大学物理复习总结提纲.doc
- 格式:doc
- 大小:107.15 KB
- 文档页数:5
大学物理(上)复习一、质点力学基础: (一)基本概念:1、参照系:为描述物体的运动而选择的参考物。
坐标系:建立在参照系上的计算系统,是参照系的具体化。
质点: 在许多问题中,物体的形状和大小并不重要,这时可以把物体看成一个只有质量、没有大小和形状的几何点,这样的物体称为质点.2、位矢(矢径):k z j y i x r++=3、位移:()()()k z j y i x k z z j y y i x x r r r∆+∆+∆=-+-+-=-=∆121212124、速度:k dt dz j dt dy i dt dx dt r d tr k j i t z y x ++==∆∆=++=→∆lim0υυυυ 5、加速度:kdt z d j dt y d i dt x d dt r d k dt d j dt d i dt d dt d tk a j a i a a z y x t z y x 222222220lim ++==++==∆∆=++=→∆υυυυυ6、路程,速率 ),(t s s = dtdsdt r d ==||υ 7、运动方程:)(t r r=, 或 )(t x x =, )(t y y =, )(t z z =8、轨迹方程:0=),,(z y x f9、圆周运动的加速度:t n a a a +=; 牛顿定律:a m dtp d F==;法向加速度:Ra n 2υ=; 切向加速度:dtd a t υ=注意:(1) 法向加速度公式中,R 为质点运动轨道的曲率半径,除了圆周运动,对于一般曲线运动,通常都是未知的,应根据a 和a t 间接计算: (2) 对于卫星绕太阳的运动,椭圆轨道的近日点或远日点的曲率半径R 并不等于其短半轴或长半轴的长度。
10、角速度:dtd θω=11、角加速度:22dtd dt d θωα== 说明:角速度和角加速度的方向均沿转轴,与物体的转动方向成右手螺旋关系。
第一章“运动学”题型一、分类:1.一般的运动方程、速度、加速度之间的关系2.圆周运动二、计算内容1. 一般的运动方程、速度、加速度之间的关系 知识地图如下:() () () r t t a t υ↓↓r r r€€求导 求导积分 积分轨迹方程2.圆周运动知识地图如右:三、解题步骤声明:解题其实就是清清楚楚地把题目做出来。
只要满足这个条件就行,并非只能按照一种方式来做。
下面给出的只是比较有条理和清晰的一种路子,如果你严格照着做了,结果应该不会错得离谱(老师们还是见过步骤正确,但是简单如四则运算依然要算错的神人,扼腕之余只能表示叹服),而且阅卷老师要给你们分也有比较充足的理由(至少卷子上的文字表明你很清楚正确的步骤)。
当然,如果你觉得自己很清楚,而且也能够在卷子上很清楚地表明“你自己很清楚”这件事情,那么只管走自己的路就是。
但是切记:如果你心里很清楚,但是卷子上只写寥寥几个字,阅卷老师是断然不能从这几个字中看出来“你很清楚”这件事情的(那个需要超能力,貌似老师都木有)。
特别是如果你写的那几个字还出了点错,那就是你自己要跟自己过不去了。
阅卷是“以卷面为依据”,和“以卷面为准绳”的。
所以:能多写些就多写些,尽量写清楚。
1. 一般的运动方程、速度、加速度之间的关系理解已知条件,知道自己在地图上起点在哪儿;理解求解目标,知道地图上哪里是终点;然后在地图中找路,从起点走到终点即可。
如果按照地图上从左至右的方向解题,那是灰常滴简单—你再犯错,那就只能是“自作孽”了。
如果方向是从右至左,则会涉及几个问题: (1)利用积分链式法则的技巧(参见例题1);(2)分离变量积分的技巧(这是你们这个学期《常微》里面最简单的内容,必须会的); (3)定积分和不定积分的选择问题(参见例题1)。
2.圆周运动理解已知条件,知道自己在地图上起点在哪儿;理解求解目标,知道地图上哪里是终点;然后在地图中找路,从起点走到终点即可。
四、典型例题和习题1. 一般的运动方程、速度、加速度之间的关系 【例题1】(教材习题1-5)解:从地图上看,从位置到速度显然行不通(因为不知道位置的函数表达式),那么就要考虑从加速度返回速度的路子。
第12章 波动光学(1) 掌握双缝干涉的形成机理及k 级明、暗条纹对应的位置公式、以及相邻明、暗纹间距公式。
掌握光程的概念。
(2) 掌握等倾干涉(即薄膜干涉)形成的机理及明、暗条纹对应的光程差公式。
掌握增透膜和增反膜的厚度计算。
(3) 掌握等厚干涉(即劈尖干涉)形成的的机理及明、暗条纹对应的光程差公式。
(4) 掌握利用劈尖条纹特点进行的的一系列计算(如直径计算,工件凹,凸程度计算),牛顿环明、暗条纹对应的半径计算。
(5) 掌握单缝衍射半波带分析方法和明暗纹计算公式(6) 掌握光栅方程,会利用光栅方程计算条纹的位置,最大级次。
(7) 掌握利用偏振片进行光的起偏、捡偏、以及马吕斯定理,会用马吕斯定理计算光强。
(8) 掌握反射光和折射光的偏振方法,布儒斯特定律。
2.在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π ,则此路径AB 的光程为4.(本题3分)如图所示为杨氏双缝干涉实验光路图。
当1r 和2r 质中时,中央明条纹位于O 点位置,当在1r 光路中放置一块折射率为1.5,厚度为1mm 的玻璃片时,则中央明纹位置:(A) 在o 点不变;(B) 向ox 正方向移动; (C) 向ox 负正方向移动;(D) 无法确定. []6.如图,在双缝干涉实验中,若把一厚度为e 、折射率为n 的薄云母片覆盖在S 1缝上,中央明条纹将向__________移动;覆盖云母片后,两束相干光至原中央明纹O 处的光程差为__________________.8. 在空气中有一劈形透明膜,其劈尖角θ=1.0×10-4rad ,在波长λ=700 nm 的单色光垂直照射下,测得两相邻干涉明条纹间距l =0.25 cm ,由此可知此透明材 料的折射率n =______________________.(1 nm=10-9m)10. 用劈尖干涉法可检测工件表面缺陷,当波长为λ的单色平行光垂直入射时,若观察到的干涉条纹如图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部分12.波长为 600 nm 的单色平行光,垂直入射到缝宽为a =0.60 mm 的单缝上,缝后有一焦距cm f 60'=的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为__________,两个第三级暗纹之间的距离为____________.(1 nm =10﹣9m)14.一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 (A) λ / 2.(B) λ.(C) 3λ / 2 . (D) 2λ .[ ]16. 一束具有两种波长λ1和λ2的平行光垂直照射到一衍射光栅上,测得波长λ1的第三级主极大衍射角和λ2的第四级主极大衍射角均为30°.已知λ1=560 nm (1 nm= 10-9m),试求: (1) 光栅常数a +b (2) 波长λ218.将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45°和90°角. (1) 强度为I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态. (2) 如果将第二个偏振片抽走,情况又如何?20. 一束自然光入射到两种媒质交界平面上产生反射光和折射光.如果反射光是线偏振光光;则折射光是________光;这时的入射角b i 称为____________角.22. 有一双缝相距0.3mm ,要使波长为600nm 的红光通过并在光屏上呈现干涉条纹,每条明纹或暗纹的宽度为1mm ,问光屏应放在距双缝多远的地方? 24. 在杨氏双缝实验中,双缝相距0.3mm ,以波长为600nm 的红光照射狭缝,求在离双缝50cm 远的屏幕上,从中央向一侧数第二条与第五条暗纹之间的距离。
大学物理复习提纲个人整理仅供参考——CJJ (本人物理不怎么样)质点运动学:直线运动:[P6,例1、2,1-6、1-8、1-9 [求导];P8,例3,1-13、1-14、1-15[积分]]○1位矢(位置矢量)k z j y i x r++= ○2位移(位移矢量)k z j y i x r∆+∆+∆=∆ ○3径向增量A B r r r ∆+∆=∆ ○4路程Δs[r r s ∆≠∆≠∆ ,当Δt →0时,有dr r d ds ≠= ] ○5速度dtr d v=○6平均速度t r v ∆∆= ○7加速度dtv d a = ○8平均加速度t v a ∆∆=注:○1加速度若不是常数,只能用积分法 ○2一维直线运动可去掉箭头 ○3矢量表示左右要一致 圆周运动:[1-22、1-24]○1角速度dtd θω=○2角加速度dtd ωα=○3切向加速度ατr dtdv a ==○4法向加速度r rv a n 22ω==○5总加速度na a a+=τ牛顿定律:牛顿第一定律:F →合=0,c v =牛顿第二定律:F →=dtv d mdt p d a m == 牛顿第三定律:F →12=-F →21万有引力:F=G221r m m (G=6.67*10-11)弹力:F=kx牛顿第二定律应用:F →=dt v d m a m =(直线)[2-14、2-15] ⎪⎪⎩⎪⎪⎨⎧====rvmma :F dtdv m ma :F n n2法向力切向力ττ(圆周运动)[2-18] [一般思路:○1隔离物体,受力分析 ○2建坐标(需要时根据坐标轴正交分解) ○3列方程 ○4解方程 若接触面光滑无摩擦力,只有保守力做功,可由机械能守恒与牛顿第二定律(法向力)联立求解(圆周运动中较常见)] [P39,例1、2、3]动能守恒定律和能量守恒定律:动量守恒定理:○1动量v m P=单位:kg*m/s ○2冲量[合外力对时间的累积] ⎰∆=⋅=21tt v m dt F I单位:N*s动量定理:已知F →,m ,求I →,v →。
《大学物理》(下)复习提纲第6章 恒定电流的磁场(1) 掌握磁场,磁感应强度,磁力线,磁通量等概念,磁场中的高斯定理,毕奥一沙伐一拉普拉斯定律。
(2) 掌握安培环路定律,应用安培环路定律计算磁场.(3)掌握安培定律,会用安培定律计算磁场力。
会判断磁力矩的方向。
会判断霍尔效应电势的方向。
1. 边长为2a 的等边三角形线圈,通有电流I ,则线圈中 心处的磁感强度的大小为________________.2. 边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为3.一无限长载流直导线,通有电流I ,弯成如图形状.设各线段皆在纸面内,一无限长载流直导线,通有电流I ,弯成如图形状.设各线段皆在纸面内,则P 点磁感强度B的大小为________________.则P 点磁感强度B的大小为4. 一无限长载有电流I 的直导线在一处折成直角,P 点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a ,如图.求P点的磁感强度B.5.无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于(A )R I πμ20 (B )240RIμ6.如图所示,用均匀细金属丝构成一半径为R 的圆环C ,电流I 由导线1流入圆环A 点,并由圆环B 点流入导线2.设导线1和导线2与圆环共面,则环心O 处的磁感强度大小 为________________________,方向___________________.7. 真空中电流分布如图,两个半圆共面,且具有公共圆心,试求O 点处的磁感强度.8.均匀磁场的磁感强度B 与半径为 r 的圆形平面的法线n的夹角为α ,今以圆周为边界,作一个半球面S ,S 与圆形平面组成 封闭面如图.则通过S 面的磁通量Φ =________________.9.如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅Ll d B 等于10.如图,流出纸面的电流为2I,流进纸面的电流为I,则下述各式中哪一个是正确的?11.如图,在一圆形电流I所在的平面内,选取一个同心圆形闭合回路L,则由安培环路定理可知(A) 0d=⎰⋅LlB,且环路上任意一点B = 0.(B) 0d=⎰⋅LlB,且环路上任意一点B≠0.(C) 0d≠⎰⋅LlB,且环路上任意一点B≠0.(D) 0d≠⎰⋅LlB,且环路上任意一点B =常量.[]12. 有一同轴电缆,其尺寸如图所示,它的内外两导体中的电流均为I,且在横截面上均匀分布,但二者电流的流向正相反,则(1) 在r < R1处磁感强度大小为________________.(2) R1< r< R2处磁感强度大小为________________.(2) 在r > R3处磁感强度大小为________________.13. 两根长直导线通有电流I,图示有三种环路;在每种情况下,⎰⋅L l dB等于:_______________________(对环路a)._______________________(对环路b)._______________________(对环路c).14. 在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:(A) =⎰⋅1d L l B⎰⋅2d L l B, 21P P B B =(B) ≠⎰⋅1d L l B⎰⋅2d L l B, 21P P B B =.(C) =⎰⋅1d Ll B⎰⋅2d L l B, 21P P B B ≠.(D)≠⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B ≠. [ ]15.把轻的导线圈用线挂在磁铁N 极附近,磁铁的轴线穿过线圈中心,且与线圈在同一平面内,如图所示.当线圈内通以如图所示方向的电流时,线圈将(A) 不动. (B) 发生转动,同时靠近磁铁. (C) 发生转动,同时离开磁铁. (D) 不发生转动,只靠近磁铁.(E) 不发生转动,只离开磁铁. [ ]16. 如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab (电流I 顺时针方向流动)所受磁场的作用力的大小为____________,方向_________________.17.如图,均匀磁场中放一均匀带正电荷的圆环,其线电荷密度为λ,圆环可绕通过环心O 与环面垂直的转轴旋转.当圆环以角速度ω转动时,圆环受到的磁力矩为 ___ _________, 其方向__________________________.L 1 2I 3(a)(b)⊙18.有两个半径相同的环形载流导线A 、B ,它们可以自由转动和移动,把它们放在相互垂直的位置上,如图所示,将发生以下哪一种运动?(A) A 、B 均发生转动和平动,最后两线圈电流同方向并紧靠在一起. (B) A 不动,B 在磁力作用下发生转动和平动. (C) A 、B 都在运动,但运动的趋势不能确定.(D) A 和B 都在转动,但不平动,最后两线圈磁矩同方向平行.19.如图,在一固定的无限长载流直导线的旁边放置一个可以自由移动和转动的圆形的刚性线圈,线圈中通有电流,若线圈与直导线在同一平面,见图(a),则圆线圈的运动将是 ______________________ _________; 若线圈平面与直导线垂直,见图(b),则圆线圈将 __________________________________________________。
大学物理总复习各章知识点的总结本文档旨在为大学物理学生提供各章知识点的总结,以便进行全面的复。
以下是各章的重要知识点概述:第一章:力学基础- 牛顿三定律:惯性定律、动量定律和作用-反作用定律- 力和力的矢量表示- 物体的平衡状态和平衡条件- 力的分解和合成- 弹力和摩擦力第二章:运动学- 位移、速度和加速度的定义和关系- 一维运动和二维运动的公式和图像- 自由落体运动和投射运动- 碰撞和动量守恒定律- 圆周运动和使用向心力的公式第三章:力学定律应用- 牛顿第二定律和用力学定律解决动力学问题- 摩擦力和滑动/静止摩擦力的计算- 动能和势能的概念以及能量守恒定律的应用- 万有引力和行星运动的规律- 弹性碰撞和非弹性碰撞的区别第四章:热学- 温度、热量和热平衡的概念- 热传递和热平衡的方式:传导、对流和辐射- 理想气体定律和状态方程- 热力学第一定律和热功公式的应用- 熵和热传递的熵变定律第五章:波动光学- 波和光的特性和性质- 光的干涉和衍射现象- 多普勒效应和光谱的应用- 像的成像和光的折射- 反射和折射定律的应用第六章:电学静电学- 电荷和电场的概念- 高斯定律和电场强度的计算- 静电势和电势能的关系- 电和电容的计算- 电场中电荷的受力和电势能的变化第七章:电学电流学- 电流、电阻和电压的定义和关系- 欧姆定律和电阻的计算- 串联和并联电路的计算- 电功率和电能的转换- 阻抗和交流电的特性第八章:磁学- 磁场和磁力线的概念- 安培环路定理和电流的磁场- 法拉第电磁感应定律和楞次定律- 电动势的产生和电磁感应的应用- 磁场中的电荷和导线的受力以上是大学物理各章知识点的概述。
希望本文档能够帮助您进行有效的复习和准备,祝您考试顺利!。
总加速度:1 .牛顿第一定律:当豆外=0时, V =怛矢量O2 .牛顿第二定律:F = ma =m— dtdPdt期末考试说明第1章质点运动学9分,重点:求导法和积分法,圆周运动切向加速度和法向加速度;第2章质点动力学3分,重点:动量定理、动能定理、变力做功;第3章刚体6分,重点:转动定律、角动量守恒定律、机械能守恒定律;第5章振动17分,重点:旋转矢量法、振动方程、速度方程、加速度方程、振动能量、振动合成。
第6章波动14分,重点:波动方程以及波动方程的三层物理意义、相位差与波程差的关系;大学物理1期末复习提纲第一•章质点运动学主要公式:1.质点运动方程(位矢方程):r(t) = x(t)i + y(t)j + z(t)k(x = x(t)参数方程:y = y(f) T消去f得轨迹方程。
Z — Z(02.速度:v =K,加速度:a = ^dt dt3.平均速度—Ar:V =——,平均加速度:5 =—4.角速度:口 =岑,5.线速度与角速度关系:v 角加速度:/3(a)=—dt =0)r6.切向加速度:a T = — = r(3 ,dt ra =』a;第二章质点动力学主要公式:3.牛顿第三定律(作用力和反作用力定律):F = -F^4.动量定理:I = \ 2 F dt = mAv = m(v2~v{) = AP5.动量守恒定律:当合外力理外力=O,AP = Ocx口16 动能定理:W= -dx = \E k =-m(v22-vf)J*】口 27.机械能守恒定律:当只有保守内力做功时,AE =08.力矩:M = rxF大小:M = Fr sin 0方向:右手螺旋,沿了x产的方向。
9.角动量:L = rxP大小:L = mvr sin 3方向:右手螺旋,沿rxP的方向。
淤质点间发生碰撞:完全弹性碰撞:动量守恒,机械能守恒。
完全非弹性碰撞:动量守恒,机械能不守恒,且具有共同末速度。
一般的非弹性碰撞:动量守恒,机械能不守恒。
大学物理(1B)复习提纲第九章振动1、谐振动▲表达式及各参数的求法;▲证明谐振动的方法:①线性恢复力指向平衡点;②微分方程标准式;③谐振动表达式▲旋转矢量法、振动曲线;▲质点振动的速度、加速度;▲动能、势能、平均值及总能量;2、谐振动的合成▲同方向、同频率的合成:合振动的振幅与相位▲同方向、不同频率的合成:拍频△垂直振动的合成(频率相同或成简单整数比)第十章波动1、一维平面简谐波▲表达式及各参数的求法;▲物理意义:x点的振动;t时刻的波形;▲如何由振动求波动;▲如何由波形求波动;▲波速仅由介质本身的性质决定▲由波形及传播方向求质元运动方向及相位2、波的能量▲波的能量、能流、能流密度、平均能流密度(波强);▲质元能量、位移、形变三者的关系;△声波与声强级3、惠更斯原理▲次级子波的概念;▲作图法:波的衍射、反射与折射4、波的干涉▲波的相干条件:振动方向相同、频率相同、相位差恒定;▲波的干涉:同方向、同频率谐振动的相干叠加;▲波程差与相位差的关系;5、驻波▲驻波的形成条件;▲由两个相向简谐波合成驻波的表达式;▲波腹与波节的求法;▲驻波的振幅特点、相位特点;▲波在反射中的半波损失问题:(作图法)由波疏→波密反射或固定端反射:有半波损失,入射波与反射波在反射点处反相位;由波密→波疏反射或自由端反射:无半波损失,入射波与反射波在反射点处同相位;6、机械波的多普勒效应▲一个公式(波源、观察者速度趋近为正、远离为负)7、电磁波的性质▲电磁波是横波;▲E和H的表达式及互求;▲E和H方向、相位、幅值、瞬时值的关系;▲电磁波的速度;▲电磁波的能量:能流密度:坡印廷矢量;平均能流密度(电磁波强度);第十一章几何光学▲平面界面上的折射、反射定律;全反射▲费马原理▲单球面近轴光线下的折、反射(由物求像)▲薄透镜成像公式▲薄透镜作图法※显微镜与望远镜第十二章波动光学1、光的干涉▲光程与路程;光程差与相位差;▲真空中波长与介质中波长的关系、折射率;▲双缝干涉、劈尖、牛顿环干涉;▲等倾干涉光程差的计算▲迈氏干涉仪的光路及相关计算;▲薄膜干涉的半波损失问题;▲在干涉光路中加入透明薄膜引起的附加位相差;※时间相干性与空间相干性2、光的衍射▲单缝衍射:菲涅尔半波带法;明、暗条纹位置的计算;△夫朗和费圆孔衍射:光学仪器的分辨本领:最小分辨角;▲光栅衍射:主极大位置、最大级次、重级与缺级、△斜入射光栅公式;▲X射线的衍射:布拉格公式;▲综合题:双缝与单缝、光栅与单缝3、光的偏振▲两个定律:马吕斯定律与布儒斯特定律;▲尼科尔棱镜与偏振片的作用:振幅的投影与光强的计算;▲双折射:光轴、主平面、寻常光与非常光的偏振方向;正晶体(石英)、负晶体(方解石)中o光与e光的波面、折射率、波速;利用惠更斯原理作图:双折射晶体中o光与e光的波面、传播方向;△椭圆、圆偏振光与波片:四分之一波片与二分之一波片的定义与作用;▲偏振光的干涉:干涉装置、振幅投影与光强的计算;第十三章狭义相对论基础1、狭义相对论的两个基本假设▲两个基本假设要会背2、洛伦兹变换▲洛伦兹变换及计算△速度变换(x方向速度变换)3、相对论时空观的几个重要结论▲“同时”的相对性▲时间延迟▲长度收缩4、相对论动力学▲质速关系式;▲质能关系式;▲能量、动量与静质量的关系式;5、光子▲光子的能量、动量、动质量第十四章(1) 光的量子性1、热辐射▲单色辐出度、总辐出度及相互关系;▲黑体的概念;▲两个实验定律及计算:斯特藩--玻尔兹曼定律、维恩位移定律;△普朗克的能量子观点2、光电效应▲爱因斯坦公式:逸出电位、逸出功与截止频率;遏止电压与最大初动能;遏止电压与频率关系曲线:斜率与普朗克常数截止频率与逸出电位▲饱和光电流▲爱因斯坦光子能量与光强表达式;3、康普顿效应▲波长改变量与散射角的理论公式、康普顿波长;▲光子与静止电子碰撞:能量守恒与动量守恒;第十四章(2) 原子结构与半经典量子论1、氢光谱的规律性▲里德伯公式;▲五个线系与原子能级的关系;▲光谱项与里兹并合原则;2、玻尔理论▲轨道量子化、能量量子化、对氢光谱的解释;▲里德伯公式与能级、(最长、最短)波长的计算;3、两个关键实验▲卢瑟福 粒子散射实验:证实原子由原子核与核外电子组成;▲夫朗克--赫兹实验:证实原子能级的存在;第十五章量子力学基础1、德布罗意波(物质波)▲低能粒子、高能粒子德布罗意波长的计算;2、物质波的证实:电子衍射的两个实验(戴维孙—革末、汤姆孙实验)3、波函数的统计解释△自由粒子平面波波函数▲概率密度:波函数模的平方(设:波函数已归一化);▲粒子出现在某区间的概率:概率密度对该区间的积分;▲波函数满足两个条件:归一化条件:全空间积分等于1标准化条件:单值、有限、连续4、不确定原理(不确定关系)▲坐标与动量的不确定关系;▲能量与时间的不确定关系;【以下内容本学期不做要求】5、薛定谔方程△含时间的、定态(不含时间)的薛定谔方程的基本形式6、一维无限深方势阱▲波函数、能级与粒子出现的概率;7、线性谐振子▲能级公式8、电子自旋▲电子自旋的实验验证:施特恩--格拉赫实验;▲自旋角动量与自旋量子数;▲自旋角动量沿外磁场的分量与自旋磁量子数;▲轨道角动量与轨道磁矩;自旋角动量与自旋磁矩;9、原子的壳层结构▲描述原子中电子状态的四个量子数及相应取值范围;▲给定某些量子数求最多可容纳的电子数;▲四个量子数与相应物理量取值的关系;▲电子填充原子壳层遵循两个原理:泡利不相容原理与能量最小原理;▲原子中的电子组态。
大学物理(2)提纲一、静电场1、电场强度:为矢量,满足叠加原理。
2、电通量:Φe=∮E⃗∙ds穿过闭合曲面的电通量。
3、高斯定理:掌握高斯定理的形式以及计算静电场的适用条件,牢固掌握球对称、轴对称和面对称电荷分布的静电场求解方法和结果,比如无限大均匀带电平面的静电场电场强度大小和方向。
代表例题:P16-18 例10.8;例10.9;例10.10;例10.11;P43 10.1(1)4、电势:掌握电势的定义和求解方法,尤其是掌握由高斯定理求解电场,进而利用定义求解电势的方法。
电场和电势的联系。
代表例题:P24 例10.17;P43 10.1(3);P46 10.335、电容:掌握电容器的串并联式10.33和式10.346、静电能:掌握静电能的表达式P36 式10.35和式10.36代表例题:P44 10.2(7)二、稳恒电流的磁场1、无限长载流直导线的磁感应强度公式;载流圆弧导线、圆电流在圆心处的磁感应强度公式(P56 表11.2结论)代表例题:P78 11.1(1)2、安培环路定理:式11.133、安培力代表例题:P62 例11.104、磁力矩:式11.16a 掌握磁矩的定义,会计算磁力矩的大小并判断方向代表例题:P79 11.1(6);11.2(1)5、磁力的功:式11.17 会利用磁通量增量计算磁力做功代表例题:P79 11.1(4)6、会计算非匀强磁场穿过闭合线圈的磁通量三、电磁感应与电磁场1、感应电动势计算:掌握感应电动势计算方法,会利用法拉第电磁感应定律或定义(动生、感生电动势公式)求解2、楞次定律:会利用楞次定律判断感应电动势方向3、掌握自感定义、自感电动势公式和自感电流的求解本章的代表例题:P105 12.1(5),以及P91 例12.5,尤其是其中构造闭合回路的方法四、波动光学基础1、掌握光程的概念2、杨氏双缝干涉:灵活运用干涉条纹的级数、条纹间距等信息求解未知波长,P115公式13.12a,13.13a和条纹间距公式。
大学物理C复习大纲上册:第一章质点运动学一、复习要求:1.了解参考系、坐标系、质点等概念。
2.理解时刻、时间、位置矢量、位移、速度、加速度等概念。
注意时刻与时间、位移与路程、速度与速率、平均速度与瞬时速度的区别。
3.深入理解切向加速度和法向加速度的意义。
4.熟练掌握已知运动方程求位移、速度、加速度的方法;掌握根据初始条件由速度、加速度求质点的运动方程的方法。
二、复习要点:1、位移与路程有什么区别?在什么情况下位移的大小与路程相等?2、物体作直线、圆周运动,已知运动方程求t 内物体的位移和路程、速度与时间的函数关系、物体的速度与坐标的函数关系。
3、圆周运动角速度与线速度的关系,平均速度与平均速率、切向加速度,法向加速度。
三、复习题:习题1-1,2,3,6,14。
第二章牛顿定律一、复习要求:1、牛顿运动定律的表述和表达式。
2、牛顿运动定律的应用。
二、复习要点:1、学会用牛顿运动定律来解决一维运动的基本问题。
三、复习题:教材例题:P42 例5 ,习题2-16、19、20第三章守恒定律一、复习要求:1、理解动量和冲量的概念,掌握动量定理和动量守恒定律以及它们的应用。
2、了解功、动能、保守力和非保守力、重力势能、弹性势能、机械能的概念,会计算恒力和变力的功,掌握动能定理和机械能守恒定律以及它们的应用。
二、复习要点:1.什么是动量、冲量?什么是动量定理、动量守恒定律?内力是否能改变物体系的动量?2.怎样计算元功?什么是动能定理?内力作功能否改变质点系动能?3.什么叫保守力?什么是功能原理?三、复习题:教材例题:P76 例2,习题3-1,2,3,4,5,19,22,23,29,30。
第五章静电场一、复习要求:1.理解点电荷概念。
了解库仑定律的内容及其适用条件。
2.掌握电场强度概念及点电荷的场强公式;会用场强叠加原理求场强。
3.掌握真空中的高斯定理及其简单应用(中心对称、无限长轴对称、无限大平面)。
4. 理解静电场力做功的特点;理解静电场的环路定理;理解电势与电势差的概念;会用计算电势的基本方法解决简单问题;了解电场强度与电势的关系。
Br ∆A rB ryr ∆第一章 运动学一. 描述运动的物理量 1. 位矢、位移和路程由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程()r r t =运动方程的分量形式()()x x t y y t =⎧⎪⎨=⎪⎩位移是描述质点的位置变化的物理量△t 时间内由起点指向终点的矢量B A r r r xi yj =-=∆+∆△,2r x =∆+△路程是△t 时间内质点运动轨迹长度s ∆是标量。
明确r ∆、r ∆、s ∆的含义(∆≠∆≠∆r r s ) 2. 速度(描述物体运动快慢和方向的物理量)平均速度xyr x y i j ij t t t瞬时速度(速度) t 0r drv limt dt∆→∆==∆(速度方向是曲线切线方向) 瞬时速度:j v i v j dt dy i dt dx dt r d v y x +=+==,瞬时速率:2222yx v v dt dy dt dx dt r d v +=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛== ds drdt dt= 速度的大小称速率。
3. 加速度(是描述速度变化快慢的物理量)平均加速度va t ∆=∆ 瞬时加速度(加速度) 220limt d d r a t dt dt υυ→∆===∆△ a 方向指向曲线凹向j dty d i dt x d j dt dv i dt dv dt v d a y x2222+=+==2222222222⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=dt y d dt x d dtdv dt dv a a a y x y x 二.抛体运动运动方程矢量式为 2012r v t gt =+分量式为 020cos ()1sin ()2αα==-⎧⎪⎨⎪⎩水平分运动为匀速直线运动竖直分运动为匀变速直线运动x v t y v t gt 三.圆周运动(包括一般曲线运动) 1.线量:线位移s 、线速度dsv dt= 切向加速度t dva dt=(速率随时间变化率) 法向加速度2n v a R=(速度方向随时间变化率)。
大学物理复习纲要(下册)
第九章静电场
一、基本要求
1、理解库仑定律
2、掌握电场强度和电势概念
3、理解静电场的高斯定理和环路定理
4、熟练掌握用点电荷场强公式和叠加原理以及高斯定理求带电系统电场强度的方法
5、熟练掌握用点电荷的电势公式和叠加原理以及电势的定义式来求带电系统电势的方法
二、内容提要
1、静电场的描述
描述静点场有两个物理量。
电场强度和电势。
电场强度是矢量点函数,电势是标量点函数。
如果能求出带电系统的电场强度和电势分布的具体情况。
这个静电场即知。
一F
(1)电场强度 E = —
壬i g 一
点电荷的场强公式E= ------------ S
血勺r
(2)电势 a 点电势= £E.dl (%=0)
(3)a、b 两点的电势差V ah^V(-V h = [,E.dl
Ja
(4)电场力做功W = q^E.dl = q.(V a-V h)
(5)如果无穷远处电势为零,点电荷的电势公式:
2、表征静电场特性的定理
(1)真空中静电场的高斯定理:
高斯定理表明静电场是个有源场,注意电场强度通量只与闭合曲面内的电荷有关,而闭合面上的场强和空间所有电荷有关
(2)静电场的环路定理:
表明静电场是一种保守场,静电力是保守力,在静电场中可以引入电势的概念。
3、电场强度计算
(1)利用点电荷的场强公式和叠加原理求
点电荷E =丄乞您带电体E =丄鸭匕
4亦°铝r~4齊)」r
(2)高斯泄理求E
高斯定理只能求某些对称分布电场的电场强度,用高斯定理求电场强度关键在于做出一个合适的高斯面。
4、电势计算
「电势妄:戌(1)用电势的定义求电势(E的分布应该比较容易求岀)V a = \ ' E.dl
Ja
(2)利用点电荷的电势公示和电势叠加原理求电势:匕=f丄冷
J 4 兀£()r
第十章静电场屮的导体和电介质
一、基本要求
1、理解静电场中的导体的静电平衡条件,能从平衡条件出发分析导体上电荷分布和电场分布。
2、了解电介质极化的微观机理,理解电位移矢量D的概念,及在各向同性介质中D和E 关系,
理解电介质中的高斯定理并会利用它求介质中对称电场的场强。
3、理解电容的定义,能计算常用电容器的电容
4、了解电场能量密度的概念,能计算电场能量。
二、内容提要
1、静电场屮的导体
当导体处于静电平衡时,导体内部场强处处为零;导体内任意两点电势差为零。
整个导体是一个等
势体,导体表面是一个等势面,导体内部没有静电荷。
电荷按表面的曲率分布在表血上。
导体表面附近的场强和该处导体表血的电荷血密度有E =—的关系。
*0
2、静电场中的电介质
电介质的极化
位于静电场中的电解质表面产生极化电荷,介质中的场强:E = E. + E
3、介质中的高斯定理
J D.ds - Q) D = E E =勺E{)
5
4、电容:
电容的定义:c = —^―
v,-v2
计算电容器电容步骤:
(1)设电容器两极板带有电荷+0和-Q 0
(2)求两极板之间的场强分布
(3)利用电势定义式求出两极板之间的电势差:%-K = f E.dl
(4)
利用电容公式求电容:C 諾
5、电容器储存的能量
三、解题的思路和方法
静电场中放置导体,应先根据静电平衡条件求出电荷分布,而后根据电荷分布求场强 分布. 静电场中放置电介质,应先根据电荷分布,求电位移矢量D,而后根据D 和E 的关系 求E ,由E
分布求电势或电势差。
第^一章恒定磁场
一、 基本要求
1、 掌握描述磁场的物理量一磁感应强度。
2、 理解毕奥-萨伐尔定律,能用它和壳加原理计算简单电流的磁场。
3、 理解恒定电流的磁场的高斯定理和安培环路定理,学会用安培环路定理计算磁感应 强度的方
法
4、 理解洛伦兹力和安培力公式,能分析电荷在均匀电场和磁场中的受力和运动情况, 了解磁矩
概念,能计算简单几何形状载流导体和载流平面线圈载在磁场中受的力和 力矩。
二、 内容提要
1、描述磁场的物理量一磁感应强度B 矢量 B 矢量大小:3 =迟込
qv
B 矢量方向:规定为正的运动电荷在磁场屮受力为冬时的运动方向为该点的磁场方向。
2、恒定电流在磁场中的基本定律-毕奥-萨伐尔定律
dB 方向:与Idly 的方向相同 的大小为:=如凹
4/r
广
由毕奥-萨伐尔定律求出几种典型电流的磁场 (1)无限长载流直导线的磁场 B 二上上
2〃
2
W =-QL = L CU 2
=-QU e
2 C 2 2
利用能量体密度求电场能量:
电场能量体密度咕訴
w,= J C0e
dV = ^DE
V 厶
V 为场不为零的空间
dB
“° Idl x e r
4TT r 2
式中 Ao =4^xl0"7rm/A
(2)圆电流中心的磁场B = ^-
2 R
(3)长直螺线管的磁场 B =側1
三、表征磁场特性的定理
1、磁场的高斯定理:
J B.ds - 0 说明磁场是无源场
2、安培坏路定理
说明磁场是非保导场
四、磁感应强度计算
1、用毕奥-萨伐尔定律求B
2、用安培环路定理求B
五、用安培环路定理解题的方法和思路
用安培环路定理可以非常方便的求某些电流的磁感应强度,具体步骤是:
a)先要分析磁场分布是否具有空间的对称性,包括轴对称、点对称等
b)根据磁场的对称性特征选取适当的回路,:该回路一定要通过求磁场的点,积分回路的回转方向不是和磁场方向垂直便是和磁场方向平行,且B作为一个常量可以从积分号屮提出,
积分吋只对回路的长度积分。
六、磁场对运动电荷和电流的作用
1、磁场对运动电荷的作用力-洛伦兹力:
F = quxB
2、磁场对载流导线的作用力-安培力
dF^IdlxB F =『dlxB
3、用安培力公式计算电流在磁场中受力步骤:
a)根据磁场的分布情况选取合适的电流元
b)由安培力公式求出电流元受力〃F
c)用分量式积分求岀F
可以证明:在均匀磁场中,任意形状的平面载流导线所受的磁力与该导线始终点连线相同的
直导线所受磁力相同,平面闭合线圈所受的合力为零。
七、载流线圈在磁场中所受的磁力矩
M = /77X B m — NISe n
磁力矩的大小M = NBIS sin 0方向:遵循右手螺旋法则
第十二章电磁感应
一、基本要求
1、掌握并熟练应用法拉第电磁感应定律和楞次定律计算感应电动毎,并判断其方向及电势高低。
2、理解动生电动势和感生电动势,会计算动生电动势和感生电动势。
3、了解自感和互现象,会计算儿何形状简单的导体的白感和互感。
4、了解磁场能量和能量密度概念。
二、内容提要
1、法拉第电磁感应定律:
dt
一个回路,不管什么原因,只要穿过回路的磁通量随时间变化,回路中就有感应电动势。
应用该式只要求出①=J* B.ds ,若它是时间的函数,则磁通量对吋间求导即得& S 感应电流,若电路闭合,回路电阻为R :
厶=一2耍式中负号是楞次定律的数学表达式。
R dt
2、楞次定律判定感应电流方向
冋路中感应电流所激发的磁场,总是使它反抗任何引起感应电流的原因。
3、动生电动势和感应电动势
(1)动生电动势:
6=[(uxB).刃d/式中为线元,B为外磁场,u为线元的速度
(2)感应电动势
感应电动势的计算公式实质上就是法拉第电磁感应定律,不过这种通量的变化只是由于B的变化引起的。
4、求动生电动势和感生电动势的思路和方法
(1)导体或导体回路在恒定磁场屮运动时(即导体切割磁力线运动时),产生的电动
势为动生电动势。
应用^ = 1 (uxB).dl时,应先选一个合适的线元刃,并注意线元所Ja
在处的B和它的运动速度u,并注意各矢量之间的夹角。
正确写出d&=(uxB).d!, 而后积分,注意
积分的上下限。
(2)变化的磁场在其周围空I'可产生涡旋电场,这种涡旋电场力是种非静电力。
正是它驱使载流子运动产生电动势,在不要求计算佼时,仍可按法拉第电磁感定律求
感应电动势。