2011贵州六盘水中考数学
- 格式:doc
- 大小:290.00 KB
- 文档页数:11
机密★启用前遵义市2011初中毕业生学业(升学)统一考试数学参考答案一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案BCBDCADBAC二、填空题(每小题4分,共32分)11.2 12.)21(21或=x 13.(-3,3) 14.-1 15.223 16.3317.1 18.89三、解答题(共9小题,共88分)19.(6分)解:原式 =212-1--31⨯+)(=4(说明:第一步中每计算正确一项得1分)20.(8分)解:原式= x y xy x x y x 222+-÷- =222y xy x xx y x +-∙- =2)(y x xx y x -∙- =yx -1当2=x ,1-=y 时原式=31121=+21.(8分)解法一:(1)(4分)在Rt △ABC 中,∠ABC=45o∵sin ∠ABC=ABAC,AB=6 ∴AC=AB ·sin45o=23226=⨯又∵∠ACD=90O,∠ADC=30OAD=2AC=26232=⨯答:调整后楼梯AD 的长为m 26 (2)(4分)由(1)知:AC=BC=23,AD=26∵∠ACD=90O ,∠ADC=30O∴DC=AD ·cos30o=632326=⨯∴BD=DC-BC=)(或2-632363- 答:BD 的长为m )2363(-解法二:(1)(4分)∵∠ACB=90O ,∠ABC=45O∴AC=BC 设AC=BC=x ,又AB=6,∴2226=+x x解得231=x ,)(232舍-=x∴AC=BC=23∵∠ACB=90O , ∠ADC=30O∴AD=2AC=26答:调整后楼梯AD 的长为m 26(2)(4分)∵∠ACD=90O,AC=23,AD=26∴DC 2=AD 2-AC 2=()5423)26(22=-∴DC=63(负值舍去) ∴BD=DC-BC=2363-答:BD 的长为m )2363(-22.(10分)解法 一:(1)(2分)9.27% (2)(2分)612.7 (3)(2分)41.7(4)(4分)设2000年我市每10万人中具有大学文化程度的人数为x 人.由题意得:3x -473=4402 x =1625∴4402-1625=2777(人)答: 2010年我市每10万人中具有大学文化程度人数比2000年增加了2777(人)解法二:(4)(4分)设2010年我市每10万人中具有大学文化程度比2000年增加了x 人, 由题意得3(4402-x )-473=4402 x =2777答: 2010年我市每10万人中具有大学文化程度 人数比2000年增加了2777(人) 23.解:(1)(5分) ∵四边形ABCD 是矩形∴∠A=∠C=90O,AB CD ∴∠ABD=∠CDB∵△BHE 、△DGF 分别是由△BHA 、△DGC 折叠所得 ∴BE=AB,DF=CD, ∠HEB=∠A, ∠GFD=∠C ∠HBE=21∠ABD, ∠GDF=21∠CDB ∴∠HBE=∠GDF, ∠HEB=∠GFD,BE=DF∴△BHE ≌△DGF(2)(5分) 在Rt △BCD 中,∵AB=CD=6,BC=8 ∴BD=10682222=+=+CD BC∴BF=BD-DF=BD-CD=4设FG=x ,则BG=BC-CG=BC-FG=8-x , 则有:2224)8(+=-x x 解得x =3∴线段FG 的长为3cm .24.解:(1)(7分)用列表法:由上表可知:有16种可能出现的结果.若关于x 的方程02=++c bx x 有 实数解,则需042≥-ac b ,而满足条件有10种结果.∴P (方程有实数解)=851610= (2)(3分)要使方程02=++c bx x 有两个相等的实数解,则需042=-ac b ,而满足条件有2种结果. ∴P (方程有两相等实数解)=81162= 25.解:(1)(6分)设第一批玩具每套的进价为x 元,则1045005.12500+=⨯x x 解得:x =50经检验:x =50是原方程的解.答: 第一批玩具每套的进价为50元.(2)(4分) 设每套玩具的售价为y 元,则%25)45002500()45002500()5.11(502500⨯+≥+-+⨯y 解得70≥y答: 每套玩具的售价至少为70元.26.解: (1)(5分)设t 秒后,四边形PCDQ 为平行四边形 则 DQ=t,BP=2t, ∴PC=20-2t当DQ=PC 时,即t=20-2t, t=320(秒)∴当t=320秒时, 四边形PCDQ 为平行四边形.(2)(7分)∵DQ ∥BH,∴△DEQ ∽△BEP∴BPQDEP QE =① 同理:由EF ∥BH.得:EP QEFH QF =② 由DQ ∥CH. 得:FHQFCH DQ =③ 由①②③得:CHQDBP QD = ∴BP=CH∴PH=PC+CH=PC+BP=BC=20(cm ) ∴PH 的长不变,为20cm .27.解:(1)(3分)将A(3,0),B(4,1)代人)0(32≠++=a bx ax y 得⎩⎨⎧=++=++134160339b a b a∴⎪⎩⎪⎨⎧-==2521b a ∴325212+-=x x y∴C(0,3)(2)(7分)假设存在,分两种情况,如图. ①连接AC,∵OA=OC=3, ∴∠OAC=∠OCA=45O. ……1分 过B 作BD ⊥x 轴于D ,则有BD=1, 134=-=-=OA OD AD ,∴BD=AD, ∴∠DAB=∠DBA=45O.∴∠BAC=180O -45O -45O =90O……………2分 ∴△ABC 是直角三角形. ∴C(0,3)符合条件. ∴P 1(0,3)为所求.②当∠ABP=90O时,过B 作BP ∥AC,BP 交抛物线于点P.∵A(3,0),C(0,3)∴直线AC 的函数关系式为3+-=x y 将直线AC 向上平移2个单位与直线BP 重合. 则直线BP 的函数关系式为5+-=x y由⎪⎩⎪⎨⎧+-=+-=3252152x x y x y ,得⎩⎨⎧==⎩⎨⎧=-=1461y x y x 或 又B(4,1), ∴P 2(-1,6).综上所述,存在两点P 1(0,3), P 2(-1,6).另解②当∠ABP=90O时, 过B 作BP ∥AC,BP 交抛物线于点P. ∵A(3,0),C(0,3)∴直线AC 的函数关系式为3+-=x y将直线AC 向上平移2个单位与直线BP 重合. 则直线BP 的函数关系式为5+-=x y ∵点P 在直线5+-=x y 上,又在325212+-=x x y 上. ∴设点P 为)32521,(),5,(2+-+-x x x x x ∴325215,2+-=+-x x x x 解得4,121=-=x x∴P 1(-1,6), P 2(4,1)(舍)综上所述,存在两点P 1(0,3), P 2(-1,6).(3)(4分) ∵∠OAE=∠OAF=45O ,而∠OEF=∠OAF=45O,∠OFE=∠OAE=45O,∴∠OEF=∠OFE=45O,∴OE=OF, ∠EOF=90O∵点E 在线段AC 上, ∴设E )3,(+-x x ∴222)3(+-+=x x OE =9622+-x x∴OF OE S OEF ⋅=∆21=)962(212122+-=x x OE=2932+-x x=49)23(2+-x∴当23=x 时, OEF S ∆取最小值, 此时233233=+-=+-x ,∴)23,23(E。
2011年贵州省贵阳市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1、(2011•贵阳)如果“盈利10%”记为+10%,那么“亏损6%”记为()A、﹣16%B、﹣6%C、+6%D、+4%考点:正数和负数。
专题:计算题。
分析:首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.解答:解:根据题意可得:盈利为“+”,则亏损为“﹣”,∴亏损6%记为:﹣6%.故选:B.点评:此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2、(2011•贵阳)2011年9月第九届全国少数民族传统体育运动会将在贵阳举行,为营造一个清洁、优美、舒适的美好贵阳,2011年3月贵阳市启动了“自己动手,美化贵阳”活动,在活动过程中,志愿者们陆续发放了50000份倡议书,50000这个数用科学记数法表示为()A、5xlO5B、5xlO4C、0.5x105D、0.5x104考点:科学记数法—表示较大的数。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将50000用科学记数法表示为5×104.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、(2011•贵阳)一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是()A 、B 、C 、D 、考点:概率公式。
专题:应用题。
分析:根据概率公式知,骰子共有六个面,其中向上一面的数字小于3的面有1,2,故掷该骰子一次,则向上一面的数字是1的概率是,向上一面的数字是2的概率是,从而得出答案.解答:解:骰子的六个面上分别刻有数字1,2,3,4,5,6,其中向上一面的数字小于3的面有1,2,∴掷该骰子一次,向上一面的数字是1的概率是,向上一面的数字是,2的概率是,∴向上一面的数字小于3的概率是,故选C.点评:本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.4、(2011•贵阳)一个几何体的三视图如图所示,则这个几何体是()A、圆柱B、三棱锥C、球D、圆锥考点:由三视图判断几何体。
云南省贵州省2011年中考数学专题3:方程(组)和不等式(组)一、选择题1. (云南昆明3分)若x 1,x 2是一元二次方程2x 2﹣7x+4=0的两根,则x 1+x 2与x 1•x 2的值分别是A 、﹣72,﹣2B 、﹣72,2C 、72,2D 、72,﹣2 【答案】C 。
【考点】一元二次方程根与系数的关系。
【分析】根据一元二次方程根与系数的关系得出x 1+x 2=-b a =-7722-=,x 1•x 2= c a =422=。
故选C 。
2.(云南大理、楚雄、文山、保山、丽江、怒江、迪庆、临沧3分)据调查,某市2011年的房价为4000元/2m ,预计2013年将达到4840元/2m ,求这两年的年平均增长率,设年平均增长率为x ,根据题意,所列方程为 A.4000(1)4840x += B.24000(1)4840x += C.4000(1)4840x -=D.24000(1)4840x -=【答案】B 。
【考点】一元二次方程的应用(增长率问题)。
【分析】 一年后,即2012年该市的房价是400040004000(1)x x +=+两年后,即2013年该市的房价是24000(1)4000(1)4000(1)(1)4000(1)x x x x x x +++=++=+所以,根据题意,所列方程为24000(1)4840x +=,故选B 。
3.(云南曲靖3分)方程2x -y=1和2x +y=7的公共解是⎩⎨⎧-==10.y x A ⎩⎨⎧==70.y x B C.⎩⎨⎧==51y x ⎩⎨⎧==32.y x D 【答案】D 。
【考点】方程组的解。
【分析】根据方程组的解的定义,把它们分别代入两个方程,使两个方程等式都成立的即为所求。
或求出方程组的解,与所给答案比较即可。
4.(云南昭通3分)由于国家出台对房屋的限购令,我省某地的房屋价格原价为2400元/米2,通过连续两次降价率为a 后,售价变为2000元/米2,下列方程中正确的是A .2000)1(24002=-aB .2400)1(20002=-aC .2000)1(24002=+aD .2000)1(24002=-a【答案】D 。
中考复习专题——最值问题最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题,“最值”问题大都归于两类基本模型:Ⅰ、归于函数模型:即利用一次函数的增减性和二次函数的对称性及增减性,确定某范围内函数的最大或最小值Ⅱ、归于几何模型,这类模型又分为五种情况:(1)连结直线外一点和直线上各点的所有线段中,垂线段最短; (2)归于“两点之间的连线中,线段最短”。
凡属于求“变动的两线段之和的最小值”时,大都应用这一模型。
(3)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型。
(4) 定圆中的所有弦中,直径最长。
(5)点到圆的最短及最长距离典型例题分析:一、一次函数类型例1.(2014河南省,21,10分)某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元. (1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍.设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.①求y 关于x 的函数关系式;②该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A 型电脑出厂价下调m (0<m <100)元,且限定商店最多购进A 型电脑70台. 若商店保持两种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案. 【答案】解:(1)设每台A 型电脑的销售利润为a 元,每台B 型电脑的销售利润为b 元,则有10204000,20103500.a b a b +=⎧⎨+=⎩ 解得100,150.a b =⎧⎨=⎩即每台A 型电脑的销售利润为100元,每台B 型电脑的销售利润为150元.…………………………………4分 (2)①根据题意得 100150(100y x x =+-,即5015000y x =-+. …………5分②根据题意得 100x -≤2x ,解得x ≥1333.∵5015000y x =-+中,500-<,∴y 随x 的增大而减小. ∵x 为正整数,∴当34x =时,y 取得最大值,此时10066x -=.即商店购进A 型电脑34台,B 型电脑66台,才能使销售总利润最大. …7分 (3)根据题意得 (100)150(100)y m x x =++-,即(50)15000y m x =-+.1333≤x ≤70. ①当050m <<时,500m -<,y 随x 的增大而减小.∴当x =34时,y 取得最大值.即商店购进34台A 型电脑和66台B 型电脑才能获得最大利润;………8分 ②当50m =时,500m -=,15000y =.即商店购进A 型电脑数量满足133703x ≤≤的整数时,均获得最大利润;……………………………………………9分③当50100m <<时,500m ->,y 随x 的增大而增大.∴70x =时,y 取得最大值.即商店购进70台A 型电脑和30台B 型电脑才能获得最大利润. ……10分变式1.(2013贵州黔东南,23,12)某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y (个)与甲品牌文具盒的数量x (个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元.(1)根据图像,求y 与x 之问的函数关系式; (2)求甲、乙两种品牌的文具盒进货单价; (3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元.问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元?【答案】(1)解:由图像可设y 与x 之问的函数关系式为y =kx +b ,因为点(50,250),(200,100),∴50250200100k b k b +=⎧⎨+=⎩,解得1300k b =-⎧⎨=⎩,∴y 与x 之问的函数关系式为y =-x +300;(2)设甲品牌的文具盒进货单价为m 元,则乙品牌的文具盒进货单价为2m 元,∵当x =120时,y =180,∴120m +180×2m =7200,解得m =15,2m =30,答:甲品牌的文具盒进货单价为15元,乙品牌的文具盒进货单价为30元;(3)设甲进a 个,乙进(-a +300)个,根据题意得()()153********493001795a a a a +-+⎧⎪⎨+-+⎪⎩≤≥,解得180≤a ≤181,∴整数a ,=180或181,∴该超市有两种种进货方案:方案①甲进180个,乙进120个;方案②甲进181个,乙进119个,∵总获利w = 4a +9(-a +300)=2700−5a ,∵−5<0,∴w 随着a 增大而减小,故a =180时w 最大,w 最大=2700−5×180=1800元.答:方案①获利最大,最大获利为1800元.变式2(2013年许昌市第二次模拟考试21).某商店经销甲、乙两种商品,现有如下信息: 信息1:甲、乙两种商品的进货单价之和是50元;信息2:甲商品零售单价比进货单价多10元,乙商品零售单价比进货单价的2倍少10元. 信息3:按零售单价购买甲商品3件和乙商品2件,共付了190元.请根据以上信息,解答下列问题: (1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品50件和乙商品30件.经调查发现,甲、乙两种商品零售单价分别每降1元,这两种商品每天可各多销售10件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m 元. 在不考虑其他因素的条件下,当m 定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?答案. 解:(1)设甲商品的进货单价是x 元,乙商品的进货单价是y 元.根据题意,得{50190)102(2)10(3=+=-++y x y x解得{2030==x y答:甲商品的进货单价是20元,乙商品的进货单价是30元.(2)设商店每天销售甲、乙两种商品获取的利润为s 元,则715)5.5(20110022020)1030)(20()1050)(10(22+--=++-=+-++-=m m m m m m m s∴当m =5.5时,s 有最大值,最大值为715.答:当m 定为5.5时,才能使商店每天销售甲、乙两种商品获取的利润最大,每天的最大利润是715元.二、二次函数求最值例2(2012四川自贡)正方形ABCD 的边长为1cm ,M 、N 分别是BC .CD 上两个动点,且始终保持AM ⊥MN ,当BM= cm 时,四边形ABCN 的面积最大,最大面积为 cm 2.【答案】12,58。
六盘水市2017年初中毕业生学业(升学)考试试题卷数学一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.大米包装袋上()±的标识表示此袋大米重( )100.1kgA.()~ B.10.1kg C.9.9kg D.10kg9.910.1kg2.国产越野车“BJ40”中,哪个数字或字母既是中心对称图形又是轴对称图形( )A.BB.JC.4D.03.下列式子正确的是( )A.7887+=m n mnm n m n+=+ B.7815C.7887m n mn+=m n n m+=+ D.78564.如图,梯形ABCD中,AB CD∥,D=∠( )A.120°B.135°C.145°D.155°5.已知A组四人的成绩分别为90、60、90、60,B组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当( )A.平均数B.中位数C.众数D.方差6.不等式369x+?的解集在数轴上表示正确的是( )7.国产大飞机919C用数学建模的方法预测的价格是(单位:美元):5098,5099,5001,5002,4990,4920,5080,5010,4901,4902,这组数据的平均数是( )A.5000.3B.4999.7C.4997D.50038.使函数y有意义的自变量x的取值范围是( )A.3x£x£ D.0 x³ B.0x³ C.39.已知二次函数2y ax bx c =++的图象如图所示,则( )A.0,0b c >>B.0,0b c ><C.0,0b c <<D.0,0b c <>10.矩形的两边长分别为a 、b ,下列数据能构成黄金矩形的是( )A.4,2a b =B.4,2a b =C.2,1a b =D.2,1a b =11.桌面上放置的几何体中,主视图与左视图可能不同的是( ) A.圆柱B.正方体C.球D.直立圆锥12.三角形的两边,a b 的夹角为60°且满足方程240x -+=,则第三边长的长是( )B.C.D.二、填空题(每题5分,满分40分,将答案填在答题纸上)13.中国“蛟龙号”深潜器下潜深度为7062米,用科学计数法表示为 米. 14.计算:20171983? . 15.定义:,,A b c a =,B c =,,,AB a b c =,若1M =-,0,1,1N =-,则MN ={ }.16.如图,在正方形ABCD 中,等边三角形AEF 的顶点E 、F 分别在边BC 和CD 上,则AEB =∠ 度.17.方程221111x x -=--的解为x =.18.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,在BA 的延长线上取一点E ,连接OE 交AD 于点F ,若5CD =,8BC =,2AE =,则AF =.19.已知()2,1A -,()6,0B -,若白棋A 飞挂后,黑棋C 尖顶,黑棋C 的坐标为(,).20.计算1491625+++++…的前29项的和是.三、解答题 (本大题共6小题,共62分.解答应写出文字说明、证明过程或演算步骤.) 21.计算:(1)12sin 302-+--°;(2)()013p ---.22.如图,在边长为1的正方形网格中,ABC △的顶点均在格点上.(1)画出ABC △关于原点成中心对称的'''A B C △,并直接写出'''A B C △各顶点的坐标. (2)求点B 旋转到点'B 的路径(结果保留p ).23.端午节当天,小明带了四个粽子(除味道不同外,其它均相同),其中两个是大枣味的,另外两个是火腿味的,准备按数量平均分给小红和小刚两个好朋友.(1)请你用树状图或列表的方法表示小红拿到的两个粽子的所有可能性;(2)请你计算小红拿到的两个粽子刚好是同一味道的概率.24.甲乙两个施工队在六安(六盘水——安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离,若设甲队每天铺设x米,乙队每天铺设y米.(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?25.如图,MN是O⊙的直径,4MN=,点A在O⊙上,30AMN=∠°,B为AN的中点,P是直径MN上一动点.(1)利用尺规作图,确定当PA PB+最小时P点的位置(不写作法,但要保留作图痕迹).(2)求PA PB+的最小值.26.已知函数y kx b=+,kyx=,b、k为整数且1bk=.(1)讨论b,k的取值.(2)分别画出两种函数的所有图象.(不需列表)(3)求y kx b=+与kyx=的交点个数.。
贵州省六盘水市2011年中考数学试卷一、选择题(每小题 3分,满分30分)1、( 2011?六盘水)下列实数中,U<1-1 0 1 3、(2011?六盘水)如图是正方体的一个平面展开图,-1 0 1如果叠成原来的正方体,与仓『'字相对的字是()确的是()A 、y 1 >y 2>y 3B 、y 2>y 1>y 3C y 3>y 1> y 2D 、y 3>y 2>y 1 9、(2011?六盘水)标准对数视力表二”对我们来说并不陌生, 如图是视力表的一部分, 其中最上面较大的 “E ”与下面四个较小 “ E 中的哪一个是位似图形( )A、-1 0 1B、-1 0 1 美 C 、好 D 、凉已知两圆的半径分别为 1和2, B 、相交 D 、外切 下列运算中,结果正确的是( 2 , 2 , 4、3 7 B 、(— a ) =a 4、 (2011?六盘水) A 、内切 C 、外离 5、 (2011?六盘水) 2 2 A 、( a — b ) =a — b 6、 (2011?六盘水)下列事件是必然事件的是( A 、若a > b ,贝U ac > bc B 、在正常情况下,将水加热到 100C 时水会沸腾 C 、投掷一枚硬币,落地后正面朝上 D 、长为3cm 、3cm 、7cm 的三条线段能围成一个三角形 7、 (2011?六盘水)如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间 x 与火车在隧道内的长度y 之间的关系用图象描述大致是( 圆心距为5,那么这两个圆的位置关系是 C ■) ) 2a+4b=6ab D 、— ( 1 - a ) =a _ )A 、 8、7二 的图象上,则下列结论正XA 、一 2B 、0D、2、2011■尤> "1的解集表示在数轴上,正确的是(无理数是(D 、 C、、填空题(每小题 4分,满分32 分)11、 ( 2011?六盘水)如果上升 10米记作+10米,那么下降5米记作 ___________________________ 米. 12、 (2011?六盘水)通过第六次全国人口普查得知,六盘水市人口总数约为2851180人,这个数用科学记数法表示是 ___________________ 人(保留两个有效数字).13、 (2011?六盘水)请写出两个既是轴对称图形又是中心对称图形的平面几何图形名称_______________ (写出两个即可)14、 ( 2011?六盘水)在平面直角坐标系中,点P (2, 3)与点 P' (2a+b , a+2b )关于原点对称,贝U a - b 的值为 _________________ .15、 ( 2011?六盘水)一个正方形的面积是20 ,通过估算,它的边长在整数 ________________________ 与 ______________之间.16、(2011?六盘水)小明将两把直尺按如图所示叠放,使其中一把直尺的一个顶点恰好落在另一把直尺的 边上,则/ 1 + / 2= __ 度.三、解答题(本大题共 7道题,满分88分,请在答题卷中作答,必须写出运算步骤,推理过程,文字说 明或作图痕迹)◎ ◎左下 C 右上 D 、右下 、( 六盘水)如图,在菱形 在AC 上运动,在运动过程中,存在 ABCD 中,对角线 AC=6, BD=8,点E 、F 分别是边 AB 、BC 的中点,点 PPE+PF 的最小值,则这个最小值是( )A 、3B 、4C 、5D 、617、(2011?六盘水)从美学角度来说,女老师上身长约 61.80cm ,下身长约人的上身长与下身长之比为黄金比时, 可以给人一种协调的美感. 某93.00cm ,她要穿约 __________________ cm 的高跟鞋才能达到黄金比的美感效果(精确到 0.01cm ).18、(2011?六盘水)有一列数: 3 -7「则它的第7个数是 ;第n 个数是◎◎19、(2011?六盘水)计算:-f-19;- V8X (-) '2 -V8+I -4sm45°|3-(H-114; °£y 11 < X20、( 2011?六盘水)先化简代数式:^,再从你喜欢的数中选择一个恰当x -1r+1 x 2 -1的作为x 的值,代入求出代数式的值.21、(2011?六盘水)在我市举行的祖国好,家乡美”唱红歌比赛活动中,共有40支参赛队.市教育局对本次活动的获奖情况进行了统计,并根据收集的数据绘制了图 1、图2两幅不完整的统计图,请你根据图中提供的信息解答下面的问题:丄山:1期山丄山山」』111_一11一丄_1皿上罗1_丄山山一11_一11一丄_1丄上孑1」143^一11一丄_1丄上罗1_丄山皿 (1) 获一、二、三等奖各有多少参赛队? 旧 B B (2)在答题卷上将统计图图 1补充完整;(3) 计算统计图图2中没获将”部分所对应的圆心角的度数; (4) 求本次活动的获奖概率.16 14 12 10图122、( 2011?六盘水)小明家有一块长8m 、宽 6m 的矩形空地,妈妈准备在该空地上建造一个花园,并使花园面积为空地面积的一半,小明设计了如下的四种方案供妈妈挑选,请你选择其中的一种方案帮小明求出图中的x 值.歹方案一方案二方案三方案四23、( 2011?六盘水)如图,已知: △ ABC 是O O 的内接三角形,D 是OA 延长线上的一点,连接 DC,且 / B=Z D=3C ° . (1) 判断直线CD 与O O 的位置关系,并说明理由.(2) 若AC=6,求图中弓形(即阴影部分)的面积.24、( 2011?六盘水)某一特殊路段规定:汽车行驶速度不超过 36千米/时•一辆汽车在该路段上由东向西 行驶,如图所示,在距离路边 10米0处有一 车速检测仪”,测得该车从北偏东 60°的A 点行驶到北偏东30。
某某某某2011年中考数学试题分类解析汇编专题9:三角形 一、选择题 1.(某某某某3分)如图,在Rt△ABC 中,∠ACB=90°,BC=3,AC=15,AB 的垂直平分线ED 交BC 的延长线与D 点,垂足为E ,则sin∠CAD=A 、14B 、13 C 、154 D 、1515【答案】A 。
【考点】锐角三角函数的定义,线段垂直平分线的性质,勾股定理。
【分析】设AD=x ,则CD=x -3,在直角△ACD 中,(x -3)2+ (15)2=x 2,解得,x=4。
∴CD=4-3=1,∴sin∠CAD=CD 1AD 4=。
故选A 。
2.(某某某某3分)如图,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是A 、2.5B 、22C 、3D 、5【答案】D 。
【考点】勾股定理,实数与数轴。
【分析】本题利用实数与数轴的关系及直角三角形三边的关系(勾股定理)解答即可:由勾股定理可知,∵OB=22215+=,∴这个点表示的实数是5。
故选D 。
3.(某某某某3分)如图,已知AB =AC ,∠A=︒36,AB 的中垂线MD 交AC 于点D 、交AB 于点M 。
下列结论:①BD 是∠ABC 的平分线;②△BCD 是等腰三角形;③△ABC∽△BCD;④△AMD≌△BCD,正确的有( )个A 、4B 、3C 、2D 、1【答案】B 。
【考点】相似三角形的判定,全等三角形的判定,线段垂直平分线的性质,等腰三角形的判定和性质,三角形内角和定理。
【分析】首先由AB 的中垂线MD 交AC 于点D 、交AB 于点M ,求得△ABD 是等腰三角形,即可求得∠ABD 的度数,又由AB=AC ,即可求得∠ABC 与∠C 的度数,则可求得所有角的度数,可得△BCD 也是等腰三角形,则可证得△ABC∽△BCD:∵AB 的中垂线MD 交AC 于点D 、交AB 于点M ,∴AD=BD。
2011年毕节地区中考试题数 学(满分150分,考试用时120分钟)卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45分。
在每小题选项中,只有一个选项正确,请把你认为正确的选项涂在相应的答题卡上。
) 1. (2011贵州毕节,1,3分)16的算术平方根是( )A .4B .±4C .2D .±2 【答案】C2. (2011贵州毕节,2,3分)下列交通标志中,是中心对称图形的是( )A .B .C .D . 【答案】D3. (2011贵州毕节,3,3分)将下图所示的Rt △ABC 绕直角边AB 旋转一周,所得几何体的主视图为( )A B C D【答案】C4. (2011贵州毕节,4,3分)下列计算正确的是( ) A .623a a a =⋅ B .1055a a a =+C .2236)3(a a =- D .723)(a a a =⋅【答案】D5. (2011贵州毕节,5,3分)毕节地区水能资源丰富,理论蕴藏量达221.21万千瓦,己开发156万千瓦,把己开发水能资源用四舍五入法保留两个有效数学并且用科学计数法表示应记为( )千瓦 A .51016⨯ B .6106.1⨯ C .610160⨯ D .71016.0⨯【答案】B6. (2011贵州毕节,6,3分)为备战中考,同学们积极投入复习,李红书包里装有语文试卷3张、数学试卷2张、英语试卷1张、其它学科试卷3张,从中任意抽出一张试卷,恰好是数学试卷的概率是( ) A .41 B .21 C .91 D .92【答案】D7. (2011贵州毕节,7,3分)两个相似多边形的面积比是16:9,其中较小多边形周长为36cm ,则较大多边形周长为( )A .48cmB .54cmC .56cmD .64cm【答案】A8. (2011贵州毕节,8,3分)函数12-+=x x y 中自变量x 的取值范围是( ) A .x ≥-2 B .x ≥-2且x ≠1 C .x ≠1 D .x ≥-2或x ≠1【答案】B 9. (2011贵州毕节,9,3分)一次函数)0(≠+=k k kx y 和反比例函数)0(≠=k xky 在同一直角坐标系中的图象大致是( )【答案】C10. (2011贵州毕节,10,3分)广州亚运会期间,某纪念品原价168元,连续两次降价%a 后售价为128元,下列所列方程正确的是( )A .128%)1(1602=+a B .128%)1(1602=-a C .128%)21(160=-a D .128%)1(160=-a【答案】B11. (2011贵州毕节,11,3分)如图,已知AB ∥CD ,∠E =︒28,∠C =︒52,则∠EAB 的度数是( )A .︒28B .︒52C .︒70D .︒80【答案】D12. (2011贵州毕节,12,3分)如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( ) A .2cm B .3cm C .32cm D .52cm【答案】C13. (2011贵州毕节,13,3分)如图,已知AB =AC ,∠A =︒36,AB 的中垂线MD 交AC 于点D 、交AB 于点M 。
某某省六盘水市2020年中考数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每小题3分,共30分.1.(3分)计算(﹣3)×2的结果是()A.﹣6 B.﹣1 C.1 D.6【分析】原式利用乘法法则计算即可求出值.【解答】解:原式=﹣3×2=﹣6.故选:A.【点评】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.2.(3分)下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是()A.B.C.D.【分析】各选项袋子中分别共有10个小球,若要使摸到红球可能性最大,只需找到红球的个数最多的袋子即可得出答案.【解答】解:在四个选项中,D选项袋子中红球的个数最多,所以从D选项袋子中任意摸出一个球,摸到红球可能性最大,故选:D.【点评】本题主要考查可能性的大小,解题的关键是掌握随机事件发生的可能性(概率)的计算方法.3.(3分)2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A.直接观察B.实验C.调查D.测量【分析】直接利用调查数据的方法分析得出答案.【解答】解:一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是:调查.故选:C.【点评】此题主要考查了调查收集数据的过程与方法,正确掌握基本调查方法是解题关键.4.(3分)如图,直线a,b相交于点O,如果∠1+∠2=60°,那么∠3是()A.150°B.120°C.60°D.30°【分析】根据对顶角相等求出∠1,再根据互为邻补角的两个角的和等于180°列式计算即可得解.【解答】解:∵∠1+∠2=60°,∠1=∠2(对顶角相等),∴∠1=30°,∵∠1与∠3互为邻补角,∴∠3=180°﹣∠1=180°﹣30°=150°.故选:A.【点评】本题考查了对顶角相等的性质,邻补角的定义,是基础题,熟记概念与性质并准确识图是解题的关键.5.(3分)当x=1时,下列分式没有意义的是()A.B.C.D.【分析】直接利用分式有意义的条件分析得出答案.【解答】解:A、,当x=1时,分式有意义不合题意;B、,当x=1时,x﹣1=0,分式无意义符合题意;C、,当x=1时,分式有意义不合题意;D、,当x=1时,分式有意义不合题意;故选:B.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.6.(3分)下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.【分析】根据平行投影的特点,利用两小树的影子的方向相反可对A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对C、D进行判断.【解答】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项正确.D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D选项错误;故选:C.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.7.(3分)菱形的两条对角线长分别是6和8,则此菱形的周长是()A.5 B.20 C.24 D.32【分析】根据题意画出图形,由菱形的性质求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长.【解答】解:如图所示:∵四边形ABCD是菱形,AC=8,BD=6,∴AB=BC=CD=AD,OA=AC=4,OB=BD=3,AC⊥BD,∴AB===5,∴此菱形的周长=4×5=20;故选:B.【点评】本题考查了菱形的性质以及勾股定理;熟练掌握菱形的性质,由勾股定理求出菱形的边长是解题的关键.8.(3分)已知a<b,下列式子不一定成立的是()A.a﹣1<b﹣1 B.﹣2a>﹣2bC.a+1<b+1 D.ma>mb【分析】根据不等式的基本性质进行判断.【解答】解:A、在不等式a<b的两边同时减去1,不等号的方向不变,即a﹣1<b﹣1,原变形正确,故此选项不符合题意;B、在不等式a<b的两边同时乘以﹣2,不等号方向改变,即﹣2a>﹣2b,原变形正确,故此选项不符合题意;C、在不等式a<b的两边同时乘以,不等号的方向不变,即a<b,不等式a<b的两边同时加上1,不等号的方向不变,即a+1<b+1,原变形正确,故此选项不符合题意;D、在不等式a<b的两边同时乘以m,不等式不一定成立,即ma>mb,或ma<mb,或ma=mb,原变形不正确,故此选项符合题意.故选:D.【点评】此题主要考查了不等式的基本性质,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.(3分)如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE =BD;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为()A.无法确定B.C.1 D.2【分析】如图,过点G作GH⊥AB于H.根据角平分线的性质定理证明GH=GC=1,利用垂线段最短即可解决问题.【解答】解:如图,过点G作GH⊥AB于H.由作图可知,GB平分∠ABC,∵GH⊥BA,GC⊥BC,∴GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:C.【点评】本题考查作图﹣基本作图,垂线段最短,角平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.(3分)已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,这两个整数根是()A.﹣2或0 B.﹣4或2 C.﹣5或3 D.﹣6或4【分析】根据题目中的函数解析式和二次函数与一元二次方程的关系,可以得到关于x 的方程ax2+bx+c+n=0 (0<n<m)的两个整数根,从而可以解答本题.【解答】解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为﹣3和1,函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣5,函数y=ax2+bx+c的图象开口向下,∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,∴这两个整数根是﹣4或2,故选:B.【点评】本题考查抛物线与x轴的交点、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的关系解答.二、填空题:每小题4分,共20分.11.(4分)化简x(x﹣1)+x的结果是x2.【分析】先根据单项式乘以多项式法则算乘法,再合并同类项即可.【解答】解:x(x﹣1)+x=x2﹣x+x=x2,故答案为:x2.【点评】本题考查了单项式乘以多项式和合并同类项法则,能灵活运用法则进行计算是解此题的关键.12.(4分)如图,点A是反比例函数y=图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为 3 .【分析】根据反比例函数y=的图象上点的坐标性得出|xy|=3,进而得出四边形OBAC.【解答】解:∵过点A分别作x轴,y轴的垂线,垂足为B,C,∴AB×AC=|k|=3,则四边形OBAC的面积为:3.故答案为:3.【点评】本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.13.(4分)在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.【分析】随着试验次数的增多,变化趋势接近于理论上的概率.【解答】解:在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.故答案为:.【点评】本题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.14.(4分)如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是120 度.【分析】连接OA,OB,根据已知条件得到∠AOB=120°,根据等腰三角形的性质得到∠OAB =∠OBA=30°,根据全等三角形的性质得到∠DOA=∠BOE,于是得到结论.【解答】解:连接OA,OB,∵△ABC是⊙O的内接正三角形,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,∵∠CAB=60°,∴∠OAD=30°,∴∠OAD=∠OBE,∵AD=BE,∴△OAD≌△OBE(SAS),∴∠DOA=∠BOE,∴∠DOE=∠DOA+∠AOE=∠AOB=∠AOE+∠BOE=120°,故答案为:120.【点评】本题考查了三角形的外接圆与外心,等边三角形的性质,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.15.(4分)如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线于点D,BD=8,AC=11,则边BC的长为4.【分析】延长BD到F,使得DF=BD,根据等腰三角形的性质与判定,勾股定理即可求出答案.【解答】解:延长BD到F,使得DF=BD,∵CD⊥BF,∴△BCF是等腰三角形,∴BC=CF,过点C点作CH∥AB,交BF于点H∴∠ABD=∠CHD=2∠CBD=2∠F,∴HF=HC,∵CH∥AB,∴∠ABE=∠CHE,∠BAE=∠ECH,∴EH=CE,∵EA=EB,∴AC=BH,∵BD=8,AC=11,∴DH=BH﹣BD=AC﹣BD=3,∴HF=HC=8﹣3=5,在Rt△CDH,∴由勾股定理可知:CD=4,在Rt△BCD中,∴BC==4,故答案为:4【点评】本题考查勾股定理,解题的关键是熟练运用等腰三角形的性质与判定,本题属于中等题型.三、解答题:本大题10小题,共100分.16.(8分)如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.【分析】(1)构造边长3,4,5的直角三角形即可.(2)构造直角边为2,斜边为4的直角三角形即可(答案不唯一).(3)构造三边分别为2,,的直角三角形即可.【解答】解:(1)如图①中,△ABC即为所求.(2)如图②中,△ABC即为所求.(3)△ABC即为所求.【点评】本题考查作图﹣应用与设计,无理数,勾股定理,勾股定理的逆定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(10分)2020年2月,某某省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/h 2 3 4人数/人 2 6 6 10 m 4 (1)本次共调查的学生人数为50 ,在表格中,m=22 ;(2)统计的这组数据中,每天听空中黔课时间的中位数是 3.5h ,众数是 3.5h ;(3)请就疫情期间如何学习的问题写出一条你的看法.【分析】(1)根据2小时的人数和所占的百分比求出本次调查的学生人数,进而求得m 的值;(2)根据中位数、众数的定义分别进行求解即可;(3)如:认真听课,独立思考(答案不唯一).【解答】解:(1)本次共调查的学生人数为:6÷12%=50(人),m=50×44%=22,故答案为:50,22;(2)由条形统计图得,2个1.5,6个2,6个2.5,10个3,22个3.5,4个4,∵第25个数和第26个数都是3.5h,∴中位数是3.5h;∵3.5h出现了22次,出现的次数最多,∴众数是3.5h,故答案为:3.5h,3.5h;(3)就疫情期间如何学习的问题,我的看法是:认真听课,独立思考(答案不唯一).【点评】本题考查扇形统计图、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.18.(10分)如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF =BE.(1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.【分析】(1)先根据矩形的性质得到AD∥BC,AD=BC,然后证明AD=EF可判断四边形AEFD是平行四边形;(2)连接DE,如图,先利用勾股定理计算出AE=2,再证明△ABE∽△DEA,利用相似比求出AD,然后根据平行四边形的面积公式计算.【解答】(1)证明:∵∠四边形ABCD是矩形,∴AD∥BC,AD=BC,∵BE=CF,∴BE+EC=EC+CF,即BC=EF,∴AD=EF,∴四边形AEFD是平行四边形;(2)解:连接DE,如图,∵四边形ABCD是矩形,∴∠B=90°,在Rt△ABE中,AE==2,∵AD∥BC,∴∠AEB=∠EAD,∵∠B=∠AED=90°,∴△ABE∽△DEA,∴AE:AD=BE:AE,∴AD==10,∵AB=4,∴四边形AEFD的面积=AB×AD=4×10=40.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的判定和矩形的性质.19.(10分)如图,一次函数y=x+1的图象与反比例函数y=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=的图象没有公共点.【分析】(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式,即可求解;(2)一次函数y=x+1的图象向下平移2个单位得到y=x﹣1②,联立①②即可求解;(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x﹣6﹣0,则△=25+24k<0,解得:k<﹣,即可求解.【解答】解:(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式并解得:k=2×3=6,故反比例函数表达式为:y=①;(2)一次函数y=x+1的图象向下平移2个单位得到y=x﹣1②,联立①②并解得:,故交点坐标为(﹣2,﹣3)或(3,2);(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x﹣6=0,∵两个函数没有公共点,故△=25+24k<0,解得:k<﹣,故可以取k=﹣2(答案不唯一),故一次函数表达式为:y=﹣2x+5(答案不唯一).【点评】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.20.(10分)“2020第二届某某市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3X大小一样,背面完全相同的卡片,3X卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一X,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一X卡片,记下内容后不放回,再随机抽出一X卡片,请用列表或画树状图的方法,求恰好抽到2X卡片都是《辞海》的概率;(2)再添加几X和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一X,使得抽到《消防知识手册》卡片的概率为,那么应添加多少X《消防知识手册》卡片?请说明理由.【分析】(1)画出树状图,由概率公式即可得出答案;(2)设应添加xX《消防知识手册》卡片,由概率公式得出方程,解方程即可.【解答】解:(1)把《消防知识手册》《辞海》《辞海》分别记为A、B、C,画树状图如图:共有6个等可能的结果,恰好抽到2X卡片都是《辞海》的结果有2个,∴恰好抽到2X卡片都是《辞海》的概率为=;(2)设应添加xX《消防知识手册》卡片,由题意得:=,解得:x=4,经检验,x=4是原方程的解;答:应添加4X《消防知识手册》卡片.【点评】本题考查了列表法或画树状图法以及概率公式;列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.21.(8分)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)(1)求屋顶到横梁的距离AG;(2)求房屋的高AB(结果精确到1m).【分析】(1)根据题意得到AG⊥EF,EG=∠AEG=∠ACB=35°,解直角三角形即可得到结论;(2)过E作EH⊥CB于H,设EH=x,解直角三角形即可得到结论.【解答】解:(1)∵房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,EF∥BC,∴AG⊥EF,EG=EF,∠AEG=∠ACB=35°,在Rt△AGE中,∠AGE=90°,∠AEG=35°,∵tan∠AEG=tan35°=,EG=6,∴AG=6×0.7=4.2(米);答:屋顶到横梁的距离AG约为4.2米;(2)过E作EH⊥CB于H,设EH=x,在Rt△EDH中,∠EHD=90°,∠EDH=60°,∵tan∠EDH=,∴DH=,在Rt△ECH中,∠EHC=90°,∠ECH=35°,∵tan∠ECH=,∴CH=,∵CH﹣DH=CD=8,∴﹣=8,解得:x≈9.52,∴AB=AG+BG=13.72≈14(米),答:房屋的高AB约为14米.【点评】本题考查了解直角三角形的应用,轴对称图形,解题的关键是借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.(10分)第33个国际禁毒日到来之际,某某市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?【分析】(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100﹣x)支,根据总共的费用为(1300﹣378)元列方程解答即可;(2)设笔记本的单价为a元,根据总共的费用为(1300﹣378)元列方程解求出方程的解,再根据a的取值X围以及一次函数的性质求出x的值,再把x的值代入方程的解即可求出a的值.【解答】解:(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100﹣x)支,根据题意,得:6x+10(100﹣x)=1300﹣378,解得x=19.5,因为钢笔的数量不可能是小数,所以学习委员搞错了;(2)设笔记本的单价为a元,根据题意,得:6x+10(100﹣x)+a=1300﹣378,整理,得:x=,因为0<a<10,x随a的增大而增大,所以19.5<x<22,∵x取整数,∴x=20,21.当x=20时,a=4×20﹣78=2;当x=21时,a=4×21﹣78=6,所以笔记本的单价可能是2元或6元.【点评】本题考查了一元一次方程解实际问题的运用,一次函数的运用,理清题意,找出相应的等量关系是解答本题的关键.23.(10分)如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O 的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.(1)求证:AD=CD;(2)若AB=4,BF=5,求sin∠BDC的值.【分析】(1)根据圆周角定理得∠ABD=∠ACD,进而得∠ACD=∠CAD,便可由等腰三角形判定定理得AD=CD;(2)证明△ADF≌△ADE,得AE=AF,DE=DF,由勾股定理求得AF,由三角形面积公式求得AD,进而求得DE,BE,再证明△BEC∽△AED,得BC,进而求得sin∠BAC便可.【解答】解:(1)证明:∵∠CAD=∠ABD,又∵∠ABD=∠ACD,∴∠ACD=∠CAD,∴AD=CD;(2)∵AF是⊙O的切线,∴∠FAB=90°,∵AB是⊙O的直径,∴∠ACB=∠ADB=∠ADF=90°,∴∠ABD+∠BAD=∠BAD+∠FAD=90°,∴∠ABD=∠FAD,∵∠ABD=∠CAD,∴∠FAD=∠EAD,∵AD=AD,∴△ADF≌△ADE(ASA),∴AF=AE,DF=DE,在Rt△ADE中,∵AB=4,BF=5,∴AF=,∴AE=AF=3,∵,∴,∴DE=,∴BE=BF﹣2DE=,∵∠AED=∠BEC,∠ADE=∠BCE=90°,∴△BEC∽△AED,∴,∴,∴,∵∠BDC=∠BAC,在Rt△ACB中,∠ACB=90°∴.【点评】本题主要考查了圆的切线的性质,圆周角定理,相似三角形的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,解直角三角形的应用,勾股定理,关键是证明三角形全等与相似.24.(12分)2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示9<x≤15)时间x(分钟)0 1 2 3 4 5 6 7 8 9 9~15 人数y(人)0 170 320 450 560 650 720 770 800 810 810 (1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y与x之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?【分析】(1)分两种情况讨论,利用待定系数法可求解析式;(2)设第x分钟时的排队人数为w人,由二次函数的性质和一次函数的性质可求当x=7时,w的最大值=490,当9<x≤15时,210≤w<450,可得排队人数最多时是490人,由全部考生都完成体温检测时间×每分钟检测的人数=总人数,可求解;(3)设从一开始就应该增加m个检测点,由“在12分钟内让全部考生完成体温检测”,列出不等式,可求解.【解答】解:(1)由表格中数据的变化趋势可知,①当0≤x≤9时,y是x的二次函数,∵当x=0时,y=0,∴二次函数的关系式可设为:y=ax2+bx,由题意可得:,解得:,∴二次函数关系式为:y=﹣10x2+180x,②当9<x≤15时,y=810,∴y与x之间的函数关系式为:y=;(2)设第x分钟时的排队人数为w人,由题意可得:w=y﹣40x=,①当0≤x≤9时,w=﹣10x2+140x=﹣10(x﹣7)2+490,∴当x=7时,w的最大值=490,②当9<x≤15时,w=810﹣40x,w随x的增大而减小,∴210≤w<450,∴排队人数最多时是490人,要全部考生都完成体温检测,根据题意得:810﹣40x=0,解得:x=20.25,答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;(3)设从一开始就应该增加m个检测点,由题意得:12×20(m+2)≥810,解得m≥,∵m是整数,∴m≥的最小整数是2,∴一开始就应该至少增加2个检测点.【点评】本题考查了二次函数的应用,二次函数的性质,一次函数的性质,一元一次不等式的应用,理解题意,求出y与x之间的函数关系式是本题的关键.25.(12分)如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO 的数量关系是PQ=BO ,位置关系是PQ⊥BO;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.【分析】(1)由正方形的性质得出BO⊥AC,BO=CO,由中位线定理得出PQ∥OC,PQ=OC,则可得出结论;(2)连接O'P并延长交BC于点F,由旋转的性质得出△AO'E是等腰直角三角形,O'E∥BC,O'E=O'A,证得∠O'EP=∠FCP,∠PO'E=∠PFC,△O'PE≌△FPC(AAS),则O'E=FC=O'A,O'P=FP,证得△O'BF为等腰直角三角形.同理△BPO'也为等腰直角三角形,则可得出结论;(3)延长O'E交BC边于点G,连接PG,O'P.证明△O'GP≌△BCP(SAS),得出∠O'PG =∠BPC,O'P=BP,得出∠O'PB=90°,则△O'PB为等腰直角三角形,由直角三角形的性质和勾股定理可求出O'A和O'B,求出BQ,由三角形面积公式即可得出答案.【解答】解:(1)∵点O为对角线AC的中点,∵P为BC的中点,Q为BO的中点,∴PQ∥OC,PQ=OC,∴PQ⊥BO,PQ=BO;故答案为:PQ=BO,PQ⊥BO.(2)△PQB的形状是等腰直角三角形.理由如下:连接O'P并延长交BC于点F,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵将△AOB绕点A按顺时针方向旋转45°得到△AO'E,∴△AO'E是等腰直角三角形,O'E∥BC,O'E=O'A,∴∠O'EP=∠FCP,∠PO'E=∠PFC,又∵点P是CE的中点,∴CP=EP,∴△O'PE≌△FPC(AAS),∴O'E=FC=O'A,O'P=FP,∴AB﹣O'A=CB﹣FC,∴BO'=BF,∴△O'BF为等腰直角三角形.∴△BPO'也为等腰直角三角形.又∵点Q为O'B的中点,∴PQ⊥O'B,且PQ=BQ,∴△PQB的形状是等腰直角三角形;(3)延长O'E交BC边于点G,连接PG,O'P.∵四边形ABCD是正方形,AC是对角线,∴∠ECG=45°,由旋转得,四边形O'ABG是矩形,∴O'G=AB=BC,∠EGC=90°,∴△EGC为等腰直角三角形.∵点P是CE的中点,∴PC=PG=PE,∠CPG=90°,∠EGP=45°,∴△O'GP≌△BCP(SAS),∴∠O'PG=∠BPC,O'P=BP,∴∠O'PG﹣∠GPB=∠BPC﹣∠GPB=90°,∴∠O'PB=90°,∴△O'PB为等腰直角三角形,∵点Q是O'B的中点,∴PQ=O'B=BQ,PQ⊥O'B,∵AB=1,∴O'A=,∴O'B===,∴BQ=.∴S△PQB=BQ•PQ=×=.【点评】本题是四边形综合题,考查了正方形的性质,旋转的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,中位线定理,矩形的判定与性质,勾股定理,三角形的面积等知识,熟练掌握正方形的性质及全等三角形的判定与性质是解题的关键.。
2016年贵州省六盘水市中考数学试卷一、选择题.(本大题共10小题,每小题3分,共30分)1.(3分)(2016•六盘水)如果盈利20元记作+20,那么亏本50元记作()A.+50元B.﹣50元C.+20元D.﹣20元2.(3分)(2016•六盘水)如图是由5个相同的小立方块组成的立体图形,则它的俯视图是()A.B.C.D.3.(3分)(2016•六盘水)下列运算结果正确的是()A.a3+a2=a5B.(x+y)2=x2+y2C.x8÷x2=x4D.(ab)2=a2b24.(3分)(2016•六盘水)图中∠1、∠2、∠3均是平行线a、b被直线c所截得到的角,其中相等的两个角有几对()A.1 B.2 C.3 D.45.(3分)(2016•六盘水)小颖随机抽样调查本班20名女同学所穿运动鞋尺码,并统计如表:尺码/cm 21.5 22.0 22.5 23.0 23.5人数 2 4 3 8 3学校附近的商店经理根据表中决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用了哪个统计知识()A.众数 B.中位数C.平均数D.方差6.(3分)(2016•六盘水)用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1 B.(x+2)2=7 C.(x+2)2=13 D.(x+2)2=197.(3分)(2016•六盘水)不等式3x+2<2x+3的解集在数轴上表示正确的是()A.B.C.D.8.(3分)(2016•六盘水)为了加强爱国主义教育,每周一学校都要举行庄严的升旗仪式,同学们凝视着冉冉上升的国旗,下列哪个函数图象能近似地刻画上升的国旗离旗杆顶端的距离与时间的关系()A.B.C.D.9.(3分)(2016•六盘水)2016年某市仅教育费附加就投入7200万元,用于发展本市的教育,预计到2018年投入将达9800万元,若每年增长率都为x,根据题意列方程()A.7200(1+x)=9800 B.7200(1+x)2=9800C.7200(1+x)+7200(1+x)2=9800 D.7200x2=980010.(3分)(2016•六盘水)如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n的度数为()A.B.C.D.二、填空题.(本大题共8小题,每小题4分,共32分)11.(4分)(2016•六盘水)3的算术平方根是.12.(4分)(2016•六盘水)由38位科学家通过云计算得出:现在地球上约有3040000000000棵存活的树,将3040000000000用科学记数法表示为.13.(4分)(2016•六盘水)在一个不透明的袋中装有一红一白2个球,这些球除颜色外都相同,小刚从袋中随机摸出一个球,记下颜色后放回袋中,再从袋中随机摸出一个球,两次都摸到红球的概率是.14.(4分)(2016•六盘水)如图,EF为△ABC的中位线,△AEF的周长为6cm,则△ABC 的周长为cm.15.(4分)(2016•六盘水)若a与b互为相反数,c与d互为倒数,则a+b+3cd=.16.(4分)(2016•六盘水)如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD 的面积为.17.(4分)(2016•六盘水)如图,已知反比例函数y=的图象与正比例函数y=x的图象交于A、B两点,B点坐标为(﹣3,﹣2),则A点的坐标为()18.(4分)(2016•六盘水)我们知道:“两边及其中一边的对角分别相等的两个三角形不一定全等”.但是,小亮发现:当这两个三角形都是锐角三角形时,它们会全等,除小亮的发现之外,当这两个三角形都是时,它们也会全等;当这两个三角形其中一个三角形是锐角三角形,另一个是时,它们一定不全等.三、解答题.(本大题共8小题,共88分)19.(8分)(2016•六盘水)计算:+|1﹣|﹣2sin60°+(π﹣2016)0﹣.20.(8分)(2016•六盘水)为确保信息安全,在传输时往往需加密,发送方发出一组密码a,b,c时,则接收方对应收到的密码为A,B,C.双方约定:A=2a﹣b,B=2b,C=b+c,例如发出1,2,3,则收到0,4,5(1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?21.(10分)(2016•六盘水)甲队修路500米与乙队修路800米所用天数相同,乙队比甲队每天多修30米,问甲队每天修路多少米?解:设甲队每天修路x米,用含x的代表式完成表格:甲队每天修路长度(单位:米)乙队每天修路长度(单位:米)甲队修500米所用天数(单位:天)乙队修800米所用天数(单位:天)x关系式:甲队修500米所用天数=乙队修800米所用天数根据关系式列方程为:解得:检验:答:.22.(10分)(2016•六盘水)在△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如图1,则有a2+b2=c2;若△ABC为锐角三角形时,小明猜想:a2+b2>c2,理由如下:如图2,过点A 作AD⊥CB于点D,设CD=x.在Rt△ADC中,AD2=b2﹣x2,在Rt△ADB中,AD2=c2﹣(a﹣x)2∴a2+b2=c2+2ax∵a>0,x>0∴2ax>0∴a2+b2>c2∴当△ABC为锐角三角形时,a2+b2>c2所以小明的猜想是正确的.(1)请你猜想,当△ABC为钝角三角形时,a2+b2与c2的大小关系.(2)温馨提示:在图3中,作BC边上的高.(3)证明你猜想的结论是否正确.23.(12分)(2016•六盘水)据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,结果精确到1m)(1)求B,C的距离.(2)通过计算,判断此轿车是否超速.24.(12分)(2016•六盘水)为了贯彻落实健康第一的指导思想,促进学生全面发展,国家每年都要对中学生进行一次体能测试,测试结果分“优秀”、“良好”、“及格”、“不及格”四个等级,某学校从七年级学生中随机抽取部分学生的体能测试结果进行分析,并根据收集的数据绘制了两幅不完整的统计图,请根据这两幅统计图中的信息回答下列问题(1)本次抽样调查共抽取多少名学生?(2)补全条形统计图.(3)在扇形统计图中,求测试结果为“良好”等级所对应圆心角的度数.(4)若该学校七年级共有600名学生,请你估计该学校七年级学生中测试结果为“不及格”等级的学生有多少名?(5)请你对“不及格”等级的同学提一个友善的建议(一句话即可).25.(12分)(2016•六盘水)如图,在⊙O中,AB为直径,D、E为圆上两点,C为圆外一点,且∠E+∠C=90°.(1)求证:BC为⊙O的切线.(2)若sinA=,BC=6,求⊙O的半径.26.(16分)(2016•六盘水)如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和对称轴.(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.2016年贵州省六盘水市中考数学试卷参考答案与试题解析一、选择题.(本大题共10小题,每小题3分,共30分)1.(3分)(2016•六盘水)如果盈利20元记作+20,那么亏本50元记作()A.+50元B.﹣50元C.+20元D.﹣20元【分析】利用相反意义量的定义计算即可得到结果.【解答】解:亏本50元记作﹣50元,故选B.【点评】此题考查了正数与负数,熟练掌握相反意义量的定义是解本题的关键.2.(3分)(2016•六盘水)如图是由5个相同的小立方块组成的立体图形,则它的俯视图是()A.B.C.D.【分析】根据俯视图是从物体的上面看,所得到的图形解答即可.【解答】解:几何体的俯视图是C中图形,故选:C.【点评】本题考查的是几何体的三视图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形,本题应得到从上面看的图形.3.(3分)(2016•六盘水)下列运算结果正确的是()A.a3+a2=a5B.(x+y)2=x2+y2C.x8÷x2=x4D.(ab)2=a2b2【分析】由合并同类项、完全平方公式、同底数幂的除法法则得出A、B、C不正确,由积的乘方法则得出D正确即可.【解答】解:A、a3+a2=a5不正确;B、∵(x+y)2=x2+2xy+y2,∴选项B不正确;C、x8÷x2=x4不正确;D、(ab)2=a2b2正确;故选:D.【点评】本题考查了合并同类项、完全平方公式、同底数幂的除法法则、积的乘方法则;熟记有关公式和法则是解决问题的关键.4.(3分)(2016•六盘水)图中∠1、∠2、∠3均是平行线a、b被直线c所截得到的角,其中相等的两个角有几对()A.1 B.2 C.3 D.4【分析】根据平行线的性质即可得到结论.【解答】解:∵a∥b,∴∠1=∠3,2=∠3,∵∠1=∠2,∴相等的两个角有3对,故选C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.5.(3分)(2016•六盘水)小颖随机抽样调查本班20名女同学所穿运动鞋尺码,并统计如表:尺码/cm 21.5 22.0 22.5 23.0 23.5人数 2 4 3 8 3学校附近的商店经理根据表中决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用了哪个统计知识()A.众数 B.中位数C.平均数D.方差【分析】由表可知,运动鞋尺码为23.0cm的人数最多,故经理做决定应该是根据穿哪种尺码的运动鞋人数最多,即众数.【解答】解:由表可知,运动鞋尺码为23.0cm的人数最多,所以经理决定本月多进尺码为23.0cm的女式运动鞋主要根据众数.故选A.【点评】本题主要考查了统计量的选择的知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.6.(3分)(2016•六盘水)用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1 B.(x+2)2=7 C.(x+2)2=13 D.(x+2)2=19【分析】把方程两边加上7,然后把方程左边写成完全平方式即可.【解答】解:x2+4x=3,x2+4x+4=7,(x+2)2=7.故选B.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.7.(3分)(2016•六盘水)不等式3x+2<2x+3的解集在数轴上表示正确的是()A.B.C.D.【分析】根据解不等式的方法可以求得不等式3x+2<2x+3的解集,从而可知哪个选项是正确的.【解答】解:3x+2<2x+3移项及合并同类项,得x<1,故选D.【点评】本题考查解一元一次不等式、在数轴上表示一元一次不等式的解集,解题的关键是明确解不等式的方法.8.(3分)(2016•六盘水)为了加强爱国主义教育,每周一学校都要举行庄严的升旗仪式,同学们凝视着冉冉上升的国旗,下列哪个函数图象能近似地刻画上升的国旗离旗杆顶端的距离与时间的关系()A.B.C.D.【分析】设旗杆高h,国旗上升的速度为v,根据国旗离旗杆顶端的距离S=旗杆的高度﹣国旗上升的距离,得出S=h﹣vt,再利用一次函数的性质即可求解.【解答】解:设旗杆高h,国旗上升的速度为v,国旗离旗杆顶端的距离为S,根据题意,得S=h﹣vt,∵h、v是常数,∴S是t的一次函数,∵S=﹣vt+h,﹣v<0,∴S随v的增大而减小.故选A.【点评】本题考查了函数的图象,一次函数的性质,根据题意得出国旗离旗杆顶端的距离与时间的函数关系式是解题的关键.9.(3分)(2016•六盘水)2016年某市仅教育费附加就投入7200万元,用于发展本市的教育,预计到2018年投入将达9800万元,若每年增长率都为x,根据题意列方程()A.7200(1+x)=9800 B.7200(1+x)2=9800C.7200(1+x)+7200(1+x)2=9800 D.7200x2=9800【分析】根据题意,可以列出相应的方程,本题得以解决.【解答】解:设每年增长率都为x,根据题意得,7200(1+x)2=9800,故选B【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出相应的方程.10.(3分)(2016•六盘水)如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n的度数为()A.B.C.D.【分析】根据三角形外角的性质及等腰三角形的性质分别求出∠B1A2A1,∠B2A3A2及∠B3A4A3的度数,找出规律即可得出∠A n﹣1A n B n﹣1的度数.【解答】解:∵在△ABA1中,∠A=70°,AB=A1B,∴∠BA1A=70°,∵A1A2=A1B1,∠BA1A是△A1A2B1的外角,∴∠B1A2A1==35°;同理可得,∠B2A3A2=17.5°,∠B3A4A3=×17.5°=,∴∠A n﹣1A n B n﹣1=.故选:C.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠B1C2A1,∠B2A3A2及∠B3A4A3的度数,找出规律是解答此题的关键.二、填空题.(本大题共8小题,每小题4分,共32分)11.(4分)(2016•六盘水)3的算术平方根是.【分析】根据开平方的意义,可得算术平方根.【解答】解:3的算术平方根是,故答案为:.【点评】本题考查了算术平方根,注意一个正数的算术平方根只有一个.12.(4分)(2016•六盘水)由38位科学家通过云计算得出:现在地球上约有3040000000000棵存活的树,将3040000000000用科学记数法表示为 3.04×1012.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将3040000000000用科学记数法表示为3.04×1012.故答案为:3.04×1012.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(4分)(2016•六盘水)在一个不透明的袋中装有一红一白2个球,这些球除颜色外都相同,小刚从袋中随机摸出一个球,记下颜色后放回袋中,再从袋中随机摸出一个球,两次都摸到红球的概率是.【分析】先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到红球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有4种等可能的结果,两次都摸到红球的1种情况,∴两次都摸到红球的概率是,故答案为.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.14.(4分)(2016•六盘水)如图,EF为△ABC的中位线,△AEF的周长为6cm,则△ABC 的周长为12cm.【分析】根据三角形中位线定理可直接得出结论.【解答】解:∵EF为△ABC的中位线,△AEF的周长为6cm,∴BC=2EF,AB=2AE,AC=2AF,∴BC+AB+AC=2(EF+AE+AF)=12(cm).故答案为:12.【点评】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.15.(4分)(2016•六盘水)若a与b互为相反数,c与d互为倒数,则a+b+3cd=3.【分析】根据互为相反数的两个数之和为0与互为倒数的两个数之积是1解答即可.【解答】解:∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1,∴a+b+3cd=0+3×1=3.故答案为:3.【点评】本题主要考查相反数和倒数的知识,解答本题的关键在于掌握互为相反数的两个数之和为0;互为倒数的两个数乘积为1.16.(4分)(2016•六盘水)如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD 的面积为30.【分析】由在菱形ABCD中,对角线AC=6,BD=10,根据菱形的面积等于对角线积的一半,即可求得答案.【解答】解:∵在菱形ABCD中,对角线AC=6,BD=10,∴菱形ABCD的面积为:AC•BD=30.故答案为:30.【点评】此题考查了菱形的性质.注意菱形的面积等于对角线积的一半.17.(4分)(2016•六盘水)如图,已知反比例函数y=的图象与正比例函数y=x的图象交于A、B两点,B点坐标为(﹣3,﹣2),则A点的坐标为(3,2)【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:根据题意,知点A与B关于原点对称,∵点B的坐标是(﹣3,﹣2),∴A点的坐标为(3,2).故答案是:3,2.【点评】本题考查了反比例函数图象的中心对称性,关于原点对称的两点的横、纵坐标分别互为相反数.18.(4分)(2016•六盘水)我们知道:“两边及其中一边的对角分别相等的两个三角形不一定全等”.但是,小亮发现:当这两个三角形都是锐角三角形时,它们会全等,除小亮的发现之外,当这两个三角形都是钝角三角形或直角三角形时,它们也会全等;当这两个三角形其中一个三角形是锐角三角形,另一个是钝角三角形时,它们一定不全等.【分析】过B作BD⊥AC于D,过B1作B1D1⊥B1C1于D1,得出∠BDA=∠B1D1A1=∠BDC=∠B1D1C1=90°,根据SAS证△BDC≌△B1D1C1,推出BD=B1D1,根据HL证Rt△BDA≌Rt△B1D1A1,推出∠A=∠A1,根据AAS推出△ABC≌△A1B1C1即可.【解答】解:已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1C1,∠C=∠C1.求证:△ABC≌△A1B1C1.证明:过B作BD⊥AC于D,过B1作B1D1⊥A1C1于D1,则∠BDA=∠B1D1A1=∠BDC=∠B1D1C1=90°,在△BDC和△B1D1C1中,,∴△BDC≌△B1D1C1,∴BD=B1D1,在Rt△BDA和Rt△B1D1A1中,∴Rt△BDA≌Rt△B1D1A1(HL),∴∠A=∠A1,在△ABC和△A1B1C1中,∴△ABC≌△A1B1C1(AAS).同理可得:当这两个三角形都是钝角三角形或直角三角形时,它们也会全等,如图:△ACD与△ACB中,CD=CB,AC=AC,∠A=∠A,但:△ACD与△ACB不全等.,故当这两个三角形其中一个三角形是锐角三角形,另一个是钝角三角形时,它们一定不全等.故答案为:钝角三角形或直角三角形,钝角三角形.【点评】本题考查了全等三角形像的判定;SSA不能判定的原因是有锐角钝角三角形不能全等,把三角形分类后就能全等了.三、解答题.(本大题共8小题,共88分)19.(8分)(2016•六盘水)计算:+|1﹣|﹣2sin60°+(π﹣2016)0﹣.【分析】本题涉及负整数指数幂、绝对值、特殊角的三角函数值、零指数幂、立方根5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:+|1﹣|﹣2sin60°+(π﹣2016)0﹣=3+﹣1﹣2×+1﹣2=3+﹣1﹣+1﹣2=1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、绝对值、特殊角的三角函数值、零指数幂、立方根等考点的运算.20.(8分)(2016•六盘水)为确保信息安全,在传输时往往需加密,发送方发出一组密码a,b,c时,则接收方对应收到的密码为A,B,C.双方约定:A=2a﹣b,B=2b,C=b+c,例如发出1,2,3,则收到0,4,5(1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?【分析】(1)根据题意可得方程组,再解方程组即可.(2)根据题意可得方程组,再解方程组即可.【解答】解:(1)由题意得:,解得:A=1,B=6,C=8,答:接收方收到的密码是1、6、8;(2)由题意得:,解得:a=3,b=4,c=7,答:发送方发出的密码是3、4、7.【点评】此题主要考查了方程组的应用,关键是正确理解题意,根据密文与明文之间的关系列出方程组.21.(10分)(2016•六盘水)甲队修路500米与乙队修路800米所用天数相同,乙队比甲队每天多修30米,问甲队每天修路多少米?解:设甲队每天修路x米,用含x的代表式完成表格:甲队每天修路长度(单位:米)乙队每天修路长度(单位:米)甲队修500米所用天数(单位:天)乙队修800米所用天数(单位:天)x x+30关系式:甲队修500米所用天数=乙队修800米所用天数根据关系式列方程为:=解得:x=50检验:当x=50时x+30≠0,x=50是原分式方程的解答:甲队每天修路50m.【分析】设甲队每天修路xm,则乙队每天修(x+30)m,根据甲队修路500m与乙队修路800m所用天数相同,列出方程即可.【解答】解:设甲队每天修路xm,则乙队每天修(x+30)m,由题意得,=,解得:x=50.检验:当x=50时x+30≠0,x=50是原分式方程的解,答:甲队每天修路50m,故答案为:x+30,,=,x=50当x=50时x+30≠0,x=50是原分式方程的解,甲队每天修路50m.【点评】本题考查了由实际问题抽象出分式方程,解答本题的读懂题意,找出合适的等量关系,列出方程.22.(10分)(2016•六盘水)在△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如图1,则有a2+b2=c2;若△ABC为锐角三角形时,小明猜想:a2+b2>c2,理由如下:如图2,过点A 作AD⊥CB于点D,设CD=x.在Rt△ADC中,AD2=b2﹣x2,在Rt△ADB中,AD2=c2﹣(a﹣x)2∴a2+b2=c2+2ax∵a>0,x>0∴2ax>0∴a2+b2>c2∴当△ABC为锐角三角形时,a2+b2>c2所以小明的猜想是正确的.(1)请你猜想,当△ABC为钝角三角形时,a2+b2与c2的大小关系.(2)温馨提示:在图3中,作BC边上的高.(3)证明你猜想的结论是否正确.【分析】(1)根据题意可猜测:当△ABC为钝角三角形时,a2+b2与c2的大小关系为:a2+b2<c2;(2)根据题意可作辅助线:过点A作AD⊥BC于点D;(3)然后设CD=x,分别在Rt△ADC与Rt△ADB中,表示出AD2,即可证得结论.【解答】解:(1)当△ABC为钝角三角形时,a2+b2与c2的大小关系为:a2+b2<c2;(2)如图3,过点A作AD⊥BC于点D,(3)证明:如图3,设CD=x.在Rt△ADC中,AD2=b2﹣x2,在Rt△ADB中,AD2=c2﹣(a+x)2∴a2+b2=c2﹣2ax∵a>0,x>0∴2ax>0∴a2+b2<c2∴当△ABC为钝角三角形时,a2+b2<c2.【点评】此题属于三角形的综合题.考查了勾股定理以及三角形的面积问题.注意理解题意是解此题的关键.23.(12分)(2016•六盘水)据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,结果精确到1m)(1)求B,C的距离.(2)通过计算,判断此轿车是否超速.【分析】(1)在直角三角形ABD与直角三角形ACD中,利用锐角三角函数定义求出BD 与CD的长,由BD﹣CD求出BC的长即可;(2)根据路程除以时间求出该轿车的速度,即可作出判断.【解答】解:(1)在Rt△ABD中,AD=24m,∠B=31°,∴tan31°=,即BD==40m,在Rt△ACD中,AD=24m,∠ACD=50°,∴tan50°=,即CD==20m,∴BC=BD﹣CD=40﹣20=20m,则B,C的距离为20m;(2)根据题意得:20÷2=10m/s<15m/s,则此轿车没有超速.【点评】此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.24.(12分)(2016•六盘水)为了贯彻落实健康第一的指导思想,促进学生全面发展,国家每年都要对中学生进行一次体能测试,测试结果分“优秀”、“良好”、“及格”、“不及格”四个等级,某学校从七年级学生中随机抽取部分学生的体能测试结果进行分析,并根据收集的数据绘制了两幅不完整的统计图,请根据这两幅统计图中的信息回答下列问题(1)本次抽样调查共抽取多少名学生?(2)补全条形统计图.(3)在扇形统计图中,求测试结果为“良好”等级所对应圆心角的度数.(4)若该学校七年级共有600名学生,请你估计该学校七年级学生中测试结果为“不及格”等级的学生有多少名?(5)请你对“不及格”等级的同学提一个友善的建议(一句话即可).【分析】(1)根据统计图可知优秀的18人占30%,从而可以得到本次抽查的学生数;(2)根据抽查的学生数可以得到抽查中及格的人数,从而可以将条形统计图补充完整;(3)用良好的人数占抽查人数的比值乘以360°即可解答本题;(4)根据统计图中的数据可以求得该学校七年级学生中测试结果为“不及格”等级的学生人数;(5)说出的建议只要对学生具有鼓励性即可.【解答】解:(1)本次抽样调查学生有:18÷30%=60(人),即本次抽样调查共抽取60名学生;(2)及格的学生有:60﹣18﹣24﹣3=15(人),补全的条形统计图如右图所示,(3)测试结果为“良好”等级所对应圆心角的度数是:×360°=144°,测试结果为“良好”等级所对应圆心角的度数是144°;(4)该学校七年级学生中测试结果为“不及格”等级的学生有:600×=30(人),即该学校七年级学生中测试结果为“不及格”等级的学生有30人;(5)对“不及格”等级的同学提一个友善的建议是:同学们,这次考试并不代表以后,相信你们下次一定可以考一个理想的成绩,加油,相信自己.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.25.(12分)(2016•六盘水)如图,在⊙O中,AB为直径,D、E为圆上两点,C为圆外一点,且∠E+∠C=90°.(1)求证:BC为⊙O的切线.(2)若sinA=,BC=6,求⊙O的半径.【分析】(1)根据在同圆或等圆中,同弧所对的圆周角相等可得∠A=∠E,再根据三角形的内角和等于180°求出∠ABC=90°,然后根据切线的定义证明即可;(2)根据∠A的正弦求出AC,利用勾股定理列式计算求出AB,然后求解即可.【解答】(1)证明:∵∠A与∠E所对的弧都是,∴∠A=∠E,又∵∠E+∠C=90°,∴∠A+∠C=90°,在△ABC中,∠ABC=180°﹣90°=90°,∵AB为直径,∴BC为⊙O的切线;(2)解:∵sinA=,BC=6,∴=,即=,解得AC=10,由勾股定理得,AB===8,∵AB为直径,∴⊙O的半径是×8=4.【点评】本题考查了切线的判定,锐角三角函数,解直角三角形,勾股定理,在同圆或等圆中,同弧所对的圆周角相等的性质,熟记切线的概念并求出直角是解题的关键.26.(16分)(2016•六盘水)如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和对称轴.(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.【分析】(1)根据抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y 轴交于点C(0,﹣3),可以求得抛物线的解析式;(2)根据(1)中的解析式化为顶点式,即可得到此抛物线顶点D的坐标和对称轴;(3)首先写出存在,然后运用分类讨论的数学思想分别求出各种情况下点P的坐标即可.【解答】解:(1)∵抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),∴,解得,,即此抛物线的解析式是y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴此抛物线顶点D的坐标是(1,﹣4),对称轴是直线x=1;(3)存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形,设点P的坐标为(1,y),当PA=PD时,=,解得,y=﹣,即点P的坐标为(1,﹣);当DA=DP时,=,解得,y=﹣4±,即点P的坐标为(1,﹣4﹣2)或(1,﹣4+);当AD=AP时,=,解得,y=±4,即点P的坐标是(1,4)或(1,﹣4),当点P为(1,﹣4)时与点D重合,故不符合题意,由上可得,以点P、D、A为顶点的三角形是等腰三角形时,点P的坐标为(1,﹣)或(1,﹣4﹣2)或(1,﹣4+)或(1,4).【点评】本题考查二次函数综合题,解题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答问题.。
第1课时选择题解题方法第一部分讲解部分一.专题诠释选择题是各地中考必考题型之一,各地命题设置上,选择题的数目稳定在8~12题,这说明选择题有它不可替代的重要性.选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养.二.解题策略与解法精讲选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做.解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效.三.考点精讲考点一:直接法从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。
运用此种方法解题需要扎实的数学基础.例1.(2011•广西省柳州市)九(3)班的50名同学进行物理、化学两种实验测试,经最后统计知:物理实验做对的有40人,化学实验做对的有31人,两种实验都做错的有4人,则这两种实验都做对的有()A.17人 B.21人 C.25人 D.37人分析:设这两种实验都做对的有x人,根据九(3)班的50名同学进行物理、化学两种实验测试,经最后统计知:物理实验做对的有40人,化学实验做对的有31人,两种实验都做错的有4人可列方程求解.解:设这两种实验都做对的有x人,(40﹣x)+(31﹣x)+x+4=50,x=25.故都做对的有25人.故选C.评注:本题考查理解题意的能力,关键是以人数做为等量关系构造方程直接求解.考点二:特例法运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。
初三数学第二章图形与变换复习(NO:005)知识总结1、(2012浙江)如图,将周长为8的△ABC 沿BC 方向平移1个单位得到△DEF ,则四边形ABFD 的周长为 102、(2012绍兴)在如图所示的平面直角坐标系内,画在透明胶片上的▱ABCD ,点A 的坐标是(0,2).现将这张胶片平移,使点A 落在点A′(5,﹣1)处,则此平移可以是( B )A . 先向右平移5个单位,再向下平移1个单位B . 先向右平移5个单位,再向下平移3个单位C . 先向右平移4个单位,再向下平移1个单位D . 先向右平移4个单位,再向下平移3个单位3、(2012湖北咸宁,6,3分)如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1∶2,点A 的坐标为(1,0),则E 点的坐标为( C ).A .(2,0)B .(23,23) C .(2,2) D .(2,2)4、(2012年广西玉林市,10,3)如图,正方形ABCD 的两边BC 、AB 分别在平面直角坐标系内的x 轴、y 轴的正半轴上,正方形A ′B ′C ′D ′与正方形ABCD 是以AC 的中点O ′为中心的位似图形,已知AC=23,若点A ′的坐标为(1,2),则正方形A ′B ′C ′D ′与正方形ABCD 的相似比是( B )5、(2012聊城)如图,在方格纸中,△ABC 经过变换得到△DEF,正确的变换是( B ) A .把△ABC 绕点C 逆时针方向旋转90°,再向下平移2格 B .把△ABC 绕点C 顺时针方向旋转90°,再向下平移5格 C .把△ABC 向下平移4格,再绕点C 逆时针方向旋转180° D .把△ABC 向下平移5格,再绕点C 顺时针方向旋转180°6、(2012山东德州)由图中左侧三角形仅经过一次平移、旋转或轴对称变换,不能得到的图形是( C )A B DF(第6题)(A ) (C ) (D )(B )7、(2007潍坊)如图,两个全等的长方形ABCD 与CDEF ,旋转长方形ABCD 能和长方形CDEF 重合,则可以作为旋转中心的点有( A )A .1个B .2个C .3个D .无数个8、(2008潍坊)如图,在平面直角坐标系中,Rt OAB △的顶点A的坐标为,若将OAB △绕O 点逆时针旋转60后,B 点到达B '点,则B '点的坐标是)23,33(第7题 第8题 第9题9、(2009潍坊)如图,已知Rt ABC △中,9030ABC BAC AB ∠=∠==°,°,,将ABC △绕顶点C 顺时针旋转至A B C '''△的位置,且A C B '、、三点在同一条直线上,则点A 经过的最短路线的长度是( D )cm .A .8B.C .32π3D .8π310、(2012广东汕头)如图,将△ABC 绕着点C 顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是 80011、(2012贵州六盘水)两块大小一样斜边为4且含有30°角的三角板如图5水平放置.将△CDE 绕C 点按逆时针方向旋转,当E 点恰好落在AB 上时,△CDE 旋转了 30 度.第10题第11题 第12题12、(2012中考)如图,在△ABC 中,∠ACB =90º,∠B =30º,AC =1,AC 在直线l 上.将△ABC 绕点A 顺时针旋转到位置①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P 1顺时针旋转到位置②,可得 到点P 2,此时AP 2=2+3;将位置②的三角形绕点P 2顺时针旋转到位置③,可得到点P 3,此时AP 3=3 +3;…,按此规律继续旋转,直到得到点P 2012为止,则AP 2012=【 】A .2011+671 3B .2012+671 3C .2013+671 3D .2014+671 3'B①② ③1P 2 P 3 … l又∵2012÷3=670…2,∴AP 2012=670(3+3)+(2+3)=2012+6713故选B .13、(2012山东泰安)如图,菱形OABC 的顶点O 在坐标原点,顶点A 在x 轴上,∠B=120°,OA=2,将菱形OABC 绕点O 顺时针旋转105°至OA B C '''的位置,则点B '的坐标为(2,2-)14、(2012广州)如图4,在等边△ABC 中,AB=6,D 是BC 上一点,且BC=3BD ,△ABD 绕点A 旋转后得到△ACE ,则CE 的长度为 2 。
贵州省六盘水市 数学中考试卷(满分150分,考试时间120分钟)、选择题(选择题(本题共10小题,每小题3分,共30分•在每小题给出的四个选项中,只有一项是符合题目 要求的,请用2B 铅笔把答题卡上对应题目的答案标号涂黑、涂满 ).)1.( 2013贵州省六盘水,1, 3分)—2013相反数()1A . — 2013B .C . 20132013【答案】C3 2 (-3a )【答案】A 5.( 2013贵州省六盘水, A .正三角形 【答案】D 6.(2013贵州省六盘水,6, 3分)直尺与三角尺按如图所示的方式叠放在一起,在图中所标记的角中,与/ 互余的角有几个()【答案】B 7.( 2013贵州省六盘水,7, 3分)在平面中,下列命题为真命题的是( )A .四个角相等的四边形是矩形 B.对角线垂直的四边形是菱形 C.对角线相等的四边形是矩形D.四边相等的四边形是正方形1 20132. (2013贵州省六盘水,【答案】D3. (2013贵州省六盘水, 3, 3分)下列运算正确的是(5a 3b =8ab2(a - b)2 2-a b【答案】 4.B(2 013贵州省六盘4, 3分)下列图形中, 是轴对称图形的是(5, 3分)下列图形中, B .正六边形单独选用一种图形不能进行平面镶嵌的是( C .正方形 D .正五边形A.2个D.5个2, 3分)下面四个几何体中,主视图是圆的几何体是( C .aB.3个C.4个【答案】A8.(2013贵州省六盘水,8, 3分)我省五个旅游景区门票票价如下表所示(单位:元),关于这五个景区票价的说法中,正确的是( )景区名称 黄果树大瀑布 织金洞 玉舍森林滑雪安顺龙宫 荔波小七孔 票价(元) 180120200130180A.平均数126B.众数180C.中位数200D.极差70【答案】BAD AE【答案】■ ADE = • C 或.AED= • B 或AC AB14.(2013贵州省六盘水,14, 4分)在六盘水市组织的 五成连创”演讲比赛中,小明等 25人进入总决赛,赛制规定,13人早上参赛,12人下午参赛,小明抽到上午比赛的概率是 ___________________________ .9. (2013贵州省六盘水,9, 3 分)已知关于x 的一元二次方程(k-1)X 2- 2x • 1二0有两个不相等的实数根,则k 的取值范围是( )A.k v -2B.k v 2C.k > 2【答案】D10. D.k v 2 且 21【答案】C二、填空题(本大题共8小题,每小题 11. (2013贵州省六盘水,11, 4分)__________________________ 米(保留两位有效数字) 4分,满分32分.)H7N9禽流感病毒的直径大约为0.0000000805米,用科学计数法表示为【答案】8.1 >10启12. (2013贵州省六盘水,12, 4分)因式分解: 4x‘ —36x = __________________________【答案】4x(x 3)(x-3)13. (2013贵州省六盘水,13, 4分)如图,添加一个 条件: 出一个既可)_______________________ ,使得△ ADE ACB .(写13【答案】132515._________________________________________________________________ (2013贵州省六盘水,15 , 4分)如图,梯形ABCD中,AD//BC, AD =4, AB=5, BC=10 , CD的垂直平分线交BC于E,连接DE,则四边形ABED的周长等于_________________________________________________________________________ .A D【答案】19 「16.(2013贵州省六盘水,16, 4分)若O A和O B相切,它们的半径分别为8cm和2cm,则圆心距AB为【答案】10或617.(2013贵州省六盘水,17, 4分)无论x取任何实数,代数式、x2 - 6x • m都有意义,则m的取值范围为【答案】m>918.(2013贵州省六盘水,18, 4分)把边长为1的正方形纸片OABC放在直线m上,OA边在直线m上,然后将正方形纸片绕着顶点A按顺时针方向旋转90°此时,点O运动到了点O1处(既点B处),点C运动到了C1处,点B运动到了点B1处,又将正方形纸片AO1 C1B1绕B1点按顺时针方向旋转90° ••…,按上述方法经过4次旋转后,顶点O经过的总路程为•经过61旋转后,顶点O经过的总路程为三、解答题(本大题共7小题,满分88分,解答应写出文字说明、证明过程或演算步骤)佃.(2013贵州省六盘水,19, 16分)(本题共2小题,每小题8分,满分16分)(1)计算:J27—(1)上十卜3 —2 —2tan60 = + (2013—兀):;(2)先化简,再求值:(-- —X 3,其中X2-4=0 .x —4x+4 2—x x -2x【答案】解: (1)—(2)^2 _2ta 门60,+(2013_兀)_9 + 2_ JE _2V3 + 1= - 6 ;2⑵ x - 4=0,\ x= =t2 但x—2工0 故X = -2 ,2^(—2)当x= —2时,原式= =-1.2 - 220. (2013贵州省六盘水,20 , 12分)为了了解中学生参加体育活动的情况,某校对部分学生进行了调查,其中一个问题是:你平均每天参加体育活动的时间是多少?”共有4个选项:A 1.5小时以上B 1~1.5小时根据调查结果绘制了两幅不完整的统计图:牛人数辰以上信息解答下列问题:本次调查活动采取了________________ 计算本次调查的学生人数和图(将若该校有3000名学生,你估计该校可C.0.5小时 D. 0.5小时以下请你根据90(80(70(50分)302010_______________ 调查方式.2)中选项C的圆心角度数.(1)中选项B的部分补充完整。
[单击此处键入试卷名称][单击此处键入试卷科目名称] 答案卷注意事项:1. 试题答案用钢笔或原珠笔直接答在试题卷中。
2. 答卷前将密封线内的项目填写清楚。
2011年六盘水市中考试卷数学参考答案(满分150分,考试时间120分钟)一、选择题(每小题3分,满分30分,在每小题给出的四个选项中,只有一项是正确的,请将正确选项的代号填写在答题卷相应的空格内)1.C 2.B 3.A 4.C 5.D 6.B 7.B 8.C 9.B 10.C 二、填空题(每小题4分,满分32分,请将答案填写在答题卷相应题号后的横线上) 11.-5 12.2.9×10613.线段、菱形、正方形、矩形、圆、正六边形等(写出两个即可)14.115.4与5或5与4 16.90(若写900不扣分) 17.7.00(若写7不扣分) 18.157;12)1(1+-+n n n 三、解答题(本大题共7道题,满分88分,请在答题卷中作答,必须写出运算步骤,推理过程,文字说明或作图痕迹)19.解:原式=19-2×9-22+22-1 =020.解:1)1111(2-÷+--x xx x =xx x x x )1)(1()1)(1(2-+⋅+- =x2 (注:若x 取1±或0,以下步骤不给分) 当x =2时原式=121.(1)一等奖:40×15%=6(支) 二等奖:104036090=⨯︒︒(支) 三等奖:40-10-6-8=16 (2)(3)︒=︒⨯72360408(4)544016106)(=++=获奖P22.解:据题意,得6821)6)(8(⨯⨯=--x x解得:x 1=12,x 2=2 x 1不合题意,舍去 ∴x =223.解:(1)直线CD 是⊙O 的切线密封 线密封线理由如下: 连接OC∵∠AOC 、∠ABC 分别是弧AC 所对的圆心角、圆周角 ∴∠AOC =2∠ABC =2×300=600 ∴∠D +∠AOC =300+600=900∴∠DCO =900∴CD 是⊙O 的切线 (2)过O 作OE ⊥AC ,点E 为垂足∵OA =OC ,∠ AOC =600∴△AOC 是等边三角形∴OA =OC =AC =6,∠OAC =600在Rt △AOE 中OE =OA ·sin ∠OAC =6·sin 600=33 ∴3933621=⨯⨯=∆AOC S ∵ππ63606602=⋅=AOCS 扇形∴396S S AOC AOC -=-=扇形阴π∆S24.解:(1)据题意,得∠AOC =600,∠BOC =300在Rt △AOC 中,∠AOC =600∴∠OAC =300∵∠AOB =∠AOC -∠BOC =600-300=300 ∴∠AOB =∠OAC ∴AB =OB 在Rt △BOC 中 OB =OC ÷cos ∠BOC =1023÷=3320(米) ∴AB =3320 ∴332013320=÷=汽V (米/秒) (2)∵36千米/时=10米/秒 又∵3.113320≈ ∴103320> ∴小汽车超速了 25.解(1)据题意,△AOE ≌△ADE∴OE =DE ,∠ADE =∠AOE =900,AD =AO =3 在Rt △AOB 中, 54322=+=AB设DE =OE =x 在Rt △BED 中 BD 2+DE 2=BE 2 即22+x 2=(4-x )2解得23=x∴E (0,23)在Rt △AOE 中253)23(322=+=AE(2)∵PM ∥DE ,MN ∥AD ,且∠ADE =900∴四边形PMND 是矩形 ∵AP =t ×1=t ∴PD =3-t∵△AMP ∽△AED∴ADAP DE PM = ∴PM =2tDE AD AP =⋅∴)3(2PMND t tPD PM S -⋅=⋅=矩形∴t t S 23212PMND +-=矩形或89)23(212PMND +--t S =矩形 当23)21(223=-⨯-=t 时 89=最大S (3)△ADM 为等腰三角形有以下二种情况①当MD =MA 时,点P 是AD 中点∴232==AD AP ∴23123=÷=t (秒)∴当23=t 时,A 、D 、M 三点构成等腰三角形过点M 作MF ⊥OA 于F ∵△APM ≌△AFM∴AF =AP =23,MF =MP =432=t ∴OF =OA -AF =3-2323=∴M (23,43)②当AD =AM =3时密封线密封线△AMP ∽△AE D∴AE AMAD AP =∴25333=AP ∴556=AP ∴5561556=÷=t (秒) ∴当556=t 秒时,A 、D 、M 三点构成等腰三角形 过点M 作MF ⊥OA 于F∵△AMF ≌△AMP∴AF =AP =556,FM =PM =5532=t ∴OF =OA -AF =3-556 ∴M (5563-,553)。
最新贵州省六盘水市中考数学试卷亲爱的同学:欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平,答题时,请注意以下几点:1. 全卷共4页,有三大题,24小题,全卷满分150分,考试时间120分钟2. 答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效.3. 答题前,认真阅读答题纸上的《注意事项》,按规定答题.祝你成功!一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)大米包装袋上(10±0.1)kg的标识表示此袋大米重()A.(9.9~10.1)kg B.10.1kg C.9.9kg D.10kg2.(4分)国产越野车“BJ40”中,哪个数字或字母既是中心对称图形又是轴对称图形()A.B B.J C.4 D.03.(4分)下列式子正确的是()A.7m+8n=8m+7n B.7m+8n=15mn C.7m+8n=8n+7m D.7m+8n=56mn4.(4分)如图,梯形ABCD中,AB∥CD,∠D=()A.120°B.135°C.145°D.155°5.(4分)已知A组四人的成绩分别为90、60、90、60,B组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当()A.平均数B.中位数C.众数D.方差6.(4分)不等式3x+6≥9的解集在数轴上表示正确的是()A .B .C .D .7.(4分)国产大飞机C919用数学建模的方法预测的价格是(单位:美元):5098,5099,5001,5002,4990,4920,5080,5010,4901,4902,这组数据的平均数是()A.5000.3 B.4999.7 C.4997 D.50038.(4分)使函数y=有意义的自变量x的取值范围是()A.x≥3 B.x≥0 C.x≤3 D.x≤09.(4分)已知二次函数y=ax2+bx+c的图象如图所示,则()A.b>0,c>0 B.b>0,c<0 C.b<0,c<0 D.b<0,c>010.(4分)矩形的长与宽分别为a、b,下列数据能构成黄金矩形的是()A.a=4,b=+2 B.a=4,b=﹣2 C.a=2,b=+1 D.a=2,b=﹣111.(4分)桌面上放置的几何体中,主视图与左视图可能不同的是()A.圆柱B.正方体C.球D.直立圆锥12.(4分)三角形的两边a、b的夹角为60°且满足方程x2﹣3x+4=0,则第三边的长是()A .B.2C.2D.3二、填空题(每题5分,满分40分,将答案填在答题纸上)13.(5分)中国“蛟龙号”深潜器下潜深度为7062米,用科学记数法表示为米.14.(5分)计算:2017×1983=.15.(5分)定义:A={b,c,a},B={c},A∪B={a,b,c},若M={﹣1},N={0,1,﹣1},则M∪N={}.16.(5分)如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB=度.17.(5分)方程﹣=1的解为x=.18.(5分)如图,在▱ABCD中,对角线AC、BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F.若CD=5,BC=8,AE=2,则AF=.19.(5分)已知A(﹣2,1),B(﹣6,0),若白棋A飞挂后,黑棋C尖顶,黑棋C的坐标为(,).20.(5分)计算1+4+9+16+25+…的前29项的和是.三、解答题(本大题共6小题,共62分.解答应写出文字说明、证明过程或演算步骤.)21.(10分)计算:(1)2﹣1+sin30°﹣|﹣2|;(2)(﹣1)0﹣|3﹣π|+.22.(10分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上.(1)画出△ABC关于原点成中心对称的△A'B'C',并直接写出△A'B'C'各顶点的坐标.(2)求点B旋转到点B'的路径长(结果保留π).23.(10分)端午节当天,小明带了四个粽子(除味道不同外,其它均相同),其中两个是大枣味的,另外两个是火腿味的,准备按数量平均分给小红和小刚两个好朋友.(1)请你用树状图或列表的方法表示小红拿到的两个粽子的所有可能性.(2)请你计算小红拿到的两个粽子刚好是同一味道的概率.24.(10分)甲乙两个施工队在六安(六盘水﹣安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x米,乙队每天铺设y米.(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?25.(10分)如图,MN是⊙O的直径,MN=4,点A在⊙O上,∠AMN=30°,B为的中点,P 是直径MN上一动点.(1)利用尺规作图,确定当PA+PB最小时P点的位置(不写作法,但要保留作图痕迹).(2)求PA+PB的最小值.26.(12分)已知函数y=kx+b,y=,b、k为整数且|bk|=1.(1)讨论b,k的取值.(2)分别画出两种函数的所有图象.(不需列表)(3)求y=kx+b与y=的交点个数.最新贵州省六盘水市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)(2017•六盘水)大米包装袋上(10±0.1)kg的标识表示此袋大米重()A.(9.9~10.1)kg B.10.1kg C.9.9kg D.10kg【分析】根据大米包装袋上的质量标识为“10±0.1”千克,可以求得合格的波动范围,从而可以解答本题.【解答】解:∵大米包装袋上的质量标识为“10±0.1”千克,∴大米质量的范围是:9.9~10.1千克,故选:A.【点评】本题考查正数和负数,解题的关键是明确题意,明确正数和负数在题目中的实际意义.2.(4分)(2017•六盘水)国产越野车“BJ40”中,哪个数字或字母既是中心对称图形又是轴对称图形()A.B B.J C.4 D.0【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、B不是中心对称图形,是轴对称图形,故本选项错误;B、J不是中心对称图形,也不是轴对称图形,故本选项错误;C、4不是中心对称图形,也不轴对称图形,故本选项错误;D、0既是中心对称图形又是轴对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(4分)(2017•六盘水)下列式子正确的是()A.7m+8n=8m+7n B.7m+8n=15mn C.7m+8n=8n+7m D.7m+8n=56mn 【分析】根据合并同类项法则解答.【解答】解:7m和8n不是同类项,不能合并,所以,7m+8n=8n+7m.故选C.【点评】本题考查了合并同类项,熟记同类项的概念是解题的关键.4.(4分)(2017•六盘水)如图,梯形ABCD中,AB∥CD,∠D=()A.120°B.135°C.145°D.155°【分析】由AB∥CD,得到∠A+∠D=180°,把∠A的度数代入即可求出答案.【解答】解:∵AB∥CD,∴∠A+∠D=180°,∵∠A=45°,∴∠D=180°﹣45°=135°,故选:B.【点评】本题主要考查了梯形的性质,平行线的性质等知识点,解此题的关键是根据平行线的性质得到∠A+∠D=180°.5.(4分)(2017•六盘水)已知A组四人的成绩分别为90、60、90、60,B组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当()A.平均数B.中位数C.众数D.方差【分析】根据平均数、中位数、众数以及方差的意义进行选择即可.【解答】解:∵=75,=75;甲的中位数为75,乙的中位数为75;甲的众数为90,60,乙的中位数为80,70;∴通过平均数、中位数、众数不能区别两组成绩,∴应通过方差区别两组成绩更恰当,故选D.【点评】本题考查了统计量的选择,掌握平均数、中位数、众数以及方差的意义是解题的关键.6.(4分)(2017•六盘水)不等式3x+6≥9的解集在数轴上表示正确的是()A .B .C .D .【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:移项,得:3x≥9﹣6,合并同类项,得:3x≥3,系数化为1,得:x≥1,故选:C【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.7.(4分)(2017•六盘水)国产大飞机C919用数学建模的方法预测的价格是(单位:美元):5098,5099,5001,5002,4990,4920,5080,5010,4901,4902,这组数据的平均数是()A.5000.3 B.4999.7 C.4997 D.5003【分析】根据算术平均数的定义计算可得.【解答】解:这组数据的平均数是[5000×10+(98+99+1+2﹣10﹣80+80+10﹣99﹣98)]=5000+×3=5000.3,故选:A.【点评】本题主要考查算术平均数,熟练掌握算术平均数的定义是解题的关键.8.(4分)(2017•六盘水)使函数y=有意义的自变量x的取值范围是()A.x≥3 B.x≥0 C.x≤3 D.x≤0【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得3﹣x≥0,解得x≤3,故选:C.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数是解题关键.9.(4分)(2017•六盘水)已知二次函数y=ax2+bx+c的图象如图所示,则()A.b>0,c>0 B.b>0,c<0 C.b<0,c<0 D.b<0,c>0【分析】根据二次函数的性质一一判断即可.【解答】解:二次函数y=ax2+bx+c的开口向下,∴a<0,∵二次函数与y轴交于负半轴,∴c<0,∵对称轴x=﹣>0,∴b>0,故选B.【点评】本题考查二次函数的性质,解题的关键是熟练掌握二次函数的性质,灵活运用知识解决问题,属于基础题,中考常考题型.10.(4分)(2017•六盘水)矩形的长与宽分别为a、b,下列数据能构成黄金矩形的是()A.a=4,b=+2 B.a=4,b=﹣2 C.a=2,b=+1 D.a=2,b=﹣1【分析】根据黄金矩形的定义判断即可.【解答】解:∵宽与长的比是的矩形叫做黄金矩形,∴=,∴a=2,b=﹣1,故选D.【点评】本题主要考查了黄金矩形,记住定义是解题的关键.11.(4分)(2017•六盘水)桌面上放置的几何体中,主视图与左视图可能不同的是()A.圆柱B.正方体C.球D.直立圆锥【分析】分别确定每个几何体的主视图和左视图即可作出判断.【解答】解:A、当圆柱侧面与桌面接触时,主视图和左视图有一个可能是长方形,另一个是圆,故选项符合题意;B、正方体的主视图和作左视图都是正方形,一定相同,故选项不符合题意;C、球的主视图和作左视图都是圆,一定相同,故选项不符合题意;D、直立圆锥的主视图和作左视图都是等腰三角形,一定相同,故选项不符合题意;故选A.【点评】本题考查了简单几何体的三视图,确定三视图是关键.12.(4分)(2017•六盘水)三角形的两边a、b的夹角为60°且满足方程x2﹣3x+4=0,则第三边的长是()A .B.2C.2D.3【分析】先利用因式分解法解方程x2﹣3x+4=0得到a=2,b=,如图,△ABC中,a=2,b=,∠C=60°,作AH⊥BC于H,再在Rt△ACH中,利用含30度的直角三角形三边的关系得到CH=,AH=,则BH=,然后在Rt△ABH中利用勾股定理计算AB的长即可.【解答】解:x2﹣3x+4=0,(x﹣2)(x ﹣)=0,所以x1=2,x2=,即a=2,b=,如图,△ABC中,a=2,b=,∠C=60°,作AH⊥BC于H,在Rt△ACH中,∵∠C=60°,∴CH=AC=,AH=CH=,∴BH=2﹣=,在Rt△ABH中,AB==,即三角形的第三边的长是.故选A.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了解直角三角形.二、填空题(每题5分,满分40分,将答案填在答题纸上)13.(5分)(2017•六盘水)中国“蛟龙号”深潜器下潜深度为7062米,用科学记数法表示为7.062×103米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:中国“蛟龙号”深潜器下潜深度为7062米,用科学记数法表示为7.062×103米,故答案为:7.062×103.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(5分)(2017•六盘水)计算:2017×1983=3999711.【分析】把式子变形得到(2000+17)(2000﹣17),然后利用平方差公式计算.【解答】解:原式=(2000+17)(2000﹣17)=20002﹣172=4000000﹣289=3999711.故答案为3999711.【点评】本题考查了平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差,即(a+b)(a﹣b)=a2﹣b2.15.(5分)(2017•六盘水)定义:A={b,c,a},B={c},A∪B={a,b,c},若M={﹣1},N={0,1,﹣1},则M∪N={1,0,﹣1}.【分析】根据新定义解答即可得.【解答】解:∵M={﹣1},N={0,1,﹣1},∴M∪N={1,0,﹣1},故答案为:1,0,﹣1.【点评】本题主要考查有理数,根据题意理解新定义是解题的关键.16.(5分)(2017•六盘水)如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB=75度.【分析】只要证明△ABE≌△ADF,可得∠BAE=∠DAF=(90°﹣60°)÷2=15°,即可解决问题.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠BAD=90°,在Rt△ABE和Rt△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠DAF=(90°﹣60°)÷2=15°,∴∠AEB=75°,故答案为75.【点评】本题考查正方形的性质、等边三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.17.(5分)(2017•六盘水)方程﹣=1的解为x=﹣2.【分析】先把分式方程转化成整式方程,求出方程的解,再进行检验即可.【解答】解:方程两边都除以(x+1)(x﹣1)得:2﹣(x+1)=(x+1)(x﹣1),解得:x=﹣2或1,经检验x=1不是原方程的解,x=﹣2是原方程的解,故答案为:﹣2.【点评】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.18.(5分)(2017•六盘水)如图,在▱ABCD中,对角线AC、BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F.若CD=5,BC=8,AE=2,则AF=.【分析】过O点作OM∥AD,求出AM和MO的长,利用△AEF∽△MEO,得到关于AF的比例式,求出AF的长即可.【解答】解:过O点作OM∥AD,∵四边形ABCD是平行四边形,∴OB=OD,∴OM是△ABD的中位线,∴AM=BM=AB=,OM=BC=4,∵AF∥OM,∴△AEF∽△MEO,∴=,∴=,∴AF=,故答案为.【点评】本题考查矩形的性质、三角形的中位线定理、平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,学会用方程的思想思考问题,属于中考常考题型.19.(5分)(2017•六盘水)已知A(﹣2,1),B(﹣6,0),若白棋A飞挂后,黑棋C尖顶,黑棋C的坐标为(﹣1,1).【分析】根据已知A,B两点的坐标建立坐标系,然后确定其它点的坐标.【解答】解:∵A(﹣2,1),B(﹣6,0),∴建立如图所示的平面直角坐标系,∴C(﹣1,1).故答案为:﹣1,1.【点评】本题考查了坐标确定位置,利用A点坐标确定平面直角坐标系是解题关键.20.(5分)(2017•六盘水)计算1+4+9+16+25+…的前29项的和是8555.【分析】根据每一项分别是12、22、32、42、52可找到规律,整理可得原式关于n的一个函数式,即可解题.【解答】解:12+22+32+42+52+…+292+…+n2=0×1+1+1×2+2+2×3+3+3×4+4+4×5+5+…(n﹣1)n+n=(1+2+3+4+5+…+n)+[0×1+1×2+2×3+3×4+…+(n﹣1)n]=+{(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)+…+[(n ﹣1)•n•(n+1)﹣(n﹣2)•(n﹣1)•n]}=+[(n﹣1)•n•(n+1)]=,∴当n=29时,原式==8555.故答案为8555.【点评】本题考查了学生发现规律并且整理的能力,本题中整理出原式关于n的解析式是解题的关键.三、解答题(本大题共6小题,共62分.解答应写出文字说明、证明过程或演算步骤.)21.(10分)(2017•六盘水)计算:(1)2﹣1+sin30°﹣|﹣2|;(2)(﹣1)0﹣|3﹣π|+.【分析】(1)首先利用负整数指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案;(2)首先利用零指数幂的性质以及绝对值的性质分别化简得出答案.【解答】解:(1)原式=+﹣2=﹣1;(2)原式=1﹣(π﹣3)+π﹣3=1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.22.(10分)(2017•六盘水)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上.(1)画出△ABC关于原点成中心对称的△A'B'C',并直接写出△A'B'C'各顶点的坐标.(2)求点B旋转到点B'的路径长(结果保留π).【分析】(1)根据关于原点对称的点的坐标,可得答案;(2)根据弧长公式,可得答案.【解答】解:(1)如图;(2)由图可知:OB==3,∴=π•OB=3π.【点评】本题考查了旋转变换,利用关于原点对称的点的坐标是解题关键,又利用了弧长公式.23.(10分)(2017•六盘水)端午节当天,小明带了四个粽子(除味道不同外,其它均相同),其中两个是大枣味的,另外两个是火腿味的,准备按数量平均分给小红和小刚两个好朋友.(1)请你用树状图或列表的方法表示小红拿到的两个粽子的所有可能性.(2)请你计算小红拿到的两个粽子刚好是同一味道的概率.【分析】(1)记两个是大枣味的粽子分别为A1,A2,两个火腿味的分别为B1,B2.画出树状图即可;(2)利用(1)中的结果,即可解决问题;【解答】解:(1)记两个是大枣味的粽子分别为A1,A2,两个火腿味的分别为B1,B2.树状图如图所示,(2)由(1)可知,一共有12种可能,小红拿到的两个粽子刚好是同一味道有4种可能,所以P同一味道==.【点评】本题考查树状图﹣列表法、概率的求法等知识,记住:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.24.(10分)(2017•六盘水)甲乙两个施工队在六安(六盘水﹣安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x米,乙队每天铺设y米.(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?【分析】(1)根据“每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离”,即可得出关于x、y的二元一次方程组;(2)解(1)中的二元一次方程组,即可得出结论.【解答】解:(1)∵甲队每天铺设x米,乙队每天铺设y米,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离,∴.(2),解得:.答:甲队每天铺设600米,乙队每天铺设500米.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)熟练掌握二元一次方程组的解法.25.(10分)(2017•六盘水)如图,MN是⊙O的直径,MN=4,点A在⊙O上,∠AMN=30°,B 为的中点,P是直径MN上一动点.(1)利用尺规作图,确定当PA+PB最小时P点的位置(不写作法,但要保留作图痕迹).(2)求PA+PB的最小值.【分析】(1)作点A关于MN的对称点A′,连接A′B,与MN的交点即为点P;(2)由(1)可知,PA+PB的最小值即为A′B的长,连接OA′、OB、OA,先求∠A′OB=∠A′ON+∠BON=60°+30°=90°,再根据勾股定理即可得出答案.【解答】解:(1)如图1所示,点P即为所求;(2)由(1)可知,PA+PB的最小值即为A′B的长,连接OA′、OB、OA,∵A′点为点A关直线MN的对称点,∠AMN=30°,∴∠AON=∠A′ON=2∠AMN=2×30°=60°,又∵B 为的中点,∴=,∴∠BON=∠AOB=∠AON=×60°=30°,∴∠A′OB=∠A′ON+∠BON=60°+30°=90°,又∵MN=4,∴OA′=OB=MN=×4=2,∴Rt△A′OB中,A′B==2,即PA+PB的最小值为2.【点评】本题主要考查作图﹣复杂作图及轴对称的最短路线问题,熟练掌握轴对称的性质和圆周角定理、圆心角定理是解题的关键.26.(12分)(2017•六盘水)已知函数y=kx+b,y=,b、k为整数且|bk|=1.(1)讨论b,k的取值.(2)分别画出两种函数的所有图象.(不需列表)(3)求y=kx+b与y=的交点个数.【分析】(1)根据整数的定义,以及绝对值的性质分类讨论即可求解;(2)根据一次函数与反比例函数的作法画出图形即可求解;(3)根据函数图象分两种情况:当k=1时;当k=﹣1时;进行讨论即可求解.【解答】解:(1)∵b、k为整数且|bk|=1,∴b=1,k=1;b=1,k=﹣1;b=﹣1,k=1;b=﹣1,k=﹣1;(2)如图所示:(3)当k=1时,y=kx+b与y=的交点个数为4个;当k=﹣1时,y=kx+b与y=的交点个数为4个.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了分类思想的应用.第11页(共11页)。
2014年六盘水中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
2011年六盘水市中考试题数 学(满分150分,考试时间120分钟)一、选择题(每小题3分,满分30分,在每小题给出的四个选项中,只有一项是正确的,请将正确选项的代号填写在答题卷相应的空格内)1.(2011贵州六盘水,1,3分)下列实数中,无理数是( )A .-2B .0C .πD .4 【答案】C2.(2011贵州六盘水,2,3分)把不等式组⎩⎨⎧≤->11x x 的解集表示在数轴上,正确的是( )A .B .C .D . 【答案】B 3.(2011贵州六盘水,3,3分)图1是正方体的一个平面展开图,如果叠成原来的正方体,与“创”字相对的字是( )图1A .都B .美C .好D .凉【答案】A 4.(2011贵州六盘水,4,3分)已知两圆的半径分别为1和2,圆心距为5,那么这两个圆的位置关系是( )A .内切B .相交C .外离D .外切 【答案】C 5.(2011贵州六盘水,5,3分)下列运算中,结果正确的是( )A .222)(b a b a -=-B .734)(a a =- C .ab b a 642=+ D .1)1(-=--a a【答案】D 6、(2011贵州六盘水,6,3分)下列事件是必然事件的是( )A .若a >b ,则ac >bcB .在正常情况下,将水加热到1000C 时水会沸腾C .投掷一枚硬币,落地后正面朝上D .长为3cm 、3cm 、7cm 的三条线段能围成一个三角形 【答案】B 7.(2011贵州六盘水,7,3分)如图2,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时-1 1 0 -1 1 0 -1 1 0间x 与火车在隧道内的长度y 之间的关系用图像描述大致是( )图2A .B .C .D . 【答案】B8.(2011贵州六盘水,8,3分)若点(-3,y 1)、(-2,y 2)、(1,y 3)在反比例函数xy 2 的图像上,则下列结论正确的是( )A .y 1> y 2> y 3B .y 2> y 1> y 3C .y 3> y 1> y 2D .y 3> y 2> y 1【答案】C 9.(2011贵州六盘水,9,3分)“标准对数视力表”对我们来说并不陌生,图3是视力表的一部分,其中最上面较大的“E ”与下面四个较小“E ”中的哪一个是位似图形( )图3A .左上B .左下C .右上D .右下【答案】B 10.(2011贵州六盘水,10,3分)如图4,在菱形ABCD 中,对角线AC =6,BD =8,点E 、F 分别是边AB 、BC 的中点,点P 在AC 上运动,在运动过程中,存在PE +PF 的最小值,则这个最小值是( )图4A .3B .4C .5D .6 【答案】C二、填空题(每小题4分,满分32分,请将答案填写在答题卷相应题号后的横线上) 11.(2011贵州六盘水,11,4分)如果上升10米记作+10米,那么下降5米记作_______米. 【答案】-5 12.(2011贵州六盘水,12,4分)通过第六次全国人口普查得知,六盘水市人口总数约为2851180人,这个数用科学记数法表示是_____________人(保留两个有效数字). 【答案】2.9×106 13.(2011贵州六盘水,13,4分)请写出两个既是轴对称图形又是中心对称图形的平面几何图形名称________、_________.【答案】线段、菱形、正方形、矩形、圆、正六边形等(写出两个即可)14.(2011贵州六盘水,14,4分)在平面直角坐标系中,点P (2,3)与点P '(2a+b ,a+2b )关于原点对称,则a -b 的值为_________【答案】1 15.(2011贵州六盘水,15,4分)一个正方形的面积是20,通过估算,它的边长在整数_______与_______之间。
【答案】4与5或5与4 16.(2011贵州六盘水,16,4分)小明将两把直尺按图5所示叠放,使其中一把直尺的一个顶点恰好落在另一把直尺的边上,则∠1+∠2=_______度。
图5【答案】90(若写900不扣分) 17.(2011贵州六盘水,17,4分)从美学角度来说,人的上身长与下身长之比为黄金比时,可以给人一种协调的美感。
某女老师上身长约61.80cm ,下身长约93.00cm ,她要穿约________cm 的高跟鞋才能达到黄金比的美感效果(精确到0.01cm ) 【答案】7.00(若写7不扣分)18.(2011贵州六盘水,18,4分)有一列数:31,75-,73,94-……,则它的第7个数是________;第n 个数是_______。
【答案】157;12)1(1+-+n n n三、解答题(本大题共7道题,满分88分,请在答题卷中作答,必须写出运算步骤,推理过程,文字说明或作图痕迹)19.(2011贵州六盘水,19,9分)计算:023)14.3(45sin 48)31(8)19(--︒-+-⨯----π【答案】解:原式=19-2×9-22+22-1 =020.(2011贵州六盘水,20,9分)先化简代数式:1)1111(2-÷+--x x x x ,再从你喜欢的数中选择一个恰当的作为x 的值,代入求出代数式的值。
【答案】解:1)1111(2-÷+--x x x x=xx x x x )1)(1()1)(1(2-+⋅+-=x2(注:若x 取1±或0,以下步骤不给分) 当x =2时 原式=121.(2011贵州六盘水,21,14分)在我市举行的“祖国好,家乡美”唱红歌比赛活动中,共有40支参赛队。
市教育局对本次活动的获奖情况进行了统计,并根据收集的数据绘制了图6、图7两幅不完整的统计图,请你根据图中提供的信息解答下面的问题: 1、获一、二、三等奖各有多少参赛队?2、在答题卷上将统计图图6补充完整。
3、计算统计图图7中“没获将”部分所对应的圆心角的度数4、求本次活动的获奖概率。
图6图7 【答案】(1)一等奖:40×15%=6(支) 二等奖:104036090=⨯︒︒(支)三等奖:40-10-6-8=16 (2)获奖等次(3)︒=︒⨯72360408(4)544016106)(=++=获奖P22.(2011贵州六盘水,22,14分)小明家有一块长8m 、宽6m 的矩形空地,妈妈准备在该空地上建造一个花园,并使花园面积为空地面积的一半,小明设计了如下的四种方案供妈妈挑选,请你选择其中的一种..方案帮小明求出图中的x 值。
方案一方案二方案三xx获奖等次方案四【答案】解:据题意,得6821)6)(8(⨯⨯=--x x解得:x 1=12,x 2=2x 1不合题意,舍去 ∴x =2 23.(2011贵州六盘水,23,14分)如图8,已知:△ABC 是⊙O 的内接三角形,D 是OA 延长线上的一点,连接DC ,且∠B =∠D =300。
(1)判断直线CD 与⊙O 的位置关系,并说明理由。
(2)若AC =6,求图中弓形(即阴影部分)的面积。
图8 【答案】解:(1)直线CD 是⊙O 的切线 理由如下: 连接OC∵∠AOC 、∠ABC 分别是AC ∴∠AOC =2∠ABC =2×300=600 ∴∠D +∠AOC =300+600=900∴∠DCO =900 ∴CD 是⊙O 的切线 (2)过O 作OE ⊥AC ,点E 为垂足图8∵OA =OC ,∠ AOC =600∴△AOC 是等边三角形∴OA =OC =AC =6,∠OAC =600在Rt △AOE 中OE =OA ·sin ∠OAC =6·sin 600=33 ∴3933621=⨯⨯=∆A O C S∵ππ63606602=⋅=AOC S 扇形∴396S S AOC AOC -=-=扇形阴π∆S24.(2011贵州六盘水,24,12分)某一特殊路段规定:汽车行驶速度不超过36千米/时。
一辆汽车在该路段上由东向西行驶,如图所示,在距离路边10米O 处有一“车速检测仪”,测得该车从北偏东600的A 点行驶到北偏东300的B 点,所用时间为1秒。
(1)试求该车从A 点到B 点的平均速度。
(2)试说明该车是否超速。
(7.13≈、4.12≈)图9 【答案】解:(1)据题意,得∠AOC =600,∠BOC =300在Rt △AOC 中,∠AOC =60图9∴∠OAC =300∵∠AOB =∠AOC -∠BOC =600-300=300 ∴∠AOB =∠OAC ∴AB =OB 在Rt △BOC 中 OB =OC ÷cos ∠BOCCBAOC B AO特殊路段=1023÷=3320(米)∴AB =3320∴332013320=÷=汽V (米/秒)(2)∵36千米/时=10米/秒 又∵3.113320≈∴103320>∴小汽车超速了 25.(2011贵州六盘水,25,16分)如图10所示,Rt △ABC 是一张放在平面直角坐标系中的纸片,点C 与原点O 重合,点A 在x 轴的正半轴上,点B 在y 轴的正半轴上,已知OA =3,OB =4。
将纸片的直角部分翻折,使点C 落在AB 边上,记为D 点,AE 为折痕,E 在y 轴上。
(1)在图10所示的直角坐标系中,求E 点的坐标及AE 的长。
(2)线.段.AD 上有一动点P (不与A 、D 重合)自A 点沿AD 方向以每秒1个单位长度向D 点作匀速运动,设运动时间为t 秒(0<t <3),过P 点作PM ∥DE 交AE 于M 点,过点M 作MN ∥AD 交DE 于N 点,求四边形PMND 的面积S 与时间t 之间的函数关系式,当t 取何值时,S 有最大值?最大值是多少? (3)当t (0<t <3)为何值时,A 、D 、M 三点构成等腰三角形?并求出点M 的坐标。
图10 【答案】解(1)据题意,△AOE ≌△ADE ∴OE =DE ,∠ADE =∠AOE =900,AD =AO =3 在Rt △AOB 中, 54322=+=AB设DE =OE =x 在Rt △BED 中 BD 2+DE 2=BE 2即22+x 2=(4-x )2解得23=x ∴E (0,23)在Rt △AOE 中 253)23(322=+=AE(2)∵PM ∥DE ,MN ∥AD ,且∠ADE =900∴四边形PMND 是矩形 ∵AP =t ×1=t ∴PD =3-t ∵△AMP ∽△AED ∴ADAPDEPM =∴PM =2tDE AD AP =⋅ ∴)3(2PMND t t PD PM S -⋅=⋅=矩形∴t t S 23212PMND +-=矩形或89)23(212PMND +--t S =矩形当23)21(223=-⨯-=t 时89=最大S(3)△ADM 为等腰三角形有以下二种情况 ①当MD =MA 时,点P 是AD 中点∴232==AD AP∴23123=÷=t (秒)∴当23=t 时,A 、D 、M 三点构成等腰三角形过点M 作MF ⊥OA 于F ∵△APM ≌△AFM ∴AF =AP =23,MF =MP =432=t∴OF =OA -AF =3-2323=∴M (23,43)②当AD =AM =3时∴AEAM ADAP =∴25333=AP∴556=AP ∴5561556=÷=t (秒) ∴当556=t 秒时,A 、D 、M 三点构成等腰三角形过点M 作MF ⊥OA 于F ∵△AMF ≌△AMP ∴AF =AP =556,FM =PM =5532=t ∴OF =OA -AF =3-556∴M (5563-,553)。