金榜2011高考真题分类汇编:考点6指数函数、对数函数、幂函数(新课标地区)
- 格式:doc
- 大小:277.50 KB
- 文档页数:3
指数函数、对数函数、幂函数单元复习与巩固一、知识框图二、知识要点梳理知识点一:指数及指数幂的运算1.根式的概念的次方根的定义:一般地,如果,那么叫做的次方根,其中当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为.负数没有偶次方根,0的任何次方根都是0.式子叫做根式,叫做根指数,叫做被开方数.2.n次方根的性质:(1)当为奇数时,;当为偶数时,(2)3.分数指数幂的意义:;注意:0的正分数指数幂等与0,负分数指数幂没有意义.4.有理数指数幂的运算性质:(1) (2) (3)知识点二:指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2.指数函数函数性质:函数指数函数名称定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向象的影响看图象,逐渐减小.知识点三:对数与对数运算1.对数的定义(1)若,则叫做以为底的对数,记作,其中叫做底数,叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:.2.几个重要的对数恒等式,,.3.常用对数与自然对数常用对数:,即;自然对数:,即(其中…).4.对数的运算性质如果,那么①加法:②减法:③数乘:④⑤⑥换底公式:知识点四:对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2.对数函数性质:函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.知识点六:幂函数1.幂函数概念 形如的函数,叫做幂函数,其中为常数.2.幂函数的性质(1)图象分布:幂函数图象分布在第一、二、三象限,第四象限 无图象.幂函数是偶函数时,图象分布在第一、二象限(图象 关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象 限.(2)过定点:所有的幂函数在都有定义,并且图象都通过点.(3)单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.(4)奇偶性:具体函数具体讨论(5)图象特征:幂函数当时,在第一象限,图像与32,x y x y ==的图像大致趋势一样,当10<<α时,在第一象限,图像与21x y =的图像大致趋势一样,当0<α时,在第一象限,图像与1-=xy 的图像大致趋势一样一元二次方程、一元二次不等式与二次函数的关系设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表: 0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x < 有两相等实根ab x x 221-==无实根 的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02>≥++a c bx ax{}21x x x x x ≥≤或RR 的解集)0(02><++a c bx ax {}21x x x x <<∅ ∅ 的解集)0(02>≤++a c bx ax{}21x x xx ≤≤⎭⎬⎫⎩⎨⎧-=a b x x 2∅。
绝密★启用前2011年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题...卷上作答无效....... 3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U=(M N )I ð (A ){}12,(B ){}23, (C ){}2,4 (D ){}1,4 【答案】D【命题意图】本题主要考查集合交并补运算. 【解析】{2,3},(){1,4}U M N M N =∴=ðQ I I(2)函数0)y x =≥的反函数为(A )2()4xy x R =∈ (B )2(0)4xy x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ 【答案】B【命题意图】本题主要考查反函数的求法.【解析】由原函数反解得24yx =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4xy x =≥.(3)设向量,a b 满足||||1a b == ,12a b ⋅=-r r ,则2a b +=(A (B (C (D【答案】B【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+=r r r r r u r ,所以2a b +=r r (4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【答案】C【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5.(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b > 【答案】A【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = (A )8 (B )7 (C )6 (D )5 【答案】D【命题意图】本题主要考查等差数列的基本公式的应用. 【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =.解法二: 221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =.(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9【答案】C【命题意图】本题主要考查三角函数的周期性与三角函数图像变换的关系.【解析】由题意将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍,得2()3k k Z ππω⨯=∈,解得6k ω=,又0ω>,令1k =,得min 6ω=.(8)已知直二面角l αβ--,点A α∈,A C l ⊥,C 为垂足,B β∈,B D l ⊥,D 为垂 足,若2,1AB AC BD ===,则C D = (A ) 2 (B(C (D )1 【答案】C【命题意图】本题主要考查二面角的平面角及解三角形.【解析】因为l αβ--是直二面角, A C l ⊥,∴AC ⊥平面β,A C B C ∴⊥BC ∴=又B D l ⊥,CD ∴=(9) 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 (A) 12种 (B) 24种 (C) 30种 (D)36种 【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】第一步选出2人选修课程甲有246C =种方法,第二步安排剩余两人从乙、丙中各选1门课程有22⨯种选法,根据分步计数原理,有6424⨯=种选法.(10) 设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5()2f -=(A) -12(B)1 4- (C)14(D)12【答案】A【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 关键是把通过周期性和奇偶性把自变量52-转化到区间[0,1]上进行求值.【解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111((2)()()2(12222222f f f f -=-+=-=-=-⨯⨯-=-(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C = (A)4 (B)【答案】C【命题意图】本题主要考查圆的方程与两点间的距离公式.【解析】由题意知圆心在直线y=x 上并且在第一象限,设圆心坐标为(,)(0)a a a >,则a =,即210170a a -+=,所以由两点间的距离公式可求出128C C ===.(12)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π 【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆M 的面积为4π知球心O 到圆M 的距离O M =,在R t O M N ∆中,30OMN ︒∠=, ∴12O N O M ==故圆N 的半径r ==,∴圆N的面积为213S r ππ==.第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2011年普通高等学校招生全国统一考试(新课标全国卷)理科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)复数212ii +=- (A )35i - (B )35i (C )i - (D )i (2)下列函数中,既是偶函数又在(0,)+∞单调递增的函数是(A )3y x = (B )||1y x =+ (C )21y x =-+ (D )||2x y -= (3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是(A )120 (B ) 720 (C ) 1440 (D ) 5040 (4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 (A )13 (B ) 12 (C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ= (A ) 45-(B )35- (C ) 35 (D )45(6)在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为俯视图正视图DCB A(7)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||AB 为C 的实轴长的2倍,C 的离心率为(A (B (C ) 2 (D ) 3(8)51()(2)ax x x x+-的展开式中各项系数的和为2,则该展开式中常数项为(A )—40 (B )—20 (C )20 (D )40(9)曲线y =,直线2y x =-及y 轴所围成的图形的面积为(A )103 (B )4 (C ) 163(D ) 6 (10)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题1:||1p +>a b ⇔2[0,)3πθ∈ 2:p ||+a b 1>⇔θ∈2(,]3ππ 3:||1p ->a b ⇔θ∈[0,)3π 4:||1p ->a b ⇔θ∈(,]3ππ其中真命题是(A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p (11)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=则 (A )()y f x =在(0,)2π单调递减 (B )()y f x =在3(,)44ππ单调递减 (C )()y f x =在(0,)2π单调递增 (D )()y f x =在3(,)44ππ单调递增 (12)函数11y x=-的图象与函数2sin (24)y x x π=-剟的图象所有交点的橫坐标之和等于(A )2 (B )4 (C )6 (D )8第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.(13)若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.(14)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为.过点1F 的直线l 交C 于A ,B 两点,且2ABF ∆的周长为16,那么C 的方程为_________.(15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =6,BC =锥O ABCD -的体积为_____________.(16)ABC ∆中,60,B AC =︒=,则AB +2BC 的最大值为_________. 三、解答题:解答应写文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知等比数列{}n a 的各项均为正数,且212326231,9a a a a a +==. (I )求数列{}n a 的通项公式.(II )设31323log log log n n b a a a =+++ ,求数列1{}nb 的前n 项和.(18)(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD(I )证明:PA BD ⊥;(II )若PD AD =,求二面角A PB C --的余弦值.(19)(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:A 配方的频数分布表B 配方的频数分布表(II )已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩从用B 配方生产的产品中任取一件,其利润记为X (单位:元).求X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率).(20)(本小题满分12分)在平面直角坐标系xOy 中, 已知点(0,1)A -,B 点在直线3y =-上,M 点满足//MB OA ,MA AB MB BA =,M 点的轨迹为曲线C .(I )求C 的方程;(II )P 为C 上动点,l 为C 在点P 处的切线,求O 点到l 距离的最小值.(21)(本小题满分12分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=.(I )求,a b 的值;(II )如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. (22)(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.(I )证明:,,,C B D E 四点共圆;(II )若90A ∠=︒,且4,6,m n ==求,,,C B D E 所在圆的半径.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C .(I )求2C 的方程;(II )在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求||AB .(24)(本小题满分10分)选修4-5:不等式选讲设函数()||3f x x a x =-+,其中0a >.(I )当1a =时,求不等式()32f x x ≥+的解集. (II )若不等式()0f x ≤的解集为{x|1}x ≤-,求a 的值.2011年普通高等学校招生全国统一考试(新课标全国卷)理科数学答案(1)C 【解析】212i i+-=(2)(12),5i i i ++=共轭复数为C . (2)B 【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,||2x y -=在(0,)+∞上为减函数,故选B .(3)B 【解析】框图表示1n n a n a -=⋅,且11a =所求6a =720,选B .(4)A 【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为P =3193=,选A . (5)B 【解析】由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B .(6)D 【解析】条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的。
考点6 指数函数、对数函数、幂函数一、选择题1.(2016·全国卷Ⅰ高考理科·T8)若a〉b〉1,0〈c〈1,则()A。
a c〈b c B。
ab c<ba cC.alog b c〈blog a cD.log a c〈log b c【解析】选C。
对A:由于0<c<1,所以函数y=x c在R上单调递增,因此a>b〉1⇔a c>b c,A错误.对B:由于—1〈c-1<0,所以函数y= 1c x-在(1,+∞)上单调递减,所以a>b>1⇔1c a-<1c b-⇔ba c〈ab c,B错误。
对C:要比较alog b c和blog a c,只需比较alnclnb 和blnclna,只需比较lncblnb和lncalna,只需比较blnb和alna,构造函数f(x)=xlnx(x>1),则f'(x)=lnx+1>1>0,f(x)在(1,+∞)上单调递增,因此f(a)〉f(b)>0⇔alna〉blnb>0⇔1alna <1 blnb.又由0<c〈1得lnc<0,所以lncalna >lncblnb⇔blog a c>alog b c,C正确。
对D:要比较log a c和log b c,只需比较lnclna 和lnclnb,而函数y=lnx在(1,+∞)上单调递增,故a>b〉1⇔lna>lnb>0⇔1lna <1lnb。
又由0〈c<1得lnc<0,所以lnclna 〉lnclnb⇔log a c>log b c,D错误.2。
(2016·全国卷Ⅰ高考文科·T8)若a>b 〉0,0<c 〈1,则 ( ) A.log a c<log b c B.log c a 〈log c bC 。
a c<b cD.c a>c b【解析】选B 。
温馨提示:此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word 文档返回原板块。
考点7 指数函数、对数函数、幂函数一、选择题1. (2013·大纲版全国卷高考文科·T6)与(2013·大纲版全国卷高考理科·T5)相同函数)0)(11(log )(2>+=x xx f 的反函数()1=f x -( )A.()1021x x >- B.()1021xx ≠- C.()21x x R -∈ D.()210xx -> 【解题指南】首先令)11(log 2xy +=求出x ,然后将y x ,互换,利用反函数的定义域为原函数的值域求解.【解析】选A.由)11(log 2xy +=,0>x ,得函数的值域为0>y ,又x y 112+=,解得121-=y x ,所以()1=f x -121-x )0(>x 2.(2013·北京高考理科·T5)函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y 轴对称,则f(x)= ( )A.e x+1B.e x-1C.e -x+1D.e -x-1 【解题指南】把上述变换过程逆过来,求出y=e x 关于y 轴对称的函数,再向左平移1个单位长度得到f(x).【解析】选D.与y=e x 关于y 轴对称的函数应该是y=e -x ,于是f(x)可由y=e -x 向左平移1个单位长度得到,所以f(x)=e -(x+1)=e -x-1. 3.(2013·广东高考文科·T2)函数lg(1)()1x f x x +=-的定义域是( )A .(1,)-+∞B .[1,)-+∞C .(1,1)(1,)-+∞D .[1,1)(1,)-+∞ 【解题指南】函数的定义域有两方面的要求:分母不为零,真数大于零,据此列不等式即可获解.【解析】选C. 解不等式10,10x x +>-≠可得1,1x x >-≠是定义域满足的条件.4.(2013·山东高考文科·T5)函数()f x =( )A.(-3,0]B.(-3,1]C.(,3)(3,0]-∞--D.(,3)(3,1]-∞--【解题指南】定义域的求法:偶次根式为非负数,分母不为0.【解析】选A. ⎩⎨⎧>+≥-03021x x ,解得03≤<-x .5.(2013·陕西高考文科·T3)设a, b, c 均为不等于1的正实数, 则下列等式中恒成立的是 ( ) A .·log log log a c c b a b =B. b a b c c a log log log =⋅C. c b bc a a a log log )(log ⋅=D.()log g og o l l a a a b b c c +=+【解题指南】a, b,c ≠1,掌握对数两个公式:abb y x xyc c a a a a log log log ,log log log =+= 并灵活转换即可得解.【解析】选B.对选项A: bab a b bc c a c c a log log log log log log =⇒=⋅,显然与第二个公式不符,所以为假。
二、函数与导数(一)选择题(辽宁文)(11)函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为B(A )(1-,1) (B )(1-,+∞) (C )(∞-,1-) (D )(∞-,+∞)(重庆文)3.曲线223y x x =-+在点(1,2)处的切线方程为A A .31y x =- B .35y x =-+C .35y x =+D .2y x =(重庆文)6.设11333124log ,log ,log ,,,233a b c a b c ===则的大小关系是BA .a b c <<B .c b a <<C .b a c <<D .b c a <<(重庆文)7.若函数1()2f x x n =+-(2)n >在x a =处取最小值,则a =CA.1+ B.1 C .3D .4(辽宁文)(6)若函数))(12()(a x x xx f -+=为奇函数,则a =A(A )21 (B )32 (C )43(D )1 (上海文)15.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为〖答〗 ( A )A .2y x -=B .1y x -=C .2y x =D .13y x =(全国新课标文)(3)下列函数中,既是偶函数又在(0,)+∞单调递增的函数是B(A )3y x = (B )||1y x =+ (C )21y x =-+ (D )||2x y -=(全国新课标文)(10)在下列区间中,函数()43xf x e x =+-的零点所在的区间为C(A )1(,0)4- (B )1(0,)4 (C )11(,)42 (D )13(,)24(全国新课标文)(12)已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有A(A )10个 (B )9个 (C )8个 (D )1个 (全国大纲文)2.函数0)y x =≥的反函数为BA .2()4x y x R =∈ B .2(0)4x y x =≥C .24y x =()x R ∈D .24(0)y x x =≥(全国大纲文)10.设()f x 是周期为2的奇函数,当0≤x≤1时,()f x =2(1)x x -,则5()2f -=AA .-12B .1 4-C .14D .12(湖北文)3.若定义在R 上的偶函数()f x 和奇函数()g x 满足()()xf x gx e +=,则()g x =DA .xxe e-- B .1()2x xe e -+ C .1()2xx e e -- D .1()2x xe e -- (福建文)6.若关于x 的方程x 2+mx+1=0有两个不相等的实数根,则实数m 的取值范围是C A .(-1,1) B .(-2,2) C .(-∞,-2)∪(2,+∞) D .(-∞,-1)∪(1,+∞)(福建文)8.已知函数f (x )=。
2011年高考数学试题及答案(以下为2011年高考数学试题及答案,仅供参考)第一部分:选择题1. 已知函数 f(x) = 2x^2 + 3x - 2,那么 f(-1) 的值为多少?A. -2B. 0C. 2D. 4答案:A2. 已知等差数列 {an} 的公差 d = 4,a1 = 3,a3 = 9,那么 a10 的值为多少?A. 20B. 21C. 22D. 23答案:D3. 若sinθ = 3/5,那么cosθ 的值为多少?A. -4/5C. 3/4D. 4/5答案:A4. 已知ΔABC 中,∠B = 90°,AB = 3,BC = 4,那么 AC 的值为多少?A. 5B. 7C. 9D. 12答案:A5. 设函数 f(x) = x^3 - 2x^2 + 5x - 6,那么 f '(x) 的导数为多少?A. 3x^2 - 4x + 5B. 3x^2 - 4x - 5C. x^3 - x^2 + 5D. x^3 - x^2 - 5答案:A第二部分:填空题1. 随机抽取一个数,该数为整数的概率是 _______。
2. 在仅含正整数的数列 {an} 中,已知 a1 = 1,a2 = 2,a(n+1) = an + a(n-1),则 a5 的值为 _______。
答案:73. 下列四个数中,最小的数是 _______。
A. 0.3^0.4B. 0.4^0.3C. 0.2^0.5D. 0.5^0.2答案:C第三部分:解答题1. 解方程 2^x - 4 * 2^(x-1) + 8 * 2^(x-2) = 0。
解答:设 t = 2^x,则原方程可化简为 t - 4t + 8t = 0,即 5t = 0。
因此,t = 0。
代回原方程中,得 2^x = 0。
由指数函数图像可知,2^x 恒大于 0,所以无实数解。
2. 计算以下定积分:∫(0, π/2) sin(x) dx。
解答:∫(0, π/2) sin(x) dx = [-cos(x)](0, π/2)= -cos(π/2) + cos(0)= -0 + 1= 13. 已知等差数列 {an} 的首项 a1 = 2,公差 d = 3,若 a5 和 a9 分别为首次出现的素数,求 a5 的值。
2011年高考数学试题分类汇编-专题函数与导数-理2011年高考试题数学(理科)函数与导数一、选择题:1. (2011年高考山东卷理科5)对于函数(),y f x x R=∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要 【答案】B【解析】由奇函数定义,容易得选项B 正确.2. (2011年高考山东卷理科9)函数2sin 2xy x =-的图象大致是【答案】C【解析】因为'12cos 2y x =-,所以令'12cos 02y x =->,得1cos 4x <,此时原函数是增函数;令'12cos 02y x =-<,得1cos 4x >,此时原函数是减函数,结合余弦函数图象,可得选C 正确.3. (2011年高考山东卷理科10)已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x=-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为(A )6 (B )7 (C )8 (D )9【答案】B【解析】因为当02x ≤<时, 3()f x xx=-,又因为()f x 是R上最小正周期为2的周期函数,且(0)0f =,所以(6)(4)(2)(0)0f f f f ====,又因为(1)0f =,所以(3)0f =,(5)0f =,故函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为7个,选B.4.(2011年高考安徽卷理科3)设()f x 是定义在R 上的奇函数,当x ≤0时,()f x xx2=2-,则()f 1=(A )-3 (B) -1 (C)1(D)3(A )-3 (B) -1 (C)1 (D)3【命题意图】本题考查了函数的奇偶性和求值,是容易题.【解析】∵设()f x 是定义在R 上的奇函数,当x ≤0()f x '=23(34)a xx -=234()4ax x --,在[0,34]是增函数,不适合.【解题指导】排除法解决存在问题和不确定问题很有效6.(2011年高考辽宁卷理科9)设函数f (x )=⎩⎨⎧≤,>,,,1x x log -11x 22x -1则满足f (x )≤2的x 的取值范围是( )(A )[-1,2] (B )[0,2] (C )[1,+∞) (D )[0,+∞) 答案: D解析:不等式等价于11,22xx -≤⎧⎨≤⎩或21,1log 2,x x >⎧⎨-≤⎩解不等式组,可得01x ≤≤或1x >,即0x ≥,故选D.8.(2011年高考浙江卷理科1)设函数2,0,()()4,0.x x f x f x x α-≤⎧==⎨>⎩若,则实数α=(A )-4或-2 (B )-4或2 (C )-2或4 (D )-2或2 【答案】 B 【解析】:当2042,a a a >=⇒=时,044a a a ≤=⇒=-当时,-,故选B9. (2011年高考全国新课标卷理科2)下列函数中,既是偶函数又是区间),0(+∞上的增函数的是( )A 3x y = B 1+=x y C 12+-=xyD xy -=2【答案】B解析:由偶函数可排除A ,再由增函数排除C,D,故选B ;点评:此题考查复合函数的奇偶性和单调性,因为函数x y x y -==和都是偶函数,所以,内层有它们的就是偶函数,但是,它们在),0(+∞的单调性相反,再加上外层函数的单调性就可以确定。
2011年高考数学试题分类汇编:函数与导数 一、选择题1.(安徽理3) 设()f x 是定义在R 上的奇函数,当x ≤0时,()f x x x 2=2-,则()f 1= (A )-3 (B) -1 (C)1 (D)3 【答案】A【命题意图】本题考查函数的奇偶性,考查函数值的求法.属容易题.【解析】2(1)(1)[2(1)(1)]3f f =--=----=-.故选A. 2.(安徽理10) 函数()()m nf x ax x =1-在区间〔0,1〕上的图像如图所示,则m ,n 的值可能是(A )1,1m n == (B) 1,2m n == (C) 2,1m n == (D) 3,1m n ==【答案】B 【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当1,2m n ==,()()()f x ax x n x x x 232=1-=-2+,则()()f x a x x 2'=3-4+1,由()()f x a x x 2'=3-4+1=0可知,121,13x x ==,结合图像可知函数应在10,3⎛⎫ ⎪⎝⎭递增,在1,13⎛⎫ ⎪⎝⎭递减,即在13x =取得最大值,由()()f a 21111=⨯1-=3332,知a 存在.故选B.3.(安徽文5)若点(a,b)在lg y x = 图像上,a ≠1,则下列点也在此图像上的是(A )(a 1,b ) (B) (10a,1-b) (C) (a 10,b+1) (D)(a2,2b)【答案】D 【命题意图】本题考查对数函数的基本运算,考查对数函数的图像与对应点的关系.【解析】由题意lg b a =,lg lg b a a 22=2=,即()2,2a b 也在函数lg y x = 图像上.y0.51xO0.54.(安徽文10) 函数()()n f x ax x 2=1-在区间〔0,1〕上的图像如图所示,则n 可能是(A )1 (B) 2 (C) 3 (D) 4【答案】A 【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当1n =时,()()()f x ax x a x x x 232=1-=-2+,则()()f x a x x 2'=3-4+1,由()()f x a x x 2'=3-4+1=0可知,121,13x x ==,结合图像可知函数应在10,3⎛⎫ ⎪⎝⎭递增,在1,13⎛⎫ ⎪⎝⎭递减,即在13x =取得最大值,由()()f a 21111=⨯1-=3332,知a 存在.故选A.5.(北京理6)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为()x A x f x x A A <=≥(A ,c 为常数)。
2011年普通高校招生全国统一考试数学试题(文科)第I 卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知集合=M {0,1,2,3,4},=N {1,3,5},N M P =,则P 的子集共有(A )2个 (B )4个 (C )6个 (D )8个 (2)复数i21i5-= (A )2-i (B )1-2i (C )-2+i (D )-1+2i (3)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是 (A )3x y = (B )1+=x y (C )12+-=x y (D )xy -=2(4)椭圆181622=+y x 的离心率为 (A )31 (B )21 (C )33 (D )22 (5)执行右面的程序框图,如果输入的N 是6,那么输出的p 是(A )120 (B )720 (C )1440 (D )5040(6)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 (A )31 (B )21 (C )32 (D )43 (7)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线x y 2=上,则=θ2cos (A )-54 (B )-53 (C )53 (D )54(8)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(A ) (B ) (C ) (D )(9)已知直线l 过抛物线的焦点,且与C 的对称轴垂直,l 与C 交与A 、B 两点,AB =12,P 为C 的准线上一点,则△ABP 的面积为(A )18 (B )24 (C )36 (D )48 (10)在下列区间中,函数34)(-+=x e x f x的零点所在的区间为 (A )(-41,0) (B )(0,41) (C )(41,21) (D )(21,43) (11)设函数)42cos()42sin()(ππ+++=x x x f ,则(A ))(x f y =在(0,2π)上单调递增,其图像关于直线4π=x 对称 (B ))(x f y =在(0,2π)上单调递增,其图象关于直线2π=x 对称(C ))(x f y =在(0,2π)上单调递减,其图像关于直线4π=x 对称(D ))(x f y =在(0,2π)上单调递减,其图象关于直线2π=x 对称(12)已知函数)(x f y =的周期为2,当∈x [-1,1]时2)(x x f =,那么函数)(x f y =的图像与函数x y lg =的交点共有(正视图)(A )10个 (B )9个 (C )8个 (D )1个第Ⅱ卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答第(22)题~第(24)题为选考题,考生根据要求做答. 二. 填空题:本大题共4小题,每小题5分。
2011年高考数学真题分类汇编——函数与导数 (4)一、选择题1.(全国Ⅱ理8)曲线21xy e -=+在点(0,2)处的切线与直线0y =和y x =围成的三角形的面积为 (A)13 (B)12 (C)23 (D)12.(全国Ⅱ理9)设()f x 是周期为2的奇函数,当01x ≤≤时,()2(1)f x x x =-,则5()2f -=(A)12-(B)14-(C)14 (D)123.(山东理9)函数2sin 2xy x =-的图象大致是4.(山东理10)已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为(A )6 (B )7 (C )8 (D )95.(山东文4)曲线311y x =+在点P(1,12)处的切线与y 轴交点的纵坐标是 (A )-9 (B )-3 (C )9 (D )156.(陕西理3)设函数()f x (x ∈R )满足()()f x f x -=,(2)()f x f x +=,则函数()y f x =的图像是 ( )7.(陕西文4) 函数13y x =的图像是 ( )8.(上海理16)下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数是( )(A )1ln||y x =. (B )3y x =. (C )||2x y =. (D )cos y x =.9.(上海文15)下列函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是( )(A )2y x -= (B )1y x -= (C )2y x = (D )13y x =10.(四川理7)若()f x 是R 上的奇函数,且当0x >时,1()()12x f x =+,则()f x 的反函数的图象大致是11.(四川文4)函数1()12x y =+的图象关于直线y=x 对称的图象像大致是 12.(天津理2)函数()23x f x x=+的零点所在的一个区间是( ). A.()2,1--B.()1,0- C.()0,1D.()1,2二、填空题13.(陕西文11)设lg ,0()10,0xx x f x x >⎧=⎨⎩…,则((2))f f -=______. 14.(陕西理11)设20lg 0()30ax x f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若((1))1f f =,则a = .15.(陕西理12)设n N +∈,一元二次方程240x x n -+=有整数根的充要条件是n = .16.(山东理16)已知函数f x ()=log (0a 1).a x xb a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .三、选做题:17.(广东文19) 设0>a ,讨论函数x a x a a x x f )1(2)1(ln )(2---+=的单调性. 18.(湖北理17)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20020≤≤x 时,车流速度v 是车流密度x 的一次函数.(Ⅰ)当2000≤≤x 时,求函数()x v 的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)()()x v x x f ⋅=可以达到最大,并求出最大值.(精确到1辆/小时) 17.解:函数f(x)的定义域为(0,+∞)本题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力.解析:(Ⅰ)由题意:当200≤≤x 时,()60=x v ;当20020≤≤x 时,设()b ax x v +=,显然()b ax x v +=在[]200,20是减函数,由已知得⎩⎨⎧=+=+60200200b a b a ,解得⎪⎪⎩⎪⎪⎨⎧=-=320031b a 故函数()x v 的表达式为()x v =()⎪⎩⎪⎨⎧≤≤-<≤.20020,20031,200,60x x x(Ⅱ)依题意并由(Ⅰ)可得()=x f ()⎪⎩⎪⎨⎧≤≤-<≤.20020,20031,200,60x x x x x当200≤≤x 时,()x f 为增函数,故当20=x 时,其最大值为12002060=⨯;当20020≤≤x 时,()()()310000220031200312=⎥⎦⎤⎢⎣⎡-+≤-=x x x x x f ,当且仅当x x -=200,即100=x 时,等号成立.所以,当100=x 时,()x f 在区间[]200,20上取得最大值310000. 综上,当100=x 时,()x f 在区间[]200,0上取得最大值3333310000≈,即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.18221212122(1)2(1)1'(),112(1)2(1)1012(1)()310,'()23110,220'()0,()(0,)(,)a a x a x f x xa a a x a x a a a f x x x a a x x x x f x f x x x ---+=≠---+=∆=--<∆>=>=<<>>+∞当时,方程的判别式①当0<时,有个零点且当或时,在与内为增函数121212'()0,(),)110,'()0,()(0,)311'()0(0),()(0,)1110,0,0,'()22x x x f x f x x x a f x f x a f x x f x xa x x f x x a a <<<≤<∆≤≥+∞==>>+∞>∆>==+;当时,在(内为减函数当时,在内为增函数;当时,在内为增函数;当时,所以在定义域内有唯一零点②③④11111;0'()0,()(0,)'()0,()(,)x x f x f x x x x f x f x x <<>><+∞且当时,在内为增函数;当时,在内为减函数;综(其中121122x x a a ==)。
考点6指数函数、对数函数、幂函数
一、选择题
1.(2011·安徽高考文科·T5)若点(),a b 在lg y x =图象上,1a ≠,则下列点也在此图象上的是( )
(A )1
,b a ⎛⎫ ⎪⎝⎭
(B )()10,1a b - (X )10
,1b a ⎛⎫+ ⎪⎝⎭ (∆))2,(2
b a
【思路点拨】利用对数的运算性质,代入验证.
【精讲精析】选∆.由题意2lg lg 22,lg a a b a b === ,即)2,(2b a 也在函数x y lg =图象上.[来源:学|科|网Z|Ξ|Ξ|K]
2.(2011·山东高考理科·T3)若点(α,9)在函数3x y =的图象上,则ταν=6
a π的值为:
(A )0 (B )
3
3
(X )1 (∆3【思路点拨】根据点在函数上求出α,再代入求值[来源:学科网ZΞΞK] 【精讲精析】答案:3点(α,9)在函数3x y =的图象上,所以2,93==a a ,所以36
2tan
=π
[来源:Zξξκ.Xομ] 3.(2011·辽宁高考理科·T9)设函数φ(ξ)=⎩⎨⎧≤,
>,,
,1x x log -11x 22x -1则满足φ(ξ)≤
2的ξ的取值范围是
(A )[-1,2] (B )[0,2] (X )[1,+∞) (∆)[0,+∞)[来源:学科网ZΞΞK]
【思路点拨】可分1≤x 和1>x 两种情况分别求解,再把结果并起来.
【精讲精析】选∆.若1≤x ,则x -122≤,解得10≤≤x ;若1>x ,则2x log -12≤,解得
1>x ,综上, 0≥x .故选∆.
4、(2011·北京高考文科·T3)如果112
2
log log 0x y <<,那么( )
()1A y x << ()1B x y << ()1C x y << ()1D y x <<
【思路点拨】利用对数函数的单调性求解.[来源:学科网]
【精讲精析】选∆.因为12
log y x =为(0,)+∞上的减函数,所以1x y >>.
5、(2011.天津高考理科.T7)已知324log 0.3
log 3.4
log 3.6
15,5
,,5a b c 骣琪===琪
桫
则 ( )
A .a b c >>
B .b a c >>
X .a c b >> ∆.c a b >>
【思路点拨】化简X 选项为同底,画图观察比较大小。
【精讲精析】选项X 可化为3
10
log 3
=5C ,如图所示,结合指数函数的单调性可知选
项X 正确。
6.(2011·天津高考文科·T5)已知244log 3.6,log 3.2,log 3.6a b c ===则( )
A.a b c >>
B .a c b >> C.b a c >> D.c a b >>
【思路点拨】先与1比较,再看真数或底数,β与χ的底数相同,分别比较. 【精讲精析】选B.因为24log 3.61log 3.61a c =>=<,0<,441log 3.6log 3.2c b >=>=,所以选B.
二、填空题[来源:学,科,网Z,Ξ,Ξ,K]
7.(2011·江苏高考·T2)函数)12(log )(5+=x x f 的单调增区间是⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 【思路点拨】本题考查的是对数函数的单调性问题,解题的关键找出定义域和增区间的交集。
【精讲精析】答案:1(,)2
-+∞.根据对数函数的底数大于1函数是在定义域内是增函数,210x +>,解得12
x >-,所以函数的单调增区间为1(,)2
-+∞。
8.(2011·陕西高考文科·T11)设lg ,0
()10,0
x x x f x x >⎧=⎨⎩…,则((2))f f -=⎽⎽⎽⎽⎽⎽.
【思路点拨】由2x =-算起,先判断x 的范围,是大于0,还是不大于0,;再判断(2)f -作为自变量的值时的范围,最后即可计算出结果.
【精讲精析】答案:2-∵20x =-<,∴2
1
(2)100100
f --=
=>,所以
22(10)lg102f --==-,即((2))2f f -=-.。