初中数学北师大版八年级上册3 应用二元一次方程组—鸡兔同笼
- 格式:ppt
- 大小:443.50 KB
- 文档页数:9
北师大版数学八年级上册3《应用二元一次方程组——鸡兔同笼》教学设计1一. 教材分析《应用二元一次方程组——鸡兔同笼》这一节内容是北师大版数学八年级上册的重点内容。
主要让学生通过解决实际问题,掌握二元一次方程组的解法,并能够运用到实际问题中。
本节内容是在学生已经掌握了二元一次方程的基础知识上进行学习的,通过鸡兔同笼问题,让学生进一步理解和掌握二元一次方程组的解法。
二. 学情分析学生在学习本节内容前,已经掌握了二元一次方程的基础知识,能够进行简单的方程运算。
但是,对于如何将实际问题转化为方程组,以及如何运用方程组解决实际问题,可能还存在一定的困难。
因此,在教学过程中,需要教师引导学生将实际问题转化为方程组,并通过具体的例子,让学生理解和解二元一次方程组的步骤。
三. 教学目标1.理解鸡兔同笼问题的背景和意义,能够将实际问题转化为二元一次方程组。
2.掌握解二元一次方程组的基本步骤和方法。
3.能够运用二元一次方程组解决实际问题。
四. 教学重难点1.教学重点:将实际问题转化为二元一次方程组,解二元一次方程组。
2.教学难点:理解并掌握解二元一次方程组的步骤和方法。
五. 教学方法1.情境教学法:通过鸡兔同笼问题的引入,激发学生的学习兴趣,引导学生主动参与学习。
2.案例教学法:通过具体的例子,让学生理解和解二元一次方程组的步骤和方法。
3.小组合作学习:让学生在小组内进行讨论和交流,提高学生的合作能力和解决问题的能力。
六. 教学准备1.准备相关的案例和问题,以便进行教学。
2.准备黑板和粉笔,以便进行板书。
七. 教学过程1.导入(5分钟)通过给学生讲一个关于鸡兔同笼的故事,引出本节课的内容。
让学生思考如何通过计算来确定鸡和兔的数量。
2.呈现(10分钟)呈现鸡兔同笼问题,引导学生将其转化为方程组。
例如,假设鸡的数量为x,兔的数量为y,则可以得到以下方程组:2x + 4y = 20x + 2y = 10让学生尝试解这个方程组,并找出解的含义。
第五章二元一次方程组3. 应用二元一次方程组——鸡兔同笼通川区第十一中学潘英一、教学目标:1、知识与技能目标:(1)在具体问题的解决过程中提高学生的解二元一次方程组的技能;(2)使学生掌握运用方程组解决实际问题的一般步骤,让学生亲自经历和体验运用方程(组)解决实际问题的过程,进一步体会方程(组)是刻画现实世界的有效数学模型,培养学生的抽象、概括、分析解决实际问题的能力;2、过程与方法目标:进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.3、情感态度与价值观目标:通过"鸡兔同笼" ,把同学们带入古代的数学问题情景,学生体会到数学中的"趣";进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神;通过对祖国文明史的了解,培养学生爱国主义精神,树立为中华崛起而学习的信心.二、教学重点与难点教学重点:根据等量关系列二元一次方程组解应用题.教学难点:1、读懂古算题; 2、根据题意找出等量关系,列出方程.三、教学过程设计本节课设计了五个教学环节:第一环节:引入课题;第二环节:典型例题;第三环节:闯关练习;第四环节:感悟和收获;第五环节:作业布置.第一环节:引入课题活动内容1:例 1 今有雉(兔)同笼,上有三十五头,下有九十四足,问雉兔各几何?提问:(1)"上有三十五头"的意思是什么?" 下有九十四足"呢?(2)你能解决这个有趣的问题吗?(说明:多媒体展示"鸡兔同笼"问题后,说明该问题是古代著名的"难题",以此激发学生解决问题的好奇心;提出问题后,让学生先思考,后讨论,然后找学生说出他的解题思路, 写出解题过程,让学生讨论对不对,有没有不同的思路和观点;最后在学生充分讨论的基础上,老师用多媒体课件,给出正确的答案.)1. 用小学的算数方法解(1) 兔子有(35 X 4-94)- 2=23 只,鸡有35-23=12 只.(2) 鸡有(94-35 X2)十2=12只,兔子有35-12=23 只.(3) 兔子有(94 - 2-35) =23 只,鸡有35-12=23 只.2. 用一元一次方程求解解:设有鸡x只,贝U有兔(35-x)只,得2x 4(35 x) 94.2x 140 4x 94.2x 46.x 23.35 x 12.所以有鸡23只,兔12只.3. 用二元一次方程求解:解:设有鸡x只,兔y只,则x+y=35, ①*2x+4y=94. ②①X2,得2x+2y=70 ,③②—③,得2y=24,y=12,把y=12 代入①,得x=23.所以有鸡23只,兔12只.你觉得哪种方法好呢?为什么?小结:小学方法比较巧妙但是不容易想到,用一元一次方程解法优点:只需设一个未知量,一元一次方程解法不足:找等量关系,计算较复杂.用二元一次方程组解答优点:思维快速简单,容易找到等量关系,二元一次方程组解答不足:它的计算步骤复杂些.第二环节:典型例题活动内容1:练习1列方程解古算题:"今有牛五、羊二,值金十两;有牛二、羊五,值金八两.牛、羊各值金几何?(在引例及例题的基础上,学生已基本掌握了列二元一次方程组解决实际问题的方法,此题可由学生独立完成•当然由于本题是古文,可以先找学生说出题目的大意:5头牛、2只羊共价值10两"金",2头牛、5只羊共价值8两"金",每头牛、每只羊各价值多少"金"?在题的结果上强调只要分数表示即可;要学生板书整个解题过程.)解:设每头牛值"金"x两,设每只羊值"金"y两,则有方程:5x+2y=10 ,①2x+5y=8. ②①>2,得10x+4y=20 ,③②>5,得10x+25y=40 ,④④-③,得21y=20,解得尸却,2020 34把尸20代入②得:x=34.21 21所以,每头牛值"金"34两,设每只羊值"金"空两•21 21活动内容2:练习2以绳测井,若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺•绳长、井深各几何?提问:1."将绳三折测之,绳多五尺",什么意思?2. "若将绳四折测之,绳多一尺",又是什么意思?可以让学生演示. 解:设绳长x尺,井深y尺,则x-y=53,①x-y=1. 4②联列①,①-②,得x x ,-=4,3 4x=4,12x=48,将x=48 代入①,得y=11.答:绳长48尺,井深11尺.教学说明:在教学中启发学生对于这道题还可以建立其他的等量关系吗?如果可以列出方程。
第五章二元一次方程组
3 应用二元一次方程组——鸡兔同笼
一、教学目标
1.分析“鸡兔同笼”等简单问题中的数量关系,准确找出等量关系.
2.掌握列二元一次方程组解决实际问题的一般步骤.
3.在经历和体验运用方程(组)解决实际问题的过程中,进一步体会方程(组)是刻画现实世界的有效数学模型,培养学生抽象、概括、分析解决实际问题的能力.
4.进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.
二、教学重难点
重点:分析“鸡兔同笼”等简单问题中的数量关系,准确找出等量关系.
难点:掌握列二元一次方程组解决实际问题的一般步骤.
三、教学用具
电脑、多媒体、课件、教学用具等
四、教学过程设计
【典型例题】
教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.
【引例】雉兔同笼题为:
“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何? ”
教师活动:
问题1:题中有哪些等量关系呢?
预设答案:鸡头+兔头=35,
鸡脚+兔脚=94.
问题2:你能解决这个有趣的问题吗?
引导:你能根据得到的等量关系,用方程组解决这个问题吗?
预设答案:
列出方程组:
35 2494. x y
x y
+=
⎧
⎨
+=
⎩
,
问题3:你会计算这个方程组吗?预设答案:
思维导图的形式呈现本节课的主要内容:教科书第116页。
北师大初中数学八年级重点知识精选掌握知识点,多做练习题,基础知识很重要!北师大初中数学和你一起共同进步学业有成!5.3 应用二元一次方程组——鸡兔同笼【学习目标】【知识目标】使学生初步掌握列二元一次方程组解应用题【能力目标】通过将实际问题转化成纯数学问题的应用训练,培养学生分析问题、解决问题的能力。
【情感目标】通过对祖国文明史的了解,培养学生爱国主义精神,树立为中华崛起而学习的信心。
【重点】根据等量关系列二元一次方程组解应用题。
【难点】根据题意找出等量关系,列出方程。
【学习过程】一.我们伟大祖国具有五千年的文明史,在历史的长河中,为科学知识的创新和发展作出了巨大的贡献,特别在数学领域有[九章算术]、[孙子算经]等古代名著流传于世,普及趋于民众,许多问题浅显易懂,趣味性强,如[九章算术]下卷第三题目“雉兔同笼”等,漂洋过海传到了日本等国,对中国古代文明史的传播起了很大作用。
“雉兔同笼”题为:“今有雉兔同笼,上有三十五关,下有九十四足,问雉兔各几何?”问题1、“上有三十五头”指的意思是什么?“下有九十四足”呢?答:“上有三十五头”指的鸡和兔共有三十五个头,“下有九十四足”指的是鸡和兔共有九十四只脚。
问题2、你能根据问题1中的的数量关系列出方程吗?并能解决这个有趣的问题吗?(分小组进行讨论,然后请两个小组的代表到黑板上板演)解:设有鸡x只,兔y只,则x+y=35 解之得x=232x+4y=94 y=12答:共有鸡23只,兔12只。
这个古老的数学问题,用今天的方程解决,体现了古为今用的原则,为后人理解了数学的过去和现在,当代的著名的数学家陈省生教授在说起“鸡兔同笼”时,曾另有一番别有风趣的延伸:“全体鸡兔立正,兔子提起前面的两只脚,请问现在共有几只脚?”……二.中国是一个伟大的四大文明古国,像这样浅显有趣的数学题目还有很多,我们的书上就提供了这样的一个例题例1、以绳测井,若将绳三折测之,绳多五尺,若将绳四折测之,绳多一尺,绳长、井深各几何?接下来老师看一下,那位同学的古文水平好,那位同学能自告奋勇地解释一下,这段古文的意思?(用绳子测量水井的深度,如果将绳子折成三等分,一份绳子长比井深多5尺;如果将绳折成四等份,一份绳子比井深多1尺,绳子、井深各是多少尺?)(分小组进行讨论,然后请两个小组的代表到黑板上板演)解:设绳子长x尺,井深y尺,则1453=-=-y x y x 解之得x= 48y=11 答:绳子长为48尺,井深11尺。
“鸡兔同笼”补遗北师大版八年级(上)第五章第三节介绍了《应用二元一次方程组-——鸡兔同笼》,本文再介绍与之相关的一些知识,供同学们学习时参考.今有雉兔同笼,上有三十五头.下有九十四足,问雉兔各几何?它出自我国古代数学著作《孙子算经》中著名的“雉兔同笼”问题.书中给出的解法是:“上置头,下置足,半其足,以头除(此处‘除’之意为‘除去’即减去)足,以足除头,即得.”书中先设“金鸡独立”,玉兔双腿(即“半其足”),这时共有腿数为94÷2 = 47.在这47条腿中,每数一条腿应该有一只鸡,而每数两条腿才有一只兔,所以:兔数为 47-35 = 12,即“以头除足”.鸡数为 35-12 =23.这道题用列二元一次方程组的方法可以很容易求解:设鸡有x 只,兔有y 只,则由题意,可得352494.x y x y +=⎧⎨+=⎩解这个方程组,得2312x y =⎧⎨=⎩. 我们再把这个解法一般化:在一般情况下,设鸡有x 只,兔有y 只,A 为鸡、兔总共只数,B 为鸡、兔总共足数.则24.x y A x y B +=⎧⎨+=⎩解之,可得22.2B x A B y A ⎧=-⎪⎪⎨⎪=-⎪⎩ 这就是说,兔数为腿数的二分之一(半其足),与总头数之差(以头除足).在古代朱世杰《算学启蒙》(1299年)《永乐大典》中的《丁巨算法》(1355年)严恭《通原算法》中,也载有鸡兔同笼问题,朱世杰的解法与《孙子算经》不同,而与现代的算术解法则几乎完全一样.今有鸡兔100,共足272只,只云鸡足二,兔足四,问鸡兔各几何?其解法是:“列一百,以兔足乘之,得数内减共足余一百二十八为实,列鸡、兔足以少减多余二为法而一得鸡,反减一百即兔,合问.”又术曰:“倍一百以减共足余半之即兔也.”此即:鸡数 (100×4-272)÷(4-2) = 64.兔数 100-64 = 36.或兔数 (272-100×2)÷2 = 36.鸡数 100-36 = 64.吴敬《九章算法比类大全》(1450年)卷六也载有几个很有趣味的类似的诗词古体算题,如争强斗胜八臂一头号夜叉,三头六臂是哪吒.两处争强来斗胜,二相胜负正交加.三十六头齐厮打,一百八手乱相抓.旁边看者殷勤问,几个哪吒几夜叉?吴敬原书的解法:置列互乘对减得 108×3-36×6 = 108为被除数,3×8-1×6 = 18为除数,故:夜叉数为108÷18 = 6.哪吒数为(36-6)÷3 = 10.此法与现在的方程组解法相类似:设夜叉数为x ,哪吒数为y ,则86108.336x y x y +=⎧⎨+=⎩解得6.10x y =⎧⎨=⎩“鸡兔同笼”问题,在我国民间流传十分广泛,民间流传有“野鸡兔子四十九,一百条腿地下走.借问英贤能算士,野鸡兔子各多少?(请同学们自己列方程组解答).下面这道题是流传于我国民间的“板凳木马问题”它同“鸡兔问题”很相似.板凳木马三十三,共足一百单;请问能算者,它们各若干?这道题的意思是:板凳木马的总数是33个,腿的总数是101条.板凳、木马各有多少个?(注:板凳4条腿,木马3条腿)解:设有板凳x 个,木马y 个,根据题意,得33,43101.x y x y +=⎧⎨+=⎩解得2,31.x y =⎧⎨=⎩即板凳有2条,木马有31个. 在李汝珍(约公元1763 - 1830)著的古典小说《镜花缘》中有这样一段趣味故事:宗伯府的女主人卞宝云邀请众女才子们到府中的小鳌山观灯.当众才女在一片音乐声中来到小鳌山时,只见楼上楼下俱挂着许多灯球,五彩缤纷,秀丽壮观,宛如列星,高低错落.一时竟难分辨其有灯多少,卞宝云请精通筹算的才女米兰芬,算一算楼上楼下大小灯球的数目.她告诉米兰芬:“楼上的灯有两种;一种上做三个大灯球,下缀六个小灯球;另一种上做三个大灯球,下缀18个小灯球.楼下的灯也分两种:一种一个大球下缀两个小球;另一种是一个大球下缀四个小球.”她请米兰芬算一算楼上楼下大小灯球各多少盏?米兰芬想了一想,请宝云命人查一查楼上楼下大小灯球各多少个.查的结果是:楼上大灯球396个,小灯球1440个;楼下大灯球360个,小灯球1200个.米兰芬采用《孙子算经》中雉兔同笼“的解法,先算楼下的:一大四小灯的盏数:1200÷2-360 = 240.一大二小灯的盏数:360-240 = 120.楼上三大十八小的盏数:(1440÷2-396)÷6 = 54.三大六小的盏数:(396-3×54)÷3 = 78.用列二元一次方程组的方法求解如下:解:设楼下一个大球下缀两个小球的灯有x 盏,一个大球下缀四个小球的灯有y 盏,根据题意,得360,241200.x y x y +=⎧⎨+=⎩ 解得120,240.x y =⎧⎨=⎩答:(略).请同学们用同样的方法算一算楼上两种灯的盏数.在我国明朝永乐年间,由翰林学士解缙等人编撰的《永乐大典》中也有类似的题目,请看下面这道题: 钱二十贯,买四百六十尺,绫每尺四十三,罗每尺四十四.问绫、罗几何?这道题的意思是:用20贯钱买了460尺绫和罗,绫的价格是每尺43文,罗的价格是每尺44文.问买了绫、罗各多少尺?(贯:古代货币单位;文:古代货币单位.1贯=1000文;尺:已经废止使用的市制长度单位.)经过我们仔细地观察、比较,可以发现,此题也可以归为“鸡兔问题”来求解.解:设买绫x 尺,买罗y 尺,根据题意,得460,434420000.x y x y +=⎧⎨+=⎩解得240,220.x y =⎧⎨=⎩即买绫240尺,买罗220尺. 在《九章算术》中的:“玉石问题”也属于这一类:今有玉方一寸,重七两;石方一寸,重六两.今有石方三寸,中有玉,并一十一斤.问玉、石各重几何?(斤、两:都是已经废止使用的重量单位.古代,1斤=16两;寸:是已经废止使用的市制长度单位.)这道题的意思是:宝玉1立方寸重7两,石料1立方寸重6两.现有宝玉和石料混合在一起的一个正方体,棱长是3寸,重量是11斤.在这个正方体中的宝玉和石料各重多少两?解:设这个正方体中宝玉x 寸,石料y 寸,根据题意,得33,76176.x y x y ⎧+=⎨+=⎩ 解得14,13.x y =⎧⎨=⎩则有宝玉:14×7=98(两),石料:13×6=78(两).答:(略)中国的鸡兔问题后来传到了日本.日本江户时代出版社出版的《算法童子问》一书中就有许多类似这样解法的题目.下面这道题就是这本书中比较典型的一道:院子里有狗,厨房的菜墩上有章鱼.狗和章鱼的总头数是14,总足数是96,求狗和章鱼各有多少.(注:章鱼有8只足.)解:设狗有x 条,章鱼有y 尾,根据题意,得14,4896.x y x y +=⎧⎨+=⎩ 解得4,10.x y =⎧⎨=⎩即有狗4条,有章鱼10尾.列一次方程组解“鸡兔问题”的方法你学会了吗?下面的题目请你尝试一下:1. 鸡兔同笼不知数,三十六头笼中露;看来脚有一百只,几多鸡儿几多兔.2. 一千官兵一千布,一官四尺无零数;四兵才得布一尺,请问官兵多少数?答案:1.14只兔,22只鸡.2.200军官,800士兵.。
第五章二元一次方程组3. 应用二元一次方程组——鸡兔同笼教学设计平陆实验中学陈娜教学目标:1、知识目标:经历和体验用二元一次方程组解决实际问题的过程,感受方程模型。
2、能力目标:能读懂题意,会找等量关系,并能用二元一次方程组解决实际问题。
3、情感目标:通过介绍有关历史资料,增强民族自豪感,提高学生对数学的好奇心和求知欲;增强学习数学的自信心。
教学重点:根据等量关系列二元一次方程组解应用题.教学难点:根据题意找出等量关系,列出二元一次方程组解决实际问题。
教学过程第一环节:引入课题1、出示图片,生猜出课题。
第二环节:出示目标1、能读懂题意,会找等量关系。
2、能用二元一次方程组解决实际问题。
第三环节:典型例题(一)“读一读”,了解课题“鸡兔同笼”出处《孙子算经》。
鸡兔同笼“读一读”,了解课题“鸡兔同笼”出处《孙子算经》。
例今有雉(兔)同笼,上有三十五头,下有九十四足,问雉兔各几何?提问:(1)"上有三十五头"的意思是什么?"下有九十四足"呢?(2)你能解决这个古代的难题吗?1、读题,理解题意并翻译为现代白话文。
2、出示《孙子算经》中记载的算术方法,体会古人的机智。
3、提问:你有不同的方法解答吗?思考后独立解答。
4、学生黑板展示并语言讲解,师强调读关键句,找出等量关系。
5、交流你们不同的思路和解法。
1.用一元一次方程求解解:设有鸡x只,则有兔(35-x)只,得.1235.23.462.9441402.94)35(42=-=-=-=-+=-+x x x x x x x 所以有鸡23只,兔12只.小结:一元一次方程解法优点: 思维便捷些.一元一次方程解法不足:计算较复杂.2.用二元一次方程求解:解:设有鸡x 只,兔y 只,则 x +y =35, ①2x +4y =94. ②① ×2,得 2x +2y =70 , ③②-③,得 2y =24,y =12,把 y =12 代入①,得x =23.所以有鸡23只,兔12只.小结:⑴用二元一次方程组解答优点:思维快速简单.用二元一次方程组解答不足:计算复杂些.小结:列二元一次方程组解应用题的步骤(1)审:认真读题,找出等量关系;(2)设:设两个未知数;(3)列:根据等量关系列出方程组;(4)解:解方程组;(5)答:检验并作答.审、设、列、解、答列二元一次方程组解决实际问题的关键是:找出等量关系。
第五章二元一次方程组3. 应用二元一次方程组——鸡兔同笼通川区第十一中学潘英一、教学目标:1、知识与技能目标:(1)在具体问题的解决过程中提高学生的解二元一次方程组的技能;(2)使学生掌握运用方程组解决实际问题的一般步骤,让学生亲自经历和体验运用方程(组)解决实际问题的过程,进一步体会方程(组)是刻画现实世界的有效数学模型,培养学生的抽象、概括、分析解决实际问题的能力;2、过程与方法目标:进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.3、情感态度与价值观目标:通过"鸡兔同笼",把同学们带入古代的数学问题情景,学生体会到数学中的"趣";进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神;通过对祖国文明史的了解,培养学生爱国主义精神,树立为中华崛起而学习的信心.二、教学重点与难点教学重点:根据等量关系列二元一次方程组解应用题.教学难点:1、读懂古算题;2、根据题意找出等量关系,列出方程.三、教学过程设计本节课设计了五个教学环节:第一环节:引入课题;第二环节:典型例题;第三环节:闯关练习;第四环节:感悟和收获;第五环节:作业布置.第一环节:引入课题活动内容1:例1 今有雉(兔)同笼,上有三十五头,下有九十四足,问雉兔各几何?提问:(1)"上有三十五头"的意思是什么?"下有九十四足"呢?(2)你能解决这个有趣的问题吗?(说明:多媒体展示"鸡兔同笼"问题后,说明该问题是古代著名的"难题",以此激发学生解决问题的好奇心;提出问题后,让学生先思考,后讨论,然后找学生说出他的解题思路,写出解题过程,让学生讨论对不对,有没有不同的思路和观点;最后在学生充分讨论的基础上,老师用多媒体课件,给出正确的答案.)1.用小学的算数方法解(1)兔子有(35×4-94)÷2=23只,鸡有35-23=12只.(2)鸡有(94-35×2)÷2=12只,兔子有35-12=23只.(3)兔子有(94÷2-35)=23只,鸡有35-12=23只.2.用一元一次方程求解解:设有鸡x 只,则有兔(35-x )只,得.1235.23.462.9441402.94)35(42=-=-=-=-+=-+x x x x x x x所以有鸡23只,兔12只.3.用二元一次方程求解:解:设有鸡x 只,兔y 只,则x +y =35, ① 2x +4y =94. ②① ×2,得 2x +2y =70 , ③②-③,得 2y =24,y =12,把 y =12 代入①,得x =23.所以有鸡23只,兔12只.你觉得哪种方法好呢?为什么?小结:小学方法比较巧妙但是不容易想到,用一元一次方程解法优点: 只需设一个未知量,一元一次方程解法不足:找等量关系,计算较复杂.用二元一次方程组解答优点:思维快速简单,容易找到等量关系, 二元一次方程组解答不足:它的计算步骤复杂些.第二环节:典型例题活动内容1:练习1列方程解古算题:"今有牛五、羊二,值金十两;有牛二、羊五,值金八两.牛、羊各值金几何?(在引例及例题的基础上,学生已基本掌握了列二元一次方程组解决实际问题的方法,此题可由学生独立完成.当然由于本题是古文,可以先找学生说出题目的大意:5头牛、2只羊共价值10两"金",2头牛、5只羊共价值8两"金",每头牛、每只羊各价值多少"金"?在题的结果上强调只要分数表示即可;要学生板书整个解题过程.)解:设每头牛值"金" x 两,设每只羊值"金" y 两,则有方程: 5x +2y =10 , ①2x +5y =8. ②①×2,得 10x +4y =20 , ③②×5, 得 10x +25y =40 , ④④-③, 得 21y =20,解得 y =2120, 把 y =2021 代入②得:x =3421. 所以,每头牛值"金"3421 两,设每只羊值"金"2021两.活动内容2: 练习2 以绳测井,若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺.绳长、井深各几何?提问:1."将绳三折测之,绳多五尺",什么意思?2."若将绳四折测之,绳多一尺",又是什么意思?可以让学生演示.解:设绳长x 尺,井深y 尺,则3x -y=5 , ① 4x -y=1. ② 联列①,② ①-②,得 3x -4x =4, 12x =4, x =48,将 x =48 代入①,得 y =11.答:绳长48尺,井深11尺.教学说明:在教学中启发学生对于这道题还可以建立其他的等量关系吗?如果可以列出方程。
3 应用二元一次方程组——鸡兔同笼1.列方程组解应用题的基本思想列方程组解应用题是把“未知”转化成“已知”的重要方法.它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.列二元一次方程组解应用题必须找出两个等量关系,列出两个方程. 【例1】 “甲、乙隔河放牧羊,两人互相问数量,甲说得乙羊九只,我羊是你二倍整.乙说得甲羊八只,两人羊数正相当.”请你帮助算一算,甲、乙各放多少羊?分析:题中有两个未知数:甲放羊的只数和乙放羊的只数.相等关系:(1)甲放羊的只数+9=2(乙放羊的只数-9);(2)甲放羊的只数-8=乙放羊的只数+8.解:设甲放羊x 只,乙放羊y 只.由题意,得⎩⎪⎨⎪⎧ x +9=2(y -9),x -8=y +8.解得⎩⎪⎨⎪⎧x =59,y =43.所以甲放羊59只,乙放羊43只. 析规律 建模型、列方程组在列方程组解决实际问题时,应先分析题目中的已知量、未知量是什么,各个量之间的关系是什么,找出它们之间的相等关系,列出方程(组),建模过程即可完成,因此解决实际问题的建模过程非常重要.2.列二元一次方程组解应用题的一般步骤(1)审:审题,分析题中已知什么,求什么,明确各数量之间的关系. (2)设:设未知数(一般求什么,就设什么为x ,y ). (3)找:找出能够表示应用题全部意义的两个等量关系.(4)列:根据这两个等量关系列出需要的代数式,进而列出两个方程,组成方程组. (5)解:解所列方程组,得未知数的值.(6)验:检验所求未知数的值是否符合题意,是否符合实际.(7)答:写出答案(包括单位名称).北师版中的“答”一般用“所以”代替. 点技巧 完善列方程解应用题的步骤(1)“审”和“找”两步在草稿上进行,书面格式中主要写“设”“列”“解”和“答”四个步骤.(2)解应用题时,切勿漏写“答”,“设”和“答”要写清单位名称.【例2】 一张方桌由1张桌面和4条桌腿做成,已知1 m 3木料可以做桌面50张或桌腿300条.现有5 m 3木料,恰好能做成方桌多少张?分析:这是一个产品配套问题.题中已知数有两个:做桌面的木料的方数和做桌腿的木料的方数.相等关系:(1)做桌面的木料的方数+做桌腿的木料的方数=木料的总方数;(2)4×桌面的张数=桌腿的条数.解:设用x m 3木料做桌面,y m 3木料做桌腿,由题意,得⎩⎪⎨⎪⎧x +y =5,4×50x =300y .解得⎩⎪⎨⎪⎧x =3,y =2.因为3×50=150,所以恰好能做成方桌150张.注:读懂题意,找出等量关系式是关键.3.列方程组解决古代问题人们在日常生活中少不了数学运算,在诗歌创作中也时有反映.解决这类问题的关键是读懂题意,将古诗文转化为白话文.【例3-1】 周瑜年华而立之年督东吴,早逝英年两位数; 十比个位正小三,个是十位正两倍;哪位学子算得快,多少年华数周瑜?分析:本题有两个等量关系式:十位数字=个位数字-3;个位数字=十位数字的2倍.解:设周瑜年龄的个位数字为x ,十位数字为y ,根据题意,得⎩⎪⎨⎪⎧y =x -3,x =2y .解得⎩⎪⎨⎪⎧x =6,y =3.所以周瑜只活了36岁.点评:解决这类问题的关键在于从实际问题背景中抽象出数学问题的本质,建立方程(组)模型,并能从多种途径出发,通过列方程(组)去求得其解.【例3-2】 二果问价九百九十九文钱,甜果苦果买一千, 甜果九个十一文,苦果七个四文钱, 试问甜苦果几个?又问各该几个钱?分析:这首古诗词翻译成白话文,即:九百九十九文钱可买一千个甜果和苦果,已知十一文钱可买九个甜果,四文钱可买七个苦果,那么甜果、苦果各买多少个?买甜果、苦果各需多少文钱?解:设甜果x 个,苦果y 个,根据题意,得⎩⎪⎨⎪⎧x +y =1 000,119x +47y =999.解得⎩⎪⎨⎪⎧x =657,y =343.因为119x =803,47y =196,所以甜果657个需803文钱,苦果343个需196文钱.4.实际问题中的基本数量关系及关键词 常用的数量关系有: (1)路程=速度×时间;(2)工作量=工作效率×工作时间;(3)商品的销售额=商品销售价×商品销售量;(4)商品的总销售利润=(销售价-成本价)×销售量; (5)商品售价=标价×折数;(6)商品的利润率=商品利润商品成本价×100%等等.还要正确理解一些关键词表达的同类量之间的特殊的等量关系,如“提前”“超过”“早到”“迟到”“几倍”“增加了”“相向而行”“同向而行”等.【例4】 8年前父亲的年龄是儿子年龄的4倍,从现在起8年后父亲的年龄成为儿子年龄的2倍,求父亲和儿子现在的年龄.分析:题中有两个未知数:父亲现在的年龄和儿子现在的年龄.相等关系:(1)8年前父亲的年龄=4×8年前儿子的年龄;(2)8年后父亲的年龄=2×8年后儿子的年龄.解:设父亲现在的年龄是x 岁,儿子现在的年龄是y 岁,由题意,得⎩⎪⎨⎪⎧x -8=4(y -8),x +8=2(y +8).解得⎩⎪⎨⎪⎧x =40,y =16.所以父亲现在40岁,儿子现在16岁.点评:此题易出现x +8=2y 这类错误.原因是认识到父亲增长了8岁,忘记了儿子也应该增长8岁.遇年龄问题时,注意两人年龄同时增长相同岁数.5.列二元一次方程组的应用题常用策略(1)“直接”与“间接”转换:当直接设未知数不便时,转而设间接未知数来求解,反之亦然.(2)“一元”与“多元”转换:当设一个未知数有困难时,可考虑设多个未知数求解,反之亦然.(3)“部分”与“整体”转换:当整体设元有困难时,就考虑设其部分,反之亦然,如:数字问题.(4)“一般”与“特殊”转换:当从一般情形入手困难时,就着眼于特殊情况,反之亦然.(5)“文字”与“图表”转换:有的应用题,用文字语言表达较难,就可以用表格或图形来分析,这样既直观,也易理解题意.【例5】 学校书法兴趣小组准备到文具店购买A 、B 两种类型的毛笔,文具店的销售方法是:一次性购买A 型毛笔不超过20支时,按零售价销售;超过20支时,超过部分每支比零售价低0.4元,其余部分仍按零售价销售.一次性购买B 型毛笔不超过15支时,按零售价销售;超过15支时,超过部分每支比零售价低0.6元,其余部分仍按零售价销售.如果全组共有20名同学,若每人各买1支A 型毛笔和2支B 型毛笔,共支付145元;若每人各买2支A 型毛笔和1支B 型毛笔,共支付129元.这家文具店的A 、B 两种类型毛笔的零售价各是多少?分析:20名学生每人买1支A 型毛笔的钱+每人买2支B 型毛笔的钱=145元;20名同学每人买2支A 型毛笔的钱+每人买1支B 型毛笔的钱=129元.解:设该家文具店A 型毛笔的零售价为每支x 元,B 型毛笔的零售价为每支y 元,根据题意,得⎩⎪⎨⎪⎧ 20x +15y +25(y -0.6)=145,20x +20(x -0.4)+15y +5(y -0.6)=129.解得⎩⎪⎨⎪⎧x =2,y =3.所以这家文具店A 型毛笔的零售价为每支2元,B 型毛笔的零售价为每支3元.。