这些岩土基本知识,不懂就搞不好旋挖啦!
- 格式:doc
- 大小:28.50 KB
- 文档页数:6
岩土工程知识点总结1. 引言岩土工程是土木工程领域中的重要学科,涉及土壤和岩石的力学特性、地基基础设计、地下水流动等内容。
本文将对岩土工程的一些关键知识点进行总结。
2. 土壤力学2.1 土壤分类根据颗粒大小和颗粒成分,土壤可以分为砂土、粉土、黏土和有机土等类型。
每种类型的土壤具有不同的工程特性和力学性质。
2.2 土壤物理性质土壤的物理性质包括体积重、容重、孔隙比、含水率等。
这些参数影响着土壤的稳定性和水分运移。
2.3 土壤力学参数土壤力学参数包括内摩擦角、压缩模量、剪切强度等,这些参数用于描述土壤的强度和变形特性。
不同类型的土壤具有不同的力学参数。
3. 岩石力学3.1 岩石分类岩石可以分为火成岩、沉积岩和变质岩等类型。
不同类型的岩石具有不同的物理和力学性质。
3.2 岩石物理性质岩石的物理性质包括密度、孔隙度、吸水性等。
这些参数对岩石的稳定性和工程行为有重要影响。
3.3 岩石强度岩石强度是衡量岩石抵抗外力的能力,常用指标包括抗压强度、抗拉强度和抗剪强度等。
岩石强度对岩石的工程应用具有重要意义。
4. 地基基础设计4.1 地基类型根据地基承载形式和地质条件,常见的地基类型包括浅基础和深基础。
针对不同类型的地基,需要采用不同的设计方法。
4.2 地基勘察地基勘察是地基基础设计的前提,通过采集土壤和岩石的资料,包括含水量、颗粒分析、荷载测试等,为基础设计提供依据。
4.3 地基处理地基处理是指通过加固或改良地基的方式提高地基的承载能力和稳定性。
常见的地基处理方法包括加固灌注桩、沉桩和振动加固等。
5. 地下水流动5.1 地下水概述地下水是指土壤和岩石中饱含的水体,它对岩土工程具有重要的影响。
地下水的流动性质主要受渗透系数和水头差的影响。
5.2 渗透系数渗透系数描述了岩土中水分的渗透能力,是地下水流动方程中的重要参数。
不同类型的土壤和岩石具有不同的渗透系数。
5.3 地下水压力地下水压力是指地下水对地下结构和地表的压力分布。
收藏了!旋挖入岩需要了解的9个常识
1.旋挖钻头的材质和形状对于入岩效果有很大影响,需要根据不同岩石类型选择不同的钻头。
2. 旋挖入岩时需要根据岩石类型和厚度选择不同的转速和进给速度,避免过快或过慢导致钻头损坏或效率低下。
3. 设计旋挖施工方案时需要考虑岩石的裂隙、节理和坚硬程度等因素,避免钻头偏离或卡住。
4. 在旋挖施工中,需要不断清理钻孔内部的岩屑和泥浆,保证钻头的正常工作和进度。
5. 旋挖入岩前需要对施工现场进行勘探和测量,确定岩石类型、坚硬程度和深度等重要参数。
6. 旋挖入岩时需要配备专业人员进行现场监测和控制,及时发现和解决施工中的问题和危险。
7. 在旋挖入岩施工中,需要保持钻头的润滑和冷却,避免过热导致钻头损坏或卡住。
8. 旋挖入岩过程中会产生大量的岩屑和泥浆,需要合理处理并防止对环境造成污染。
9. 在旋挖入岩后,需要对施工现场进行清理和检查,并进行必要的维护和保养,以确保设备的长期使用和效果。
- 1 -。
岩土设计基础知识点岩土工程是土木工程领域的一个重要分支,它研究的对象是土体和岩石的力学性质及其与土木工程结构相互作用的规律。
在岩土设计中,掌握一些基础知识点是至关重要的。
本文将介绍一些岩土设计的基础知识点,帮助读者对岩土工程有更深入的了解。
一、土体力学性质1. 土体的物理性质:土体的物理性质包括颗粒组成、密实度和含水量等。
颗粒组成直接影响土体的力学性质,密实度和含水量会影响土体的压缩性和变形特性。
2. 土体的力学性质:土体的力学性质主要包括抗剪强度、压缩性和变形特性。
抗剪强度是指土体抵抗剪切应力的能力,是岩土设计中最为关键的性质之一。
压缩性是指土体在承受应力时发生的体积变化,变形特性描述了土体在应力作用下的变形规律。
二、土体分类与岩土层理1. 土体分类:土体可以根据颗粒大小和颗粒组成进行分类。
常见的土体分类包括粉砂、粉土、砂土、黏土和淤泥等,它们的物理性质和力学性质各不相同。
2. 岩土层理:岩土层理是指地下的土体和岩石的分布规律,具有规律性的岩土层理是岩土设计中的重要依据。
了解地下土体和岩石的层理结构有助于确定合理的工程设计方案。
三、地质勘察与土体参数1. 地质勘察:地质勘察是岩土设计的前提和基础,通过勘察可以获取地层情况、地下水位、岩土层理以及地下水化学性质等信息。
地质勘察的数据对于岩土设计和工程安全具有重要意义。
2. 土体参数:土体参数是指用于描述土体力学性质的物理参数和力学参数,包括重度、孔隙比、内摩擦角、黏聚力等。
准确获取土体参数可以为岩土设计提供可靠的依据。
四、岩土工程施工与监测1. 岩土工程施工:岩土工程施工是将工程设计方案变为现实的过程,涉及到土体处理、基础施工和边坡支护等环节。
合理的施工措施和方法可以保证工程安全稳定地运行。
2. 岩土工程监测:岩土工程监测是对已建工程进行实时监测,了解工程的变形和变化情况。
通过监测数据的分析和处理,可以判断工程的稳定性并及时采取必要的措施。
结语以上介绍的岩土设计基础知识点只是冰山一角,岩土工程是一个广泛而复杂的领域。
收藏了!旋挖入岩需要了解的9个常识
1.旋挖钻机的工作原理和构造:旋挖钻机是一种钻掘机械,利用旋转钻杆和钻头的旋转和推进力量来钻掘岩石和土壤。
2. 旋挖入岩的适用范围:旋挖入岩适用于岩性较硬、厚度较大的地质层,如花岗岩、片麻岩、砂岩等。
3. 旋挖入岩的钻杆和钻头的选择:钻杆和钻头的选择应根据地质环境和钻掘要求进行合理搭配。
4. 旋挖入岩的工作流程:旋挖入岩的工作流程包括:设备安装、孔道钻进、岩心取样、钻孔清理等环节。
5. 旋挖入岩的工作安全:钻掘过程中应注意安全,如正确穿戴安全防护用具、设备操作规范等。
6. 旋挖入岩的材料消耗和成本控制:钻掘过程中会消耗一定的材料和产生一定的费用,应根据具体情况进行成本控制。
7. 旋挖入岩的施工质量控制:钻掘过程中应注意施工质量控制,如控制钻孔直径、孔道质量等。
8. 旋挖入岩施工的环境保护:钻掘过程中应注意环境保护,如妥善处置废弃物料、防止水土流失等。
9. 旋挖入岩的施工效率和效益:钻掘过程中应注意提高施工效率和效益,如合理安排作业时间、提高设备利用率等。
- 1 -。
岩土工程勘察现场工作必备基础知识土部分土的颗粒级配:指土中各粒组的相对含量,通常用各粒组占土粒总质量(干土质量)的百分数表示。
由土的累积曲线的形态,可以看出各粒组的分布规律,可以大致判断土的均匀程度与分选型。
曲线平缓,说明土颗粒大小相差悬殊,土颗粒不均匀,分选差,级配良好;曲线较陡,则说明土颗粒大小相差不多,土颗粒较均匀,分选性较好,级配不良;塑限(W p):粘性土由固态转变到塑态的界限含水量,称为塑限(W P);液限(W L):粘性土由塑态转变到流态的界限含水量,称为液限(W L);塑性指数(I P):由于粘性土的可塑性是含水量介于液限与塑限之间表现出来的,故粘性土可塑性的强弱可由这两个稠度界限的差值大小反映,此差值称为塑性指数I P;即: I p= W L- W P液性指数(I I):判别自然界中粘性土的稠度状态,通常采用液性指数(I I)。
|L=(W-W P) / (W L-W P)土的分类和鉴定一、土的鉴定应在现场描述的基础上,结合室内试验的开土记录和试验结果综合确定。
土的描述应符合下列规定:1碎石土应描述颗粒级配、颗粒形状、颗粒排列、母岩成分、风化程度、充填物的性质和充填程度、密实度等;2砂土应描述颜色、矿物组成、颗粒级配、颗粒形状、粘粒含量、湿度、密实度等;3粉土应描述颜色、包含物、湿度、密实度、摇震反应、光泽反应、干强度、韧性等;4粘性土应描述颜色、状态、包含物、光泽反应、干强度、韧性、土层结构等;5特殊性土除应描述上述相应土类规定的内容外,尚应描述其特殊成分和特殊性质;如对淤泥尚需描述嗅味,对填土尚需描述物质成分、堆积年代、密实度和厚度的均匀程度等;6对具有互层、夹层、夹薄层特征的土,尚应描述各层的厚度和层理特征。
二、土按颗粒级配或塑性指数进行分类可分为以下4种:1碎石土:粒径大于2mm的颗粒质量超过总质量的50%的土;2砂土:粒径大于2mm的颗粒质量不超过总质量的50%,粒径大于0.075mm的颗粒质量超过总质量的50%的土;3粉土:粒径大于0.075mm的颗粒质量不超过总质量的50%,且塑性指数Ip < 10的土;4粘性土:粒径大于0.075mm的颗粒质量不超过总质量的50%,且塑性指数Ip > 10的土;「粉质粘土:塑性指数Ip > 10,且Ip < 17的土;粘性土:-I粘土:塑性指数Ip > 17的土;注:塑性指数应由相应于76g圆锥仪沉人土中深度为10mm时测定的液限计算而得;三、除按颗粒级配或塑性指数定名外,土的综合定名应符合下列规定:I对特殊成因和年代的土类应结合其成因和年代特征定名;2对特殊性土,应结合颗粒级配或塑性指数定名;3对混合土,应冠以主要含有的土类定名;4对同一土层中相间呈韵律沉积,当薄层与厚层的厚度比大于1/3时,宜定为“互层”;当薄层与厚层的厚度比为1/10~1/3时,宜定为“夹层”;当薄层与厚层的厚度比小于1/l0的土层,且多次出现时,宜定为“夹薄层”;5当土层厚度大于0.5时,宜单独分层。
岩土基础知识点总结一、岩土基础的概念和特点1. 岩土基础的概念岩土基础是指建筑物或其他结构的地基工程中,使用的岩石和土壤材料。
它是整个建筑物的基础,承担着建筑物的重量,并将其传递到地面上。
岩土基础的选择和处理对建筑物的稳定性和安全性至关重要。
2. 岩土基础的特点岩土基础具有以下特点:(1)材料多样性。
岩土基础所使用的岩石和土壤材料种类繁多,包括砂砾、泥土、粘土、石灰岩、花岗岩等。
(2)固结性。
岩土基础的材料在加载作用下会发生固结变形,影响整个建筑物的稳定性。
(3)渗透性。
部分岩土基础的材料会发生渗透现象,影响基础的承载能力和稳定性。
二、岩土基础的分类1. 按材料分类(1)岩石基础。
岩石基础是指以天然岩石作为基础的一种基础形式。
其承载能力高,抗压性能好。
(2)土基础。
土基础是指以天然土壤作为基础的一种基础形式。
其承载能力一般,对水分敏感。
2. 按土壤类型分类(1)砂基础。
指以砂土为主要材料构成的基础。
(2)粘土基础。
指以粘土为主要材料构成的基础。
(3)淤泥基础。
指以淤泥为主要材料构成的基础。
3. 按構造形式分类(1)浅基础。
适用于土质良好的场地,不需要深挖基础。
(2)深基础。
适用于土质较差,需要挖掘深基础才能保证承重能力。
三、岩土基础的设计1. 岩土勘察(1)地质勘察。
了解地质构造、地下水情况、地形地貌、自然坡面等情况。
(2)工程勘察。
研究工作基础附近建筑物的影响、开挖工程的条件等情况。
2. 基础设计(1)基础类型选择。
根据地质和土壤情况选择合适的基础类型。
(2)基础承载力计算。
计算基础的承载能力,并进行合理的设计。
3. 基础施工(1)地基处理。
地基处理包括挖土、填土、夯土等工序。
(2)基础浇筑。
根据设计要求进行基础的混凝土浇筑。
四、岩土基础的施工1. 地基开挖(1)清理场地。
清理场地上的障碍物和杂物。
(2)挖土。
按设计要求进行挖土,保证基础的要求高度和平整度。
(3)挖土处理。
挖掘出的土壤要进行分类处理,对于可回填的土壤要进行分类存放。
野外土名描述一、杂填土:杂色,松散,大孔隙,上部为砼地坪,含较多的碎石。
二、淤泥质粉质粘土:灰色~灰黑色,流塑,部分夹有机质;无摇振反应,稍有光滑,干强度低,韧性低,有腐味三、粘土:灰黄色,可塑,无摇振反应、光滑,干强度高,韧性高,局部分布。
四、粘土:灰黄~褐黄色,硬塑,含少量的铁,锰质结核,可塑,无摇振反应,光滑,干强度高,韧性高。
五、粉质粘土:青灰色,软~可塑状,为后期沉积,摇振反应无,稍有光滑,干强度中等,韧性中等。
六、粉质粘土:灰黄~褐黄色,硬塑,含青灰色粘土团块无摇振反应,稍有光滑,干强度中等,韧性中等。
七、粉质粘土:灰黄~褐黄色,可塑,无摇振反应,稍有光滑,干强度中等,韧性中等。
八、粉质粘土:灰黄色,可塑,稍有光滑,干强度中等,韧性中等。
局部含团块状密实粉土。
九、粉质粘土:灰黄~褐黄色,钙质结核,硬塑,无摇振反应,稍有光滑,干强度中等,韧性中等。
十、粉质粘土:灰黄~灰色,软~可塑,粉粒含量高,无摇振反应,稍有光滑,干强中等,韧性中等。
十一、粉质粘土:上部浅灰色,中下部褐黄色,硬塑,含少量铁锰质结核,无摇振反应,切面光滑,干强度高,韧性高。
十二、粉质粘土夹粉土:灰黄~青灰色,可塑,含少量云母片,无摇振反应,稍有光滑,干强度中等,韧性中等。
十三、粉砂:黄色,含云母片,中密。
主要由石英等矿物组成,饱和状态。
十四、粉砂:上部灰黄色,底部浅灰色,含云母片,饱和状态,密实。
十五、粉质粘土夹粉土:灰黄色,软~可塑,无摇振反应,稍有光滑,干强度中等,韧性中等。
局部夹薄层粉土。
十六、粉土:灰黄,含云母片,很湿,稍密。
摇振反应中等,无光泽反应,干强度低,韧性低。
十七、粉砂:灰黄,含云母片,饱和,密实,主要成分由长石、石英、云母等组成,磨园度好、分、选性好。
十八、粉土:浅灰色,含云母片,摇振反应中等,无泽反应,干强度低,韧性低。
十九、粘土夹粉砂:灰黄色,褐黄色,可塑,含少量钙质结核核径为3cm。
夹薄层壮中密粉砂,具水平层理,无摇振反应,切面稍光滑,干强度高,韧性高。
岩土工程相关知识:旋挖桩常见问题及防治处理措施[工程类精品文档]本文内容极具参考价值,如若有用,请打赏支持,谢谢!由于本工程上部土层松散,松散层约0.8米厚。
泥浆收集难度大,成本较高。
根据工程实际情况,本工程在桩位孔口处设置钢护简,可防止下钢筋笼时掉土。
1、导管进水导致导管进水主要有以下原因产生首批砼储备不足,或虽然砼储备已够,但导管底口距孔底的间距过大,砼下落后不能埋没导管底口,以致泥水从底口进入。
其次,导管接头不严,接头间橡皮热被导管高压气囊挤开,或焊缝破裂,水从接头或焊缝中流入。
导管提升过猛,或探测出错,导管底口超出原砼面,底口涌入泥水。
针对以上原因引起的事故,应视具体情况,拔换原导管重下新管或用原导管插入续灌,但灌注前均应将进入导管内的水和沉淀土用吸泥和抽水的方法吸出。
2、卡管卡管主要有以下情况:初灌时隔水栓卡管;由于砼本身的原因,如坍落度过小、流动性差,夹有大卵石、拌和不均匀,以及运输途中产生离析、导管接缝处漏水、雨天运送砼未加遮盖等,使砼中的水泥浆被冲走,粗集料集中而造成导管堵塞。
处理办法:用长杆冲捣管内砼,用吊绳抖动导管,或在导管上安装刚附着式振捣器等使隔水栓下落。
如仍不能下落时,则须将导管连同其内的砼提出钻孔,进行清理修整(注意切勿使导管内的砼落入井孔),然后重新吊装导管,重新灌注。
一旦有砼拌和物落入井孔,须将散落在孔底的拌和物粒料予以清除。
提管时应注意到导管上重下轻,要采取可靠措施防止翻倒伤人。
3、坍孔在灌注过程中B6桩发现井孔护筒内水(泥浆)位忽然上升溢出护筒,随即骤降并冒出气泡,怀疑是坍孔征象,现场采用探测仪探头或伸测深锤探测。
坍孔原因可能是护筒底脚周围漏水,孔内水位降低,不能保持原有静水压力,以及由于护筒周围堆放重物或机械振动等,均有可能引起坍孔。
4、埋管的预防现场严格控制导管埋深在26m之内,经常测深,及时指导提升导管上安装附着式振捣器,拔管前或停灌时间较长时均应适当振捣,使导管周围的砼不致过早地初凝;首批砼掺入缓凝剂,加快灌注速度;导管接头螺栓事先应检查是否稳妥:提升管时不可猛拔。
岩土类知识点总结一、岩土工程基础知识(一)岩土工程的概念和研究对象岩土工程是土木工程中的一个重要分支学科,主要研究岩石和土壤的性质、工程地质、地基和基础工程等方面的问题。
岩土工程广泛应用于建筑工程、交通工程和水利工程等领域。
(二)岩土工程的研究内容岩土工程的研究内容非常广泛,主要包括岩石和土壤的物理性质、力学性质、变形特性、稳定性以及与工程实践相关的各种工程问题。
主要包括岩土材料的物理性质和力学性质、岩土工程地质调查、岩土构造、岩土地质灾害、地基基础工程设计、施工过程中的岩土工程问题等。
(三)岩土工程与其他学科的关系岩土工程是土木工程中的一个重要分支学科,与地质学、力学、工程地质学、地基与基础工程等学科密切相关。
在工程实践中,岩土工程还与建筑工程、交通工程、水利工程等各个领域有着紧密的联系。
二、岩石的性质和分类(一)岩石的组成和结构岩石是由矿物和岩石矿物、玻璃、胶结物等非晶体物质及空隙和裂隙组成的自然体。
根据岩石的结构和成因,可以将岩石分为火成岩、沉积岩和变质岩三大类。
(二)岩石的物理性质岩石的物理性质包括密度、吸水性、孔隙度、渗透性、导热性、导电性等。
这些物理性质对岩石的性质和用途都有着重要的影响。
(三)岩石的力学性质岩石的力学性质包括抗压强度、抗拉强度、抗弯强度、抗剪强度等。
了解岩石的力学性质对基础工程设计和施工具有着重要的指导意义。
三、土壤的性质和分类(一)土壤的物理性质土壤的物理性质包括颗粒度分布、密度、孔隙度、含水量、渗透性等。
这些物理性质对土壤的机械性质和水文地质特征都有着重要的影响。
(二)土壤的机械性质土壤的机械性质包括含水量、流变性、抗剪强度等。
这些机械性质对土壤的稳定性和变形特性起着重要的作用。
(三)土壤的发育和分类土壤的发育过程主要受气候、地形、岩石和植被等因素的影响。
根据土壤发育的差异,土壤可以分为成土土壤、淋溶土壤、碳化土壤、湿润土壤、干旱土壤等不同类型。
四、岩土工程地质调查和试验(一)岩土工程地质调查岩土工程地质调查是为了了解工程地质条件,确定岩土地质构造、地质灾害和地基基础条件等工程地质问题,对工程设计和施工具有着重要的指导意义。
岩土工程培训资料岩土工程是土木工程中的一个重要分支,它研究土壤和岩石的力学性质以及它们与工程结构之间的相互作用。
对于从事土木工程的专业人士来说,掌握岩土工程的基本理论和实践技能是非常重要的。
本篇文章将为你提供一些岩土工程培训资料,帮助你更好地了解和应用岩土工程知识。
一、岩土工程概述岩土工程是一门研究土壤和岩石力学性质及其在工程中的应用的学科。
它涉及到土壤和岩石的力学、水文、地质、结构和环境等多个学科的知识。
岩土工程的主要任务是研究和解决土壤和岩石在工程中的稳定性、承载力、变形和渗透性等问题。
二、岩土工程的基本原理1. 土壤力学原理:土壤力学是岩土工程的基础,它研究土壤的力学性质和变形规律。
土壤的力学性质包括土壤的强度、压缩性、液态和塑性等。
了解土壤的力学性质对于评估土壤的稳定性和承载力至关重要。
2. 岩石力学原理:岩石力学是研究岩石的力学性质和变形规律的学科。
岩石的力学性质包括岩石的强度、弹性模量、抗剪强度等。
了解岩石的力学性质对于评估岩石的稳定性和承载力至关重要。
3. 岩土工程结构相互作用原理:岩土工程结构相互作用是指土壤和岩石与工程结构之间的相互作用关系。
在岩土工程中,土壤和岩石作为工程结构的基础或支撑体,其稳定性和承载力对工程结构的安全性和可靠性有着重要影响。
三、岩土工程的应用领域岩土工程广泛应用于各个领域的土木工程项目中,包括建筑工程、交通工程、水利工程、能源工程等。
以下是一些常见的岩土工程应用领域:1. 土壤基础工程:土壤基础工程是指在建筑工程中对土壤进行处理和加固,以提高地基的稳定性和承载力。
常见的土壤基础工程包括地基处理、地基加固和地基改良等。
2. 岩石工程:岩石工程是指在建筑工程中对岩石进行处理和加固,以提高岩石的稳定性和承载力。
常见的岩石工程包括岩石爆破、岩石锚固和岩石加固等。
3. 边坡工程:边坡工程是指在山区或河流附近对边坡进行处理和加固,以防止边坡滑坡和崩塌。
常见的边坡工程包括边坡加固、边坡防护和边坡监测等。
岩土考试知识点总结一、岩土工程基础知识1. 岩土工程的基本概念岩土工程是以岩石和土壤为对象的工程学科,其研究对象主要包括岩石、土壤和岩土体等。
岩土工程的发展与土木工程、矿业工程、环境工程等有着密切的联系。
2. 地质构造与岩土工程地质构造是岩土工程中的一个重要知识点,它主要包括地质构造的分类、地质构造的特点、地质构造对岩土工程的影响等内容。
3. 地层与岩土工程地层是岩土工程中的一个重要概念,它包括地层的分类、地层的特点、地层对岩土工程的影响等内容。
4. 岩土物理性质岩土物理性质是岩土工程中的关键内容,它包括岩石的物理性质、土壤的物理性质、岩土体的物理性质等内容。
5. 岩土力学性质岩土力学性质是岩土工程中的重要内容,它包括岩石的力学性质、土壤的力学性质、岩土体的力学性质等内容。
6. 岩土地基基础岩土地基基础是岩土工程中的一个重要内容,它包括地基基础的分类、地基基础的设计、地基基础的施工等内容。
7. 岩土边坡稳定岩土边坡稳定是岩土工程中的一个重要内容,它包括边坡的形成原因、边坡的稳定性分析、边坡的稳定性评价、边坡的稳定性改善等内容。
8. 基坑与支护基坑与支护是岩土工程中的一个重要内容,它包括基坑的分类、基坑的开挖、基坑的支护等内容。
9. 地下水与岩土工程地下水是岩土工程中的一个重要内容,它包括地下水的特点、地下水对岩土工程的影响、地下水的控制等内容。
10. 岩土灾害与防治岩土灾害是岩土工程中的一个重要内容,它包括岩土灾害的分类、岩土灾害的预防、岩土灾害的治理等内容。
11. 岩土工程案例岩土工程案例是岩土工程中的一个重要内容,它包括一些成功的岩土工程案例,如工程施工、工程设计、工程管理等内容。
二、岩土勘察与试验1. 岩土勘察岩土勘察是岩土工程中的一个重要环节,其内容包括勘察的目的、勘察的方法、勘察的程序、勘察的技术要求等内容。
2. 岩土试验岩土试验是岩土工程中的一个重要环节,其内容包括试验的目的、试验的方法、试验的程序、试验的技术要求等内容。
岩土考试知识点岩土工程是土木工程的一个重要分支,涉及到地质、土力学、岩石力学等多个学科领域。
对于准备岩土考试的人来说,掌握相关的知识点至关重要。
一、土力学基础知识1、土的三相组成土是由固体颗粒、水和气体组成的三相体系。
固体颗粒是土的骨架,水和气体则填充在骨架的孔隙中。
了解土的三相比例关系对于分析土的物理性质和力学性质有着重要意义。
2、土的物理性质指标包括密度、重度、含水量、孔隙比、孔隙率等。
这些指标可以通过实验测定,并且相互之间存在一定的关系。
3、土的渗透性土中水的渗透规律是土力学中的重要内容。
达西定律描述了水在土中的渗透速度与水力梯度之间的线性关系。
4、土的压缩性土在压力作用下会发生压缩变形。
压缩系数和压缩模量是衡量土压缩性的重要指标。
二、岩石力学知识1、岩石的物理性质岩石的密度、孔隙率、吸水率等物理性质对岩石的力学行为有一定影响。
2、岩石的强度特性包括抗压强度、抗拉强度和抗剪强度。
岩石的强度与岩石的类型、结构、风化程度等因素有关。
3、岩石的变形特性岩石在受力过程中会发生弹性变形和塑性变形。
三、地基基础工程1、浅基础的设计包括独立基础、条形基础、筏板基础等。
需要考虑地基承载力、基础埋深、基础尺寸等因素。
2、桩基础的设计桩的类型、桩的承载力计算、桩的沉降计算等是桩基础设计的关键内容。
3、地基处理方法常见的地基处理方法有换填法、强夯法、预压法、复合地基等,要了解各种方法的适用条件和处理效果。
四、边坡工程1、边坡稳定性分析方法如极限平衡法、数值分析法等,能够评估边坡在不同工况下的稳定性。
2、影响边坡稳定性的因素包括地形地貌、岩土性质、地下水、地震等。
3、边坡防护措施如挡土墙、护坡、锚杆(索)等的设计与施工。
五、地质勘察1、勘察的目的和任务查明工程场地的地质条件,为工程设计和施工提供依据。
2、勘察方法包括钻探、坑探、物探等,以及各种原位测试方法。
3、地质报告的编制能够准确、清晰地表达勘察成果。
六、地下水1、地下水的类型根据埋藏条件可分为上层滞水、潜水和承压水。
岩土入门知识点总结大全1. 岩石与土壤的工程性质岩石和土壤是岩土工程的研究对象,它们的工程性质对工程设计和施工都有重要影响。
岩石通常由矿物、岩屑和胶结物组成,其工程性质包括强度、变形特性、渗透性等。
土壤是由颗粒、有机质和水泥质等物质组成,其工程性质包括土粒分布、密实度、压缩性等。
了解岩石和土壤的工程性质有助于进行地基处理、支护结构设计等工作。
2. 地层与地质条件地层是指地下岩石和土壤的分布状态和组合结构,地质条件则包括地质构造、断裂、岩层倾角等因素。
地层和地质条件对工程设计、地质灾害等都有着重要影响,因此需要对地层和地质条件进行详细的调查和分析。
3. 岩土勘察方法岩土勘察是为了获取地下岩土的相关信息和资料,主要包括野外地质调查、室内试验分析等。
野外地质调查是通过地貌观察、钻孔勘探、取样等方式获取地质信息;室内试验分析则通过对样品进行物理力学性能、工程性质的试验分析来获取相关数据。
岩土工程师需要掌握勘察的方法和技术,以获取准确的地质信息。
4. 地基处理方法地基处理是为了提高地基的承载能力和稳定性,主要包括改良地基、加固地基、添土等方法。
改良地基包括碾压加固、灌浆加固、预应力加固等技术,可以提高地基的承载能力和减小地基沉降。
添土是指在原地基上增加一定厚度的土层,以减小地基的沉降和增加地基的承载能力。
5. 岩土工程中的地下开挖地下开挖是岩土工程中常见的工程活动,主要包括隧道开挖、基坑开挖等。
在地下开挖过程中,需要考虑地下水、地下岩土的稳定性、支护结构设计等问题,以确保地下开挖的安全性和稳定性。
6. 地下水问题地下水是岩土工程中的一个重要环境因素,它会对工程稳定性、承载能力、排水等产生重要影响。
岩土工程师需要了解地下水的分布状态、水文特征和地下水对工程的影响,以便进行相应的设计和施工工作。
7. 地质灾害防治地质灾害是指地震、地滑、滑坡、泥石流等自然灾害,它们对人类的生产生活和工程建设都会产生严重影响。
岩土工程师在地质灾害防治方面需要掌握地质灾害的成因、预测和预防措施,以保障工程的安全。
岩土工程基础知识解析岩土工程是土木工程的一个重要分支,主要涉及土壤和岩石在工程建设中的应用和行为。
在建筑、道路、桥梁等基础设施的设计和施工过程中,岩土工程起着至关重要的作用。
本文将对岩土工程的一些基础知识进行解析,帮助读者更好地理解此领域。
一、岩土工程概述岩土工程学是研究地球物质的力学性质与工程性能的交叉学科。
它主要研究土壤和岩石在人工或自然荷载下的力学响应,以及它们在建筑工程中的应用。
岩土工程学常用于基础工程的规划、设计和施工等阶段,以确保土地的稳定性和工程结构的安全性。
二、土壤力学基础1. 土壤组成与分类土壤是由固体颗粒、液态和气体相互作用而形成的一种复杂的自然物质。
土壤的主要组成部分包括矿物质、有机质、水分和空气等。
根据颗粒的粒径大小,土壤可以分为粒径分级,如粉砂、细砂、中砂、粗砂以及粉土、黏土等。
不同类型的土壤在工程项目中具有不同的性质和特点。
2. 土壤力学参数土壤力学参数是评价土壤力学性质的重要指标。
其中,重要的参数包括土壤的重度、孔隙比、含水量、液塞度和压缩性等。
这些参数对于确定土壤的稳定性和承载能力具有关键性的作用,是设计和施工阶段必须要考虑的因素。
三、岩石力学基础1. 岩石的组成与分类岩石是由一个或多个矿物质组成的固体物质,具有一定的结构和力学性质。
常见的岩石类型包括火山岩、沉积岩、变质岩和花岗岩等。
岩石的力学性质与构造、成分、地质历史等因素密切相关。
2. 岩石的力学参数岩石的力学参数包括抗压强度、抗拉强度、抗剪强度和弹性模量等。
这些参数对于岩石的稳定性和承载能力的评估起着重要作用。
在岩土工程中,需要对岩石的力学参数进行准确地测定,以确保工程的安全和稳定性。
四、岩土工程中的常见问题与解决方法1. 岩土勘察岩土工程勘察是工程规划和设计的必要步骤。
通过对土壤和岩石的性质进行详细的调查和测试,可以评估不同地质条件下的工程风险,并确定适当的设计和施工措施。
2. 地基处理在岩土工程中,地基处理是确保工程地基稳定性的重要步骤。
岩土专业知识点总结一、土力学土力学是岩土工程的基础理论,主要研究土体的应力、应变、变形和强度等性质。
在土力学的学习过程中,需要了解以下几个重要知识点:1. 土体的工程分类。
根据土体的成因和结构特点,可以将土体分为砂、粉砂、粘土、淤泥四种基本类型。
根据土粒间的亲密度和水分状态,可以将土体分为干土、湿土、饱和土、过饱和土四种状态。
2. 土体的物理性质。
包括土体的密度、孔隙比、含水量等基本物理参数,这些参数是计算土体力学性质的重要基础。
3. 土体的应力分布。
了解土体在外力作用下的应力传递规律和应力分布特点,可以为地基工程设计提供基础依据。
4. 土体的应变和变形。
了解土体在外力作用下的应变和变形规律,可以为岩土工程的计算和分析提供依据。
5. 土体的强度和破坏。
土体的强度和破坏特点是土力学研究的重要内容,其中包括土体的抗剪强度、压缩强度等力学性质。
二、地基工程地基工程是岩土工程中的一个重要分支,主要研究地基基础的设计、施工和监测。
在地基工程的学习过程中,需要了解以下几个重要知识点:1. 地基基础的类型。
地基基础可以分为浅基础和深基础两大类。
浅基础主要包括承台基础、地板基础、隔离基础等,深基础主要包括桩基础、井筒基础等。
2. 地基设计的原则。
地基设计时需要考虑地基的受力和变形特点、地基与地表建筑的相互影响以及地基的施工和维护问题等。
3. 地基工程的施工。
地基工程的施工包括地基基础的开挖、浇筑、固化等一系列过程,需要根据具体工程环境,选择合适的工程技术和材料。
4. 地基基础的监测和维护。
地基基础施工后需要进行监测和维护,以确保地基安全可靠。
三、地质工程地质工程是岩土工程中的一个重要分支,主要研究地质构造和地层性质对工程施工和运行的影响。
在地质工程的学习过程中,需要了解以下几个重要知识点:1. 地质构造的特点。
地质构造包括地壳的形成、构造运动和地质构造变化规律等,了解地质构造的特点对地质工程的设计和施工都具有重要意义。
岩土工程勘察基本知识集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#第二篇岩土工程勘察第7章岩土工程勘察基本知识岩土工程勘察的基本任务岩土工程是土木工程中涉及岩石、土的利用、处理或改良的科学技术。
它是以土力学、岩体力学、工程地质学、基础工程学、弹塑性力学和结构力学等为基础理论,并将其直接应用于解决和处理各项土木工程中土或岩石的调查研究、利用、整治或改造的一门技术科学,是土木工程的一个分支。
根据我国近二十年来推行岩土工程体制的实践总结,岩土工程包括岩土工程勘察、岩土工程设计、岩土工程治理、岩土工程检验和监测、岩土工程监理等,涉及工程建设的全过程。
岩土工程勘察是指根据建设工程的要求,查明、分析、评价建设场地的地质、环境特征和岩土工程条件,编制勘察文件的活动。
岩土工程勘察的基本程序岩土工程勘察的基本程序(即主要工作环节)可分为①编制勘察纲要、②工程地质测绘和调查、③勘探和取样、④岩土测试、⑤岩土工程分析评价和成果报告的编制等。
岩土工程勘察的分级一个岩土工程勘察项目可根据其工程的重要性、场地的复杂程度和地基的复杂程度等三方面因素进行岩土工程勘察等级的划分。
岩土工程勘察等级反映该勘察项目的重要性和复杂性,因而是勘察工程管理、确定勘察工作量和技术要求的重要依据。
根据国家标准《岩土工程勘察规范》(GB50021—2001),岩土工程勘察等级的划分步骤是先将工程重要性等级、场地等级和地基等级各分为三级,然后根据三者的不同组合确定岩土工程勘察等级。
岩土工程勘察等级分为三级,具体分级方法和步骤如下。
1)工程重要性等级划分根据工程的规模和特征以及由于岩土工程问题造成工程破坏或影响正常使用的后果,可分为三个工程重要性等级:①一级工程:重要工程,后果很严重;②二级工程:一般工程,后果严重;③三级工程:次要工程,后果不严重。
对于工程重要性,由于涉及各个行业,涉及房屋建筑、地下洞室、线路、电厂及其他工业建筑、废弃物处理工程等,很难做出具体划分标准,上述划分标准仅是比较原则的规定。
这些岩土基本知识,不懂就搞不好旋挖啦!
这些岩土基本知识,不懂就搞不好旋挖啦!
根据岩石建造类型、结构面特征及其组成岩石的岩性和强度等特征,岩体分为岩浆岩、变质岩、碎屑岩、碳酸盐岩和特殊岩石等5个工程地质岩类。
每个岩类再划分为若干岩组,共计18个岩组。
根据土体的成因类型、物质组成及工程特征,土体划分为两类11个组。
岩体工程地质特征:
1、岩浆岩类
(1)坚硬软弱块层状基性喷出岩。
火山熔岩为块状,较坚硬坚硬,干抗压强度48.0193.0兆帕,软化系数0.640.99,岩体稳定性较好;火山碎屑岩为似层状或层状,软弱较坚硬,干抗压强度10.956.0兆帕,软化系数0.430.54,岩体稳定性差。
力学强度的高低与岩石的节理裂隙发育和风化程度有关。
中等风化玄武岩强度为微风化新鲜的2050%;火山碎屑岩易受风化,中等风化的锤击易碎。
(2)坚硬较坚硬层状中酸性喷出岩。
岩石干抗压强度多大于108兆帕。
流纹岩垂直和水平方向上的力学强度变化较大,在一定条件下可成为岩组中相对软弱的夹层。
使岩体稳定性变差。
(3)坚硬块状侵入岩。
岩石以中粗粒或斑状结构为主,块状构造,新鲜者致密坚硬,裂隙不发育,力学强度普遍较高,尤其是新鲜花岗岩,抗压强度一般大于98兆帕。
2、变质岩类
(1)软硬相间薄中厚层状变质砂页岩。
岩层厚薄不等,软硬相间,岩石的完整性和抗风化能力差异很大,力学强度各向异性。
片岩、千枚岩、板岩等软弱岩石,节理裂隙较发育,垂直干抗压强度12.0113兆帕;石英岩、变质砂岩、硅质岩等硬质岩石,较坚硬坚硬,垂直干抗压强度43.0260兆帕,最高达338兆帕。
风化岩石干抗压强仅4090兆帕。
(2)坚硬块状混合岩类。
岩石呈块状,完整性好,坚硬,干抗压强度59196兆帕,强风化者为22兆帕。
(3)软弱碎裂状构造岩。
岩石破碎,透水性强,压碎花岗岩垂直饱和抗压强度为73兆帕,部分小于20兆帕。
3、碎屑岩类
(1)软弱较坚硬,中厚层状红色砂泥岩。
岩石呈不等厚互层状。
力学强度因岩性不同而异。
砂岩,砾岩等岩石较坚硬,干抗压强度多大于50兆帕,风化岩干抗压强度一般小于50兆帕。
泥岩、粘土岩等垂直干抗压强度为11.817.0兆帕。
(2)软硬相间薄中层状砂页岩。
页岩常夹砂岩或与砂岩互层产出。
砂岩干抗压强度为100169兆帕,比片岩高几倍至十几倍,而砂岩强度又容易受风化影响,风化者为3.827兆帕,半风化者6070.3兆帕
(3)坚硬较坚硬中厚层状砂砾岩。
岩石致密坚硬,抗水性和抗风化能力强,力学强度高,抗压强度多大于98兆帕。
(4)软硬相间层状碎屑岩夹碳酸盐岩。
碳酸盐岩、石英砂岩、
粉砂岩等抗压强度较高,页岩抗压强度低。
但碳酸盐岩因岩溶发育,强度有所降低,尤其在断裂破碎带。
4、碳酸盐岩类
该岩类的工程地质特征主要与岩石的岩溶化程度有关
(1)坚硬较坚硬中厚层状强岩溶化碳酸盐岩。
包括灰岩、白云质灰岩、白云岩,岩溶率835%,新鲜岩石抗压强度一般大于98兆帕。
(2)坚硬较坚硬中厚层状中等岩熔化碳酸盐岩。
主要为灰岩、白云岩化灰岩、生物灰岩、白云岩等,沿断裂及褶皱轴一般发育有溶隙、溶洞、暗河等。
岩溶率一般为1.23.3%,岩溶发育深度在100米心内。
干抗强度69.5107.7兆帕,饱和抗压强度51.075.5兆帕,干抗剪强度8.012.7兆帕。
(3)坚硬较坚硬中厚层状弱岩溶化碳酸盐岩。
主要岩石为灰岩、泥质灰岩、白云质灰岩、硅质灰岩、白云岩等,裂隙和岩溶发育程度差,灰岩抗压强度为60.766.1兆帕。
(4)软硬相间层状碳酸盐岩夹碎屑岩。
主要岩石为灰岩、生物灰岩、白云岩、泥灰岩夹石英砂岩、页岩、炭质页岩等。
岩石强度差异大,灰岩抗压强度可达123.2兆帕,而页岩抗压强度一般为11.522.8兆帕,且易软化和泥化。
5、特殊岩类
(1)软弱较坚硬薄中层状含煤、油页岩红色砂泥岩。
新鲜褐煤易氧化成碎块状,抗压强度仅1.82兆帕,凝聚力202千帕;油页岩页理发育,抗压强度1.12.8兆帕,凝聚力48292
兆帕;砂砾岩、砂岩、泥岩的工程地质特征与软弱较坚硬的红色砂泥岩组相当。
(2)软硬相间薄中层状含煤砂页岩。
岩石力学强度高低悬殊,各向异性明显。
泥岩及页岩易软化,且裂隙发育,岩石较破碎,其边坡易崩塌变形。
(3)软硬相间层状含石膏、钙质红色砂泥岩。
岩石易软化和溶浊,常形成溶洞、溶孔、溶沟等。
粤北坪石、丹霞、梅塘、彭屋盆地的白垩系上统灰质砾岩岩溶较发育,往往成为不均质地基,对工程建筑不利。
(4)软弱较坚硬层状珊瑚、贝壳碎屑岩。
岩石胶结程度较差。
除现代潮间带的贝壳砂岩局部强度略大之外,其余强度多较低。
据生物碎屑岩的少量样品测试,干抗压强度为0.940.8兆帕,软化系数0.830.91。
土体工程地质特征:
1、沉积土类
(1)一般粘性土。
土体一般很湿饱和,软可塑,部分流塑或硬塑。
软流塑者允许承载力一般小于100千帕,可塑或硬塑性土允许承载力一般120千帕。
(2)老粘性土。
土体以硬塑状为主,中低压缩性,含水层以上的老粘性土,允许承载力一般200千帕。
但不同成因和不同时代的老粘性土彼此间的工程性能有的差别甚大。
(3)砂性土。
土体具有透水性强、压密快和内摩擦角较大的特点。
其力学强度影响因素较多,一般沉积时间早、埋深大
的,强度高,反之则低。
密实度以松散中密者多,一般由浅至深从松散过渡为密实。
当其处于地下水位之下和埋深小于15米时,可能因强震或机械震动而引起砂土液化。
(4)碎石土。
碎石土主要分布于河流中、上游及支流谷地,沿海一带也有零星分布。
多埋藏于其它土组之下,且常为底砾层。
土体具孔隙大、透水性强、抗剪强度大的特点,呈稍密密实状(裸露者以松散居多),力学强度高,一般可作良好的天然地基。
(5)特殊性土。
特殊性土,主要为淤泥质土和泥炭土。
淤泥质土天然含水量高,并大于液限,孔隙比大于1,亲水性强,透水性强,呈软塑流塑状,高压缩性,允许承载力小于90
千帕。
原状土抗剪强度平均值为8.464千帕。
泥炭土多呈牛粪状,松软而质轻,饱和或过饱和,具大孔隙率、软流塑、高压缩、易触变、力学强度低和工程性能差等特点。
轻型触探击数为117击,允许承载力小于100千帕。
此外,尚有硅藻土,其性质为松散质轻,高压缩性。
干时吸水性强,易崩解,强度很低。
2、坡残积土类
(1)侵入岩坡残积土。
土体为粘土、亚砂土等,普遍含较多的石英砂砾。
天然状态下呈可塑一硬塑状,中等压缩性,压缩系数平均值0.30.46每兆帕,标贯击数平均8.021.5击。
力学强度较高,且随深度的增加而增大,允许承载力大多达160千帕。
(2)喷出岩坡残积土。
土体为粘土、亚粘土、亚砂土等,呈可塑硬塑状。
据梅县两个流纹斑岩残积土试验成果,液性指数小于零,压缩系数平均值为0.01每兆帕,压缩模量16.2兆帕;雷琼地区基性火山岩残积土孔隙比一般为
0.9662.548,压缩系数平均值为0.0290.289每兆帕,地基允许承载力普遍达200千帕。
(3)碎屑岩坡残积土。
主要为粘土、亚粘土,可塑硬塑状,压缩系数平均值0.1960.36每兆帕,标贯平均击数13.760击,力学强度较高。
(4)碳酸盐岩坡残积土。
主要为粘土、砾质粘土、含砾亚粘土、亚砂土,统称为红粘土。
土体突出的工程地质特征是具有一定的胀缩性,失水时体积剧烈收缩,失水愈严重,收缩量就愈大,但吸水膨胀性较弱,胀压力很低。
天然状态下含水率、孔隙比、可塑性指标等较高,多呈坚硬硬塑状。
以中等压缩性为主,压缩系数平均值为0.0080.048每兆帕。
(5)变质岩坡残积土。
主要为粘土、粘土夹碎石、亚砂土等,强度一般较高,允许承载力多达250千帕。