们完成《探究在线•高效课堂》“随堂练习”部分.四、课堂小结,梳理新知本节课你有什么收获和困惑?1 •内容总结(1)成比例线段:四条线段中,如果其中两条线段的比值等于另外两条线段的比值,就称这四条线段是成比例线段.a c(2)比例的基本性质:如果b=d,那么ad= be.如果ad= bc(a、b、c、d都不等于0)2.方法归纳(1)在解决比例的有关问题中,用设k值的方法;(2)判断四条线段是否成比例,只要把四条线段按大小顺序排列,判断前两条线段之比与后两条线段之比是否相等,相等则成比例,否则不成比例.3.注意的问题(1)在求两条线段的比时,单位必须统一;a c(2)线段a、b、c、d成比例,其表示方法是有顺序的,即匚=匚.b d五、深入练习,巩固新知请同学们完成《探究在线•高效课堂》“课时作业”部分.课后件业教材第55页习题23.1的第1〜6题.23. 1.2 平行线分线段成比例教学目标【知识与技能】在理解的基础上掌握三角形一边平行线的性质、平行线分线段成比例定理和平行线等分线段定理,并会灵活应用.会做已知线段成已知比和把线段进行等分的作图题.【过程与方法】通过学习定理再次锻炼类比的数学思想,能把一个稍复杂的图形分成几个基本图形,过应用锻炼识图能力和推理论证能力.【情感态度】通过定理的学习知道认识事物的一般规律是从特殊到一般,并能欣赏数学表达式的对称美.重点难点【教学重点】理解并掌握平行线分线段成比例定理和三角形一边的平行线的性质定理,并能运4.用定理解决有关问题.【教学难点】平行线分线段成比例定理和三角形一边的平行线的性质定理的探究与归纳,以及如何将复杂的图形分解成一些简单的基本图形.教学过程一、创设情境,导入新知[温故而知新]问题:一组等距离的平行线截直线 a 上所得的线段相等,那么在直线 b上所截得的线段有什么关系呢?(请同学们观看课件中的验证过程 )[学生活动]学生观察、分析、思考、探究并与同学进行交流. [教师活动]教师组织引导学生进行自主探究与交流. [小结]教师引导学生总结出如下结论:一组等距离的平行线在直线 a 上所截得的线段相等,那么在直线b 上所截得的线段 也相等. [教师点拨]这就是我们前面所学的平行线等分线段定理,它讨论的是平行线截直线截得的线段相等的情况,那么如果截得的线段不相等呢?这就是我们今天要学习的内容: 平行线分线段成比例定理.【教学说明】通过对平行线等分线段定理的复习,为新课中引导学生归纳出平行线分线段成比例定理做铺垫.二、合作探究,理解新知[师生合作探究]师:同学们,请翻开数学作业本, 我们可以发现每一页都是由一些间距 相等的平行线组成的,下面请同学先在作业本上任意画出一条直线 m 如图所示:师:等分线段定理可知 A*BC 如果再任意画一条直线 n 与这一组平行线相交,=EF.[思维提升]如果将作业本上相邻的三条平行线换成不相邻的三条平行线, 任意画两条直线m n 与它们相交,如图,当 m n 这两条直线平行时,观察并思考这时所得的AD DBFE EC 这四条线段的长度有什么关系?如果 m n 这两条直线不平行,你再观察一下,也可以量一量算一算,看看它们是否存在类似的关系?[学生活动]学生自主探究并与同学进行交流. [教师活动]教师组织引导学生进行自主探究与交流. [小结]教师引导学生探究并归纳出如下结论:平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例. 用几何语言表示为:C 三点,由平行线那么同样可知 DE由此我们可得 AB_DEBC T EFAB DE BC EF[教师点拨]点拨一:当上述图中的 A 点与F 点重合时,如图,此时 AD DB AE EC 这 四条线段之间会有怎样的关系呢?点拨二:如图,当直线m n 相交于第二条平行线上某点时,是否也有类似的成比例线 段呢?AD_AE D B " EC .DA EA 二 D B "EC[教师点拨]这两幅图可以简称为“ A'型和“ X ”型. 例题讲解例 1:如图,l i // I 2//I 3, AB= 4, DE= 3, EF =6,求 BC 的长.•/ AD// BE// CF,[小结]教师引导学生归纳出如下结论:三角形一边的平行线的性质定理:平行于三角形一边的直线截其他两边 (或两边的延长线),所得的对应线段成比例.用几何语言表示为:•••DE// BC•••DE// BC B A(F)分析:考虑到题目中有一组平行线,故可尝试利用平行线分线段成比例定理来解题.解:T i l // 丨2〃 丨3,•/ AB= 4, DE= 3, EF = 6,• 4 _3 "BC 6.BC= 8.例2:如图,E 为?ABCD 勺边CD 延长线上的一点,连结 BE 交AC 于点Q 交AD 于点BO E0F0= B 中的线段都在同一条直线上,故应利用平行线分线段成比例定理分别找出B0和B0勺值•证明:•••四边形 ABCD 是平行四边形,••• AB// CD AD// BCT AB// CD• CO EO "AC = BO •/ AD// BC• BO CO "FO = AO.B0= E0 …F0= BO三、尝试练习,掌握新知 1. 教材第55页练习. 2.如图,DE// AF// BC 试找出图中成比例的线段,与你的同伴比一比,看谁找得快, 找 得多.AB m 亠、十 DE mAB _DE BC EF平行线分线段成比例F .求证:BO E0F0=BO分析:由于比例式 :第2题图3.已知:如图所示,I 1 // I 2 // I 3, 尸,求证:云F .BC n DF m+ n4•请同学们完成《探究在线•高效课堂》“随堂练习”部分.四、课堂小结,梳理新知1•本节课主要学习了平行于三角形一边的平行线的性质,平行线分线段成比例定理以及平行线等分线段定理,“证明”平行线分线段成比例定理是通过转化为平行于三角形一边的平行线的性质来解决的.2.使用平行线分线段成比例定理,一要看清平行线组,二要找准平行线组截得的对应线段,否则会产生错误.五、深入练习,巩固新知请同学们完成《探究在线•高效课堂》“课时作业”部分.谍后作业教材第55页习题23.1的第7题.11。
成比例线段设计思路成比例线段课标要求虽然较低,但是理解清楚它的由来对于充分说明规律给定新的力量;对于今后有效运用本规律解决实际问题有一定的好处,更何况逐渐渗透了数学探究思想,丰富了学生思维,拓展了学生解决实际问题的能力、方法。
本微课用PPT制作,配有语音提示,重在引导,以学定教,本微课让学生经历“动手操作—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。
进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系。
本微课可作为平行线分线段成比例的开头内容,利用它推导平行线分线段成比例基本事实;在应用过程中要及时提示,给学生充足的时间思考,可利用小组学习方式展开,也可作为学生自主学习的材料。
教学过程内容备注展标目标展示:平行线分线段成比例引导探标一、展标利用我们的作业本进行探索在作业本上任意画一条直线与相邻的三条平行线交于A、B、C,得到线段AB、CD,那么可以发现得到的这两条线段相等吗?如果再任意画一条直线与这组平行线相交,得到线段DE、EF,它们也会相等吗?这四条相等成比例吗?通过本环节目的是引导学生推出:EFDEBCAB(利用全等三角形,作垂线推导)二、探标本学案主要目的一是会用平行线分线段成比例的规律解决简单的线段计算问题,二是体会用已知推如果作业本中三条平行线不相邻,且和两直线相交,如下图结论成立吗?即EFDEBC AB 四条线段成比例吗?为了解决此问题,不妨我们先解决以下问题:(同底等高的两个三角形面积相等)。
如图所示:同高不同底的两个三角形面积比又有什么关系?导未知的方法,三是对于里面涉及的基本思想有所触动、模仿就可以了。
试证明DCBDS S ADC ABD =∆∆ 通过以上证明,看来线段的长度比可以用面积比代替。
那么我们今天的目标:即EFDEBC AB =证明成立,能不能用面积比代替的方法证明呢?那么需要我们构建什么样的三角形呢?下面我们把目标分解开来,进行分步证明: 1)??∆∆=S S BC AB 2)??∆∆=S S EF DE 3) EFDEBC AB =首先我们利用上图解决??∆∆=S S BC AB ,??∆∆=S S EF DE ,通过前面学习同高不同底的三角形面积问题,应该很快能解决问题1和问题2;通过问题1和2结合三角形面积规律也就解决了问题3,即本节重点问题得以解决。
23.1 成比例线段1.成比例线段※教学目标※【知识与技能】理解并掌握线段的比,成比例线段等基本概念,掌握比例的基本性质.【过程与方法】1.经历比例性质的推导过程,能运用比例的基本性质推导出比例的其余性质.2.能运用比例的性质进行简单的变形;会判断已知线段是否成比例.【情感态度】通过问题的解决进一步激发学生的创新意识,培养学生坚忍不拔、勇于探索的学习品质.【教学重点】线段的比、成比例线段的概念,比例的基本性质.【教学难点】能运用比例的基本性质推导出比例的其余性质.※教学过程※一、情境导入观察下列两张照片,你有什么发现?请与同学交流.【点拨】像这种形状相同,大小不一定相同的图形叫相似形.【小结】相似形的定义:具有相同形状的图形叫相似形.为了研究相似图形,先研究与其密切相关的成比例线段.二、探索新知1.线段的比如图,下列格点图中的格点小正方形的边长都是1,试计算:(1)概念:一般地,若线段a、b的长度分别是m、n(单位相同),那么就说这两条线段的比是a:b=m:n,或写成,和数的比一样,a叫比的前项,b叫比的后项.(2)几点注意:①两条线段的比是一个无单位的数;②线段的比值是一个正数;③两条线段的长度单位不同时,求两条线段的比时必须要先统一长度单位;④只要两条线段的长度单位一样,两条线段的比与所采用的单位无关.2.成比例线段及有关概念由计算结果可知:对于给定的四条线段a、b、c、d,如果其中两条线段的长度之比等于另外两条线段的长度之比,如,那么,这四条线段叫做成比例线段,简称比例线段.此时也称这四条线段成比例.特别地,如果作为比例内项的是两条相同的线段,即,那么线段b叫做线段a和线段c的比例中项.【例1】判断下列线段a、b、c、d是否是成比例线段:(1)a=4,b=8,c=5,d=10;(2)分析:判断线段a、b、c、d是否是成比例线段,关键是看线段a、b、c、d中两两的比是否相等.需要特别注意的是不一定按顺序计算解:(1)∴线段a、b、c、d是成比例线段.(2)∴这四条线段是成比例线段.3.比例的性质(1)比例的基本性质:如果,那么ad=bc;如果ad=bc,那么(2)比例的合分比性质:如果【例2】已知:,求证:证明:(1)等式两边同加上1,得(2)等式两边同乘-1,得等式两边同加上1,得(3)比例的等比性质:如果那么证明如下:三、巩固练习1.已知线段a、b、c满足关系式,且b=4,那么ac= .2.判断下列线段a、b、c、d是否成比例线段:(1)a=2cm,b=4cm,c=3m,d=6m;(2)a=0.8,b=3,c=0.64,d=2.4.答案:1.16 2.(1)a、b、c、d是成比例线段(2)a、b、c、d是成比例线段四、应用拓展【例3】若,试确定下列各式的值:分析:由于式子当中出现了分子与分母的和差形式,故可尝试利用比例的合分比性质来解决问题.解:【例4】若,求k的值.分析:由于本题涉及了一组等比,故可尝试利用比例的等比性质来解题.解:当a+b+c=0时,a+b=-c,b+c=-a,a+c=-b,易得k=-1.当a+b+c≠0时,五、归纳小结1.求线段的比时,必须先统一长度单位.2.由ad=bc得到的比例式并不唯一,可以是等.3.利用比例的性质解题时,注意分母不能为零.※课后作业※课本第51页练习第3、4题习题23.1第4、5、6题.2.平行线分线段成比例※教学目标※【知识与技能】在理解的基础上掌握平行线分线段成比例定理和三角形一边的平行线的性质定理.【过程与方法】经历平行线分线段成比例定理和三角形一边的平行线的性质定理的探究过程,能探究并归纳出平行线分线段成比例定理和三角形一边的平行线的性质定理.能运用平行线分线段成比例定理和三角形一边的平行线的性质定理解决有关问题.【情感态度】通过定理的学习进一步掌握认识事物的一般规律是从特殊到一般,并进一步学会用类比的数学思想方法来研究问题和解决问题.【教学重点】理解并掌握平行线分线段成比例定理和三角形一边的平行线的性质定理,并能运用定理解决有关问题.【教学难点】平行线分线段成比例定理和三角形一边的平行线的性质定理的探究与归纳,以及如何将复杂的图形分解成一些简单的基本图形.※教学过程※一、复习引入翻开作业本,每一页都是由一些间距相等的平行线组成的.在作业本上任意画一条直线m与相邻的三条平行线交于A、B、C三点,得到两条线段AB、BC,那么可以发现所得的这两条线段相等,即AB=BC.同理可得DE=EF.由此我们可以得到二、探索新知如果选择作业本上不相邻的三条平行线,任意画两条直线m、n与它们相交.测量并计算:(1)m与n平行时,四条线段AD、DB、FE、EC的长度有什么关系;(2)m与n不平行时,四条线段AD、DB、FE、CE的长度有什么关系.1.平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例(简称“平行线分线段成比例”).用几何语言表示为:∵AD∥BE∥CF,∴2.三角形一边的平行线的性质定理:探索一:当上述图中的A点与F点重合时,如图,此时AD、DB、AE、EC这四条线段之间会有怎样的关系呢?探索二:如图,当直线m、n相交于第二条平行线上某点时,是否也有类似的成比例线段呢?三角形一边的平行线的性质定理:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.用几何语言表示为:∵DE∥BC,∴∵DE∥BC,∴【说明】这两幅图可以简称为“A”型和“X”型.【例1】如图,,AB=4,DE=3,EF=6.求BC的长.分析:考虑到题目中有一组平行线,故可尝试利用平行线分线段成比例定理来解题.解:∵,∴(平行线分线段成比例).∵AB=4,DE=3,EF=6,∴.∴BC=8.【例2】如图,E为ABCD的边CD延长线上的一点,连结BE,交AC于点O,交AD 于点F.求证:分析:由于比例式中的线段都在同一条直线上,故应利用平行线分线段成比例定理分别找出的值.证明:∵AF∥BC,∴(平行线分线段成比例).∵AB∥CE,∴(平行线分线段成比例).∴.三、巩固练习1.如图,AD∥BE∥CF,直线与这三条平行线分别交于点A、B、C和点D、E、F.(1)已知AB=BC=4,DE=5,求EF的长;(2)已知AB=5,BC=6,DE=7,求EF的长.第1题图第2题图2.如图,AD∥BE∥CF,直线与这三条平行线分别交于点A、B、C和点D、E、F,AB=4,BC=3,DF=9.求EF的长.答案:1.(1)EF=5 (2)EF= 2.EF=四、应用拓展1.教材第53页“做一做”.2.已知:如图,,AB=3,BC=5,DF=12.求DE和EF的长.答案:2.DE=4.5,EF=7.5.五、归纳小结平行线分线段成比例定理的运用,关键是注意对应,另外,在应用此定理证明时,可能要借用中间比或是结合比例的性质进行综合应用.※课后作业※教材第55页习题23.1的第7题.。
《成比例线段》教案
教学目标
1.了解两条线段的比和比例线段的概念;
2.能根据条件写出比例线段;
3.回运用比例线段解决简单的实际问题.
教学重点、难点
教学重点:比例线段的概念.
教学难点:例题中要求根据具体问题发现等量关系,找出比例式,有一定的隐蔽性,是本节教学的难点.
知识要点
1.两条线段的长度的比叫做两条线段的比.
2.四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即a b =c d ,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段.
重要提示
1.用方程思想寻找几何图形中四条线段成比例是常用方法.
2.四条线段成比例可以解决一些实际问题,如地图上的某两地之间的距离.
教学过程
一、复习引入
1.列举四个数成比例,并写出比例式,指出比例内项、外项、第四比例项.
2.说出比例的基本性质.由ad=bc可推出哪些比例式?
3.练习:(1)若3x=4y,求x
y、
x
x-y、
x-2y
x+y的值.
(2)若a+b
a=
5
3,求
a-2b
b的值.
(3)x:y:z=2:3:4,求x-y+z
2x+3y-z的值.
(4)已知a:b:c=3:4:5,且2a+3b-4c=-1,求2a-3b+4c 的值.
(5)已知线段AB=15cm,CD=20cm.求AB:CD的值.
二、设置问题,探究新课
如何定义两线段的比呢?什么是比例线段?
在同一长度单位下,a,b,两线段长度的比叫做这两线段的
比.记为a:b或a b
注意:(1)两线段是几何图形,可用它的长度比来确定;
(2)度量线段的长,单位多种,但求比值必需在同一长度单位下比值一定是正数,比值与采用的长度单位无关.
(3)表示方式与数字的比表示类同,但它也可以表示为AB:C
D.
比例线段:一般地,四条线段a、b、c、d中,如果a与b的比
等于c与d比,即a
b =
c
d,那么这四条线段a、b、c、d叫做成比例
线段,简称比例线段.(老教材定义:如果四条线段的长度成比例,那么这四条线段叫做成比例线段,简称比例线段)
三、模仿与应用
例题:已知线段a=10mm ,b=6cm ,c=2cm ,d=3cm.问:这四条线段是否成比例?为什么?
答:这四条线段成比例
∵a=10mm=1cm
∴a c =12 ,d b =36 =12
∴a c =d b ,即线段a 、c 、d 、b 是成比例线段.
想一想:是否还可以写出其他几组成比例的线段.
反思:判断四条线段是否成比例的方法有两种:
(1)把四条线段按大小排列好,判断前两条线段的比和后两条线段的比是否相等.
(2)查看是否有两条线段的积等于其余两条线段的积.
例如图,在Rt △ABC 中,CD 是斜边AB 上的高.请找出一组比例线段,并说明理由.
分析:(1)根据比例基本性质,要判断四条线段是否成比例, 只要采取什么方法(看其中两条线段的乘积是否等于另两条线段的乘积) (2)已知条件中有三角形的高,我们通常可以把高与什么知识联系起来?
(3)根据三角形的面积公式,你能得到一个怎样的等式?根据所得
的等式可以写出怎样的比例式.
A B
C D
例如图,是我国台湾省的几个城市的位置图,问基隆市在高雄市的哪一个方向?到高雄市的实际距离是多少km ?
注意:要设实际距离为s ;求角度时要注意方位.
解:从图上量出高雄市到基隆市的距离约35mm ,设实际距离为s ,则
3519000000s =
359000000s ∴=⨯=315000000(mm)
即s =315(km)
如果量得图中28α∠=︒,我们还能确定基隆市在高雄市的北偏东28︒的315km 处.
补充练习:
1.已知线段a =30mm ,b =2cm ,c =45 cm ,d =12mm ,试判断a 、b 、c 、d 是否成比例线段.
2.已知a 、b 、c 、d 是比例线段,其中a =6cm ,b =8cm ,c =24cm ,则线段d 的长度是多上?
3.已知三角形三条边之比为a :b :c=2:3:4,三角形的周长为18cm ,求各边的长.
4.已知AB 两地的实际距离是60km ,画在图上的距离A 1B 1是6c m ,求这幅图的比例尺.
5.现在有一棵很高的古树,欲测出它的高度,但又不能爬到
树尖上去直接测量,你有什么好的方法吗?
类题:相同时刻的物高与影长成比例.如果一电视塔在地面上影长为180m ,同一时刻高为2m 的竹竿的影长为3m ,那么电视塔的高是多少?
6.如图,已知AD ,CE 是△ABC 中BC 、AB 上的高线,求证:AD :CE=AB :BC
7.如图,在Rt △ABC 中,CD ⊥AB ,DE ⊥AC ,请找出一组比例线段,并说明理由.
8.如图,已知32AD AE DB EC ==,求,,AB EC AB DB AE AD
9.育美中学请张工程师设计学校的矩形花坛的平面图,这个花坛长为20m ,宽为12m.
(1)在比例尺为1:100的平面图上,这个矩形花坛的长和宽各是多少?
(2)在平面图上,这个花坛的长和宽的比是多少?
(3)花坛长和宽实际比是多少?
(4)你发现这两个比有什么关系?
四、课堂小结
1.两条线段的比及比例线段的概念;
2.方程思想的体现;
3.比例线段在实际问题中的应用.
A
B C
E
D。