人教版七年级数学上册 一元一次方程单元测试卷(解析版)
- 格式:doc
- 大小:548.00 KB
- 文档页数:14
人教版七年级数学上册《第三章一元一次方程》单元测试卷-含参考答案一、选择题1.下列方程中是一元一次方程的是()A.x3−3=4+x4B.2x+3x−1C.x2−3x+3=0D.x+2y=32.若x=2是关于x的方程2x+a−4=0的解,则a的值为()A.−8B.0C.2D.8 3.下列说法正确的是()A.如果ac=bc,那么a=b B.如果a=b,那么a+1=b−1 C.如果a=b,那么ac=bc D.如果a2=b2,那么a=b 4.方程2y+1=5的解是()A.y=2B.y=12C.y=1D.y=525.方程3x+4=2x﹣5移项后,正确的是()A.3x+2x=4﹣5 B.3x﹣2x=4﹣5 C.3x﹣2x=﹣5﹣4 D.3x+2x=﹣5﹣46.将方程2x−12−x+13=1去分母后,得到3(2x-1)- 2x+1=6的结果错在()A.最简公分母找错B.去分母时漏乘3项C.去分母时分子部分没有加括号D.去分母时各项所乘的数不同7.某车间有25名工人,每人每天可生产100个螺钉或150个螺母,若1个螺钉需要配两个螺母,现安排名工人生产螺钉,则下列方程正确的是()A.B.C.D.8.某商场购进一批服装,每件服装销售的标价为400元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的进价是()A.160元B.180元C.200元D.220元二、填空题9.若(a−1)x2+ax+1=0是关于x的一元一次方程,则a=.10.已知两个方程3(x+2)=5x和4x−3(a−x)=6x−7(a−x)有相同的解,那么a的值是 .11.若关于x的方程x−4−ax6=x+46−1的解是正整数,则符合条件的所有整数a的和是。
12.李明组织同学一起去看电影,已知电影票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了张电影票.13.为迎接初一新生,47中清华分校对校园重新美化装修.现计划对教室墙体重新粉刷一遍(所有教室面积相同).现有甲,乙两个装修队承担此项工作.已知甲队3天粉刷5个教室,结果其中有30平方米墙面未来得及粉刷;乙队5天粉刷7个教室外还多粉刷20平方米.已知甲队比乙队每天多粉刷10平方米,则每间教室的面积为平方米.三、解答题14.解方程:(1)(2)15.小马虎在解关于x的方程x−13=x+2m2−1去分母时,方程右边的“−1”没有乘以6,最后他求得方程的解为3.(1)求m的值;(2)求该方程正确的解.16.某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?17.某中学原计划加工一批校服,现有甲、乙两个工厂加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天加工这种校服24件,且单独加工这批校服甲厂比乙厂要多用20天(1)求这批校服共有多少件?(2)为了尽快完成这批校服,若先由甲、乙两工厂按原速度合作一段时间后,甲工厂停工,而乙工厂每天的速度提高25%,乙工厂单独完成剩下的部分,且乙工厂全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂加工多少天?18.某校七年级3位老师带部分学生去红色旅游,联系了甲、乙两家旅行社,甲旅行社说:“老师免费,学生打八折。
人教版七年级数学上册第三章一元一次方程单元测试卷附解析一、单选题(共10题;共30分)1.(3分)下列式子中,是一元一次方程的是()A.x+2y=1B.−5+1C.2=4D.2t+3=1 2.(3分)若方程2x+1=3和方程2-K3=0的解相同,则a的值是()A.7B.5C.3D.03.(3分)下列等式变形中,正确的是()A.若a=b,则a-3=3-b B.若=,则x=yC.若ac=bc,则a=b D.若=,则b=d4.(3分)已知=−2=1是方程B+2=5的解,则的值是()A.−32B.32C.-2D.25.(3分)已知关于x的方程2x+a=1-x与方程2x-3=1的解相同,则a的值为()A.2B.-2C.5D.-56.(3分)小聪按如图所示的程序输入一个正数x,最后输出的结果为853,则满足条件的x的不同值最多有()A.4个B.5个C.6个D.无数个7.(3分)下列等式变形正确的是()A.若3(+1)−2=1,则3+3−2=1B.若2−6=5+8,则2+5=6+8C.4−r13=1,则3−4(+1)=1D.若−2=5,则=−258.(3分)若3+1与2K73互为相反数,则m的值为()A.B.C.D.9.(3分)在解方程K12−2r33=1时,去分母正确的是()A.3(−1)−2(2+3)=1B.3(−1)+2(2+3)=1C.3(−1)−2(2+3p=6D.3(−1)−2(2+3)=610.(3分)某工程,甲独做需12天完成,乙独做需8天完成,现由甲先做3天,乙再参加合做,求完成这项工程共用的时间.若设完成此项工程共用x天,则下列方程正确的是()A.r312+8=1B.r312+K38=1C.12+8=1D.12+K38=1二、填空题(共5题;共15分)11.(3分)若关于的方程B=3−的解为整数,则非负整数的值为. 12.(3分)一件商品按成本价提高30%后标价,又以8折销售,售价为208元这种商品的成本价是元。
人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)姓名: 考号: 分数:一、单选题(共 24 分)1 .下列各选项是一元一次方程的是( )A .3x 2 + 4 = 5B .m + 2n = 0C .2y +1 = 一3D .4x + 2 > 3 2 .下列运用等式的性质,变形不正确的是( )A .若a = b ,则 a + c = b + cB .若a = b ,则 a 一 3 = b + 3C .若a = b ,则 a 尝 5 = b 尝 5D .若a = b ,则 一2a = 一2b3 .已知方程(k 一 4)x |k|一3 + 5 = 6 是关于x 的一元一次方程,则k 的值为( )A .4B .一4C .4 或一4D .11 4 .如果单项式 x 2m y 与2x 4 y n +3 是同类项,那么n m = ( )A .一9B .9C .一4D .45 .已知x = 1 是关于 x 的方程ax + 2x 一 3 = 0 的解,则 a 的值为( )A .一1B .1C .一3D .36 .若代数式 —1一2x 的值是 1,则 x 的值是( ) 3A .一1B .0C .1D .27 .将一个周长为 42cm 的长方形的长减少 3cm ,宽增加 2cm ,能得到一个正方形.若设长 方形的长为 x cm ,根据题意可列方程为( )A .x + 2 = (42 一 x )一 3B .x 一 3 = (42 一 x )+ 2C .x + 2 = (21一 x )一 3D .x 一 3 = (21一 x )+ 28 .一套仪器由一个 A 部件和三个 B 部件构成,用1m 3 钢材可做 40 个 A 部件或 240 个 B 部 件。
现要用6m 3 钢材制作这种仪器,为了使制作的 A 、B 部件恰好配套,设应用xm 3 钢材制 作 A 部件,则可列方程为( )A .40x 根 3 = 240 根 (6 一 x )B .40x = 240 根 (6 一 x )根 3C .4=40 根 (6 一 x )根 3 = 240xD .40 根 (6 一 x )= 240x 根 33二、填空题(共24 分)9 .若x = 1 是关于x 的方程2x + a = 1 的解,则a = .10 .若代数式2(x - 3) 的值与9 - x 的值互为相反数,x 的值为.11 .如果a + 1 + b - 2 = 0 ,则a -(-b)= .12 .用符号※定义一种新运算a※b =ab+2(a﹣b),若3※x =2021,则x 的值为.13 .已知a:b:c=2:3:5 ,a -b + c = 36 ,则2a +b - 2c = .14 .若方程2x-m =1 和方程3x =2(x-1)的解相同,则m 的值为.15 .某商品标价100 元,现在打6 折出售仍可获利25% ,则这件商品的进价是元.16 .两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是30 千米/时,3 小时后甲船能比乙船多航行60 千米,设水流速度是x 千米/时,则可列方程.__________三、解答题(共72 分)17 .解下列方程:(1)16x - 40 = 9x +16 ;(2)4x = 20 x + 16 ;3(3)2(3 - x) = -4(x + 5) ;(4)3(-2x - 5) + 2x = 9 ;(5)1(x - 4) - (3x + 4) = -15;(6)x - 7 - 5x + 8 = 1 .2 2 4 318 .已知 x =2 是方程6x mx + 4 = 0 的解,求m 2 2m 的值.19 .若方程2x 1 = 3 和方程4x a = 2 的解相同,求 a 的值.20 .关于 x 的方程1 ax = 2x + 2a 的解比方程2x 3 =1 的解小 3,求 a 的值.3x 121 .关于 x 的一元一次方程 ── + m = 3 ,其中 m 是正整数.2 (1)当m =2 时,求方程的解;(2)若方程有正整数解,求 m 的值.22 .把一些图书分给某班学生阅读,如果每人分 3 本则剩余 20 本;如果每人分 4 本,则还缺 25 本.这个班有多少学生?23.制作一张桌子需要一个桌面和四个桌腿,1m3 木材可制作20 个桌面或制作400 条桌腿,现有12m3 的木材,应怎样计划才能使桌面和桌腿刚好配套?能制成多少套桌椅?24 .某校为承办县初中学校内涵建设,需制作一块活动展板,请来师徒两名工人.已知师傅单独完成需4 天,徒弟单独完成需6 天.(1)两个人合作需要多少天完成?(2)现由徒弟先做1 天,师徒两人再合作完成这项工作,问:徒弟共做了几天?25 .如图,在数轴上点A 表示数a ,点B 表示数b ,并且a ,b 满足a +13 +(5 -b)2 = 0 .(1)求点A ,B 之间的距离;(2)点C 在点A 的右侧,点D 在点B 的左侧,AC 为15 个单位长度,BD 为8 个单位长度,求点C ,D 之间的距离;(3)动点P 以3 个单位长度/秒的速度从点A 出发沿数轴正方向运动,同时点Q 以2 个单位长度/秒的速度从点 B 出发沿数轴负方向运动,则它们几秒钟相遇?相遇点E 表示的数是多少?参考答案1 .C2 .B3 .B4 .D5 .B6 .A7 .D8 .A9 ._110 ._311 .112 .201513 ._2714 .-515 .4816 .3(30 + x)_ 3 (30 _ x)= 60317 .(1)x = 8 ;(2)x = _6 ;(3)x = _13 ;(4)x = _6 ;(5)x = ;(6)518 .4819 .a = 620 .321 .(1) x=1(2) m=222 .这个班有45 名学生.23 .用10 立方米做桌面,用2 立方米做桌腿,可以配成200 套桌椅.1224 .(1)两个人合作需要—天完成5(2)3 天25 .(1)18(2)518 (3) 5 ;11565x = _ -17。
人教版七年级数学上册第三章《一元一次方程》单元测试一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 已知x=1是方程x−2k3=12−32x的解,则k的值是()A.−2B.2C.0D.−12. 某商品打七折后价格为a元,则原价为( )A.a元B.107a元 C.30%a元 D.710a元3. 在①2x+1;②1+7=15−8+1;③1−12x=x−1;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个4. 若关于x的方程3x+(2a+1)=x−(3a+2)的解为x=0,则a的值等于( )A.15B.35C.−15D.−355. 将一根长为acm的铁丝首尾相接围成一个正方形,若要将它按如图所示的方式向外等距扩大1cm得到新的正方形,则这根铁丝需增加()A.4cmB.8cmC.(a+4)cmD.(a+8)cm6. 七年级(1)班有30人会下象棋或围棋,已知会下象棋的人数比会下围棋的人数多5人,两种棋都会下的有17人,问只会下围棋的有多少人?设只会下围棋的有x人,可得方程()A.x+(x−5)+17=30B.x+(x+5)+17=30C.x+(x−5)−17=30D.x+(x+5)−17=307. 如图是某月份的日历表,任意框出同一列上的三个数,则这三个数的和不可能是()A.39B.43C.57D.668. 解方程x3−x−12=1时,去分母后,正确的是( )A.3x−2(x−1)=1B.2x−3(x−1)=1C.3x−2(x−1)=6D.2x−3(x−1)=69. 运用等式性质进行的变形,正确的是()A.如果a=b,那么a+c=b−cB.如果ac =bc,那么a=bC.如果a=b,那么ac =bcD.如果a2=3a,那么a=310. 已知x=2是方程5Xm+10=30的解,则m的值为( )A.2B.4C.6D.10二、填空题(本题共计 4 小题,每题 4 分,共计16分,)11. 当代数式2x−2与3+x的值相等时,x=________.12. 已知:(m−2)x−1=0是关于x的一元一次方程,则m________.13. 在等式5x−8=7−9x的两边同时________,得14x=15,这是根据________.14. 李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔的承包地去年甲种蔬菜有________亩.三、解答题(本题共计 5 小题,共计74分,)15.(20分) 解下列方程:(1)8(a+1)−2(3a−4)=13;(2)2x−13=2x+16−1;(3)y−y−12=2−y+25;(4)2x0.3+223=1.4−3x0.2.16.(12分) 列方程.(1)甲班有学生58人,乙班有学生46人,要使甲、乙两班的人数相等,应如何调动?(2)某推销员,卖出全部商品的2后,得到400元,卖出全部商品共得到多少元?517. (14分) “五一”期间,某电器城按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,该电器的成本价为多少元?(只列方程)18. (14分)一个长方形的周长为28cm,将此长方形的长减少2cm,宽增加4cm,就可成为一个正方形,那么原长方形的长和宽分别是多少?19.(14分) 某公园门票价格规定如下表:某校七年级(1)(2)两个班共102人去游园,其中(1)班有40多人,不足50人.经计算,如果两个班都以班为单位购票,则一共应付1320元.问:(1)如果两班联合起来,作为一个团体购票,可省多少钱?(2)两班各有多少名学生?参考答案与试题解析一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】一元一次方程的解【解析】把x=1代入方程,即可得出一个关于k的一元一次方程,求出方程的解即可.【解答】把x=1代入方程x−2k3=12−32x得:1−2k3=12−32×1,解得:k=2,2.【答案】B【考点】一元一次方程的应用——打折销售问题【解析】此题暂无解析【解答】解:设该商品原价为:x元,∵ 某商品打七折后价格为a元,∵ 0.7x=a,则x=107a(元),故选B.3.【答案】B方程的定义【解析】方程是含有未知数的等式,是等式但不含未知数不是方程,含未知数不是等式也不是方程.【解答】(1)2x+1,含未知数但不是等式,所以不是方程.(2)1+7=15−8+1,是等式但不含未知数,所以不是方程.x=x−1,是含有未知数的等式,所以是方程.(3)1−12(4)x+2y=3,是含有未知数的等式,所以是方程.故有所有式子中有2个是方程.故选:B.4.【答案】D【考点】方程的解【解析】此题暂无解析【解答】解:∵ x=0是方程3x+(2a+1)=x−(3a+2)的解,∵ 2a+1=−(3a+2),,解得:a=−35故选D.5.【答案】B【考点】一元一次方程的应用——其他问题列代数式根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【解答】解:∵ 原正方形的周长为acm,cm,∵ 原正方形的边长为a4∵ 将它按图的方式向外等距扩1cm,+2)cm,∵ 新正方形的边长为(a4+2)=(a+8)(cm),则新正方形的周长为4(a4因此需要增加的长度为a+8−a=8(cm).故选B.6.【答案】B【考点】由实际问题抽象出一元一次方程【解析】设只会下围棋的有x人,则只会下象棋的有(x+5)人,根据该班有30人会下象棋或围棋且两种棋都会下的有17人,即可得出关于x的一元一次方程,此题得解.【解答】设只会下围棋的有x人,则只会下象棋的有(x+5)人,依题意,得:x+(x+5)+17=30.7.【答案】B【考点】一元一次方程的应用——其他问题解一元一次方程【解析】可设中间的数为x,根据竖列上相邻的数相隔7可得其余2个数,相加等于各选项中数字求解即可.【解答】解:A、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=39,解得:x=13,故此选项错误;B、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=43,解得:x=433,故此选项符合题意;C、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=57,解得:x=19,故此选项错误;D、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=66,解得:x=22,故此选项错误;故选B.8.【答案】D【考点】解一元一次方程【解析】方程两边乘以6去分母得到结果,即可做出判断.【解答】解:方程x3−x−12=1,等式两边同时乘6得:2x−3(x−1)=6.故选D.9.【答案】B【考点】等式的性质【解析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:A、利用等式性质1,两边都加c,得到a+c=b+c,所以A不成立,故A选项错误;B、利用等式性质2,两边都乘以c,得到a=b,所以B成立,故B选项正确;C、成立的条件c≠0,故C选项错误;D、成立的条件a≠0,故D选项错误.故选B.10.【答案】A【考点】解一元一次方程【解析】把X=2代入方程得到一个关于m的方程,求出方程的解即可【解答】解得:m=2,故选A.二、填空题(本题共计 4 小题,每题 4 分,共计16分)11.【答案】5【考点】解一元一次方程【解析】此题暂无解析【解答】解:由已知得:2x−2=3+x,移项合并得:x=5,故答案为:5.12.【答案】m≠2【考点】一元一次方程的定义【解析】依据一元一次方程的定义可知m−2≠0,从而可求得m的取值范围.【解答】解:∵ (m−2)x−1=0是关于x的一元一次方程,∵ m−2=0.∵ m≠2.故答案为:m≠2.13.【答案】9x+8,等式的性质1【考点】等式的性质【解析】根据等式的基本性质即可解答.【解答】解:两边同时加上9x得:5x+9x−8=7,两边再同时加上8得:14x=5,故5x−8=7−9x两边同时加上9x+8,得到14x=15,根据是:等式的性质1.故答案是:9x+8,等式的性质1.14.【答案】6【考点】一元一次方程的应用——工程进度问题【解析】可设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,等量关系为:甲种蔬菜总获利+乙种蔬菜总获利=18000.【解答】解:设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,依题意得2000x+1500(10−x)=18000,解得x=6,答:甲种蔬菜种植了6亩.故答案为6.三、解答题(本题共计 5 小题,共计74分)15.【答案】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.【考点】解一元一次方程【解析】(1)方程去括号,移项合并,把a系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把y系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.16.【答案】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:25x=400.【考点】由实际问题抽象出一元一次方程【解析】(1)根据要使甲、乙两班的人数相等,表示出两班的人数即可得出等式;后,得到400元”,得出等式即可.(2)根据“卖出全部商品的25【解答】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:2x=400.517.【答案】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.【考点】由实际问题抽象出一元一次方程【解析】设该电器的成本价为x元,根据成本价×(1+30%)×80%=售价为2080元可列出方程.【解答】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.18.【答案】长方形的长为10cm,宽为4cm.【考点】一元一次方程的应用——工程进度问题【解析】设长方形的长是xcm,根据正方形的边长相等即可列出方程求解.【解答】解:设长方形的长是xcm,则宽为(14−x)cm,根据题意得:x−2=(14−x)+4,解得:x=10,14−x=14−10=4.19.【解析】(1)根据题意得出两个班联合购票比分别购票的差值即可;(2)设(1)班有xx人,根据题意列出方程解答即可.【解答】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.【答案】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.。
七年级(上)数学一元一次方程单元测试卷一.选择题(共10小题)1.已知下列方程:①x﹣2=;②0.2x=1;③=x﹣3;④x﹣y=6;⑤x=0,其中一元一次方程有()A.2个B.3个C.4个D.5个2.下面四个等式的变形中正确的是()A.由x+7=5﹣3x,得4x=2 B.由4x+8=0,得x+2=0 C.由x=4,得x=D.由4(x﹣1)=﹣2,得4x =﹣63.下列方程中,它的解是x=﹣1的方程是()A.3﹣x=2 B.2x=﹣1+x C.﹣2﹣2x=4 D.4x=x+3 4.方程2x﹣4=﹣2x+4的解是()A.x=2 B.x=﹣2 C.x=1 D.x=0 5.下列解方程去分母正确的是()A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2 y﹣15=3yD.由,得3(y+1)=2 y+66.小明在做解方程作业时,不小心将方程中的一个常数污染,被污染的方程是2y+1=y﹣□,小明想了想后翻看了书后的答案,此方程的解是y=﹣,然后小明很快补好了这个常数,这个常数应是()A.﹣B.C.D.27.某车间30名工人生产螺母和螺钉,每人每天平均生产螺钉1500个或螺母4500个,一个螺钉要配两个螺母,已知每天生产的产品刚好配套,若设安排x名工人生产螺钉,则可列方程为()A.4500(30﹣x)=2×1500x B.2×4500(30﹣x)=1500xC.4500 x=2×1500(30﹣x) D.4500 x+2×1500x=30 8.把方程4x﹣x=4的解用数轴上的点表示出来,那么该点在图中的()A.点M,点N之间B.点N,点O之间C.点O,点P之间D.点P,点Q之间9.已知某商店出售了两个进价不同的书包,售价都是42元,其中一个盈利40%,另一个亏损30%,则在这次买卖中,商店的盈亏情况是()A.盈利4.2元 B.盈利6元C.不盈不亏D.亏损6元10.小刚从家跑步到学校,每小时跑12km,会迟到5分钟;若骑自行车,每小时骑15km,则可早到10分钟.设他家到学校的路程是xkm,则根据题意列出方程是()A.﹣=+B.﹣=﹣C.+10=﹣5 D.+=﹣二.填空题(共6小题)11.已知x=3是关于x方程mx﹣8=10的解,则m=.12.若3x2m﹣1+6=0是关于x的一元一次方程,则m的值为.13.比a的2倍大5的数等于a的8倍,列等式表示为.14.一家服装店将某种服装按成本提高40%后标价,又以八折优惠卖出,结果每件仍获利36元,这种服装每件的成本为.15.小乐在解方程﹣1=0(x为未知数)时,误将﹣x看作+x,得方程的解为x=1,则原方程的解为.16.对有理数a,b,规定一种新运算※,意义是a※b=ab+a+b,则方程x※3=4的解是x=.三.解答题(共9小题)17.解方程:2(x+3)=﹣3(x﹣1)+218.解方程:﹣=0.7519.解方程(1)15﹣(7﹣5x)=2x+(5﹣3x)(2)20.课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组8人,这样就比原来减少2组,问这些学生共有多少人?21.妇人洗碗在河滨,路人问他客几人?答曰:“不知客数目,六十五碗自分明,二人共食一碗饭,三人共吃一碗羹,四人共肉无余数,请君细算客几人?”本题的大意是:有一名妇人在河边洗碗,一个过路的人问她有多少个客人吃饭,妇人说“人数不知道,一共65个碗,其中两个人共用一碗饭,三个人共喝一碗汤,四个人共吃一碗肉,请你算算一共有多少个客人?”(请列一元一次方程解答)22.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?23.如图,小刚将一个正方形纸片剪去一个宽为5cm的长条后,再从剩下的长方形纸片上剪去一个宽为6cm的长条.如果两次剪下的长条面积正好相等,求两个所剪下的长条的面积之和.24.有一旅客携带了30千克行李乘某航空公司的飞机,按该航空公司规定,旅客最多可免费携带20千克的行李,超重部分每千克按飞机票价的1.5%购买行李票,现该旅客购买的飞机票和行李票共920元.(1)该旅客需要购买千克的行李票;(2)该旅客购买的飞机票是多少元?25.某中学原计划加工一批校服,现有甲、乙两个工厂加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天加工这种校服24件,且单独加工这批校服甲厂比乙厂要多用20天.(1)求这批校服共有多少件?(2)为了尽快完成这批校服,若先由甲、乙两工厂按原速度合作一段时间后,甲工厂停工,而乙工厂每天的速度提高25%,乙工厂单独完成剩下的部分,且乙工厂全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂加工多少天?参考答案一.选择题(共10小题)1.已知下列方程:①x﹣2=;②0.2x=1;③=x﹣3;④x﹣y=6;⑤x=0,其中一元一次方程有()A.2个B.3个C.4个D.5个解:根据一元一次方程定义可知:下列方程:①x﹣2=;②0.2x=1;③=x﹣3;④x﹣y=6;⑤x=0,其中一元一次方程有②⑤.故选:A.2.下面四个等式的变形中正确的是()A.由x+7=5﹣3x,得4x=2 B.由4x+8=0,得x+2=0 C.由x=4,得x=D.由4(x﹣1)=﹣2,得4x =﹣6解:A、由x+7=5﹣3x方程两边都加3x﹣7即可得出4x=﹣2,故本选项错误;B、由4x+8=0方程两边都除以4即可得出x+2=0,故本选项正确;C、由x=4,得x=,故本选项错误;D、由4(x﹣1)=﹣2可得4x=2,故本选项错误;故选:B.3.下列方程中,它的解是x=﹣1的方程是()A.3﹣x=2 B.2x=﹣1+x C.﹣2﹣2x=4 D.4x=x+3 解:A、解方程3﹣x=2得:x=1,故A选项错误;B、解方程2x=﹣1+x得:x=﹣1,故B选项正确;C、解方程﹣2﹣2x=4得:x=﹣3,故C选项错误;D、解方程4x=x+3得:x=1,故D选项错误.故选:B.4.方程2x﹣4=﹣2x+4的解是()A.x=2 B.x=﹣2 C.x=1 D.x=0 解:2x﹣4=﹣2x+4移项得,2x+2x=4+4,合并同类项得,4x=8,系数化为1,得x=2.故选:A.5.下列解方程去分母正确的是()A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2 y﹣15=3yD.由,得3(y+1)=2 y+6解:A、由,得2x﹣6=3﹣3x,此选项错误;B、由,得2x﹣4﹣x=﹣4,此选项错误;C、由,得5y﹣15=3y,此选项错误;D、由,得3(y+1)=2y+6,此选项正确;故选:D.6.小明在做解方程作业时,不小心将方程中的一个常数污染,被污染的方程是2y+1=y﹣□,小明想了想后翻看了书后的答案,此方程的解是y=﹣,然后小明很快补好了这个常数,这个常数应是()A.﹣B.C.D.2解:设□表示的数是a,把y=﹣代入方程2y+1=y﹣a得:﹣+1=﹣﹣a,解得:a=,即这个常数是,故选:B.7.某车间30名工人生产螺母和螺钉,每人每天平均生产螺钉1500个或螺母4500个,一个螺钉要配两个螺母,已知每天生产的产品刚好配套,若设安排x名工人生产螺钉,则可列方程为()A.4500(30﹣x)=2×1500x B.2×4500(30﹣x)=1500xC.4500 x=2×1500(30﹣x) D.4500 x+2×1500x=30 解:设安排x名工人生产螺钉,则安排(30﹣x)名工人生产螺母,依题意,得:2×1500x=4500(30﹣x).故选:A.8.把方程4x﹣x=4的解用数轴上的点表示出来,那么该点在图中的()A.点M,点N之间B.点N,点O之间C.点O,点P之间D.点P,点Q之间解:方程4x﹣x=4,解得:x=,则把方程4x﹣x=4的解用数轴上的点表示出来,那么该点在图中的点P,点Q之间,故选:D.9.已知某商店出售了两个进价不同的书包,售价都是42元,其中一个盈利40%,另一个亏损30%,则在这次买卖中,商店的盈亏情况是()A.盈利4.2元 B.盈利6元C.不盈不亏D.亏损6元解:设盈利的书包的进价为x元/个,亏损的书包的进价为y元/个,根据题意得:42﹣x=40%x,42﹣y=﹣30%y,解得:x=30,y=60,∴42×2﹣30﹣60=﹣6(元).答:商店亏损6元.故选:D.10.小刚从家跑步到学校,每小时跑12km,会迟到5分钟;若骑自行车,每小时骑15km,则可早到10分钟.设他家到学校的路程是xkm,则根据题意列出方程是()A.﹣=+B.﹣=﹣C.+10=﹣5 D.+=﹣解:设他家到学校的路程是xkm,依题意,得:+=﹣.故选:D.二.填空题(共6小题)11.已知x=3是关于x方程mx﹣8=10的解,则m= 6 .解:将x=3代入mx﹣8=10,∴3m=18,∴m=6,故答案为:612.若3x2m﹣1+6=0是关于x的一元一次方程,则m的值为 1 .解:根据题意可知:2m﹣1=1解得m=1故答案为1.13.比a的2倍大5的数等于a的8倍,列等式表示为2a+5=8a .解:由题意,得2a+5=8a.故答案是:2a+5=8a.14.一家服装店将某种服装按成本提高40%后标价,又以八折优惠卖出,结果每件仍获利36元,这种服装每件的成本为300元.解:设这种服装每件的成本价是x元,由题意得:(1+40%)x×80%=x+36,解得:x=300,故答案为:300元.15.小乐在解方程﹣1=0(x为未知数)时,误将﹣x看作+x,得方程的解为x=1,则原方程的解为﹣1 .解:把把x=1代入方程﹣1=0中得:﹣1=0,解得:a=1,则原方程为﹣1=0,解得:x=﹣1,故答案是:﹣1.16.对有理数a,b,规定一种新运算※,意义是a※b=ab+a+b,则方程x※3=4的解是x=0.25 .解:根据题意得:3x+x+3=4,解得:x=0.25,故答案为:0.25三.解答题(共9小题)17.解方程:2(x+3)=﹣3(x﹣1)+2解:2(x+3)=﹣3(x﹣1)+22x+6=﹣3x+3+22x+3x=5﹣65x=﹣1x=﹣18.解方程:﹣=0.75解:方程整理得:﹣=0.75,即15+x﹣20﹣3x=0.75,移项合并得:﹣2x=5.75,解得:x=﹣.19.解方程(1)15﹣(7﹣5x)=2x+(5﹣3x)(2)解:(1)去括号得:15﹣7+5x=2x+5﹣3x,移项合并得:6x=﹣3,解得:x=﹣;(2)去分母得:5x﹣15﹣4x+6=10,移项合并得:x=19.20.课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组8人,这样就比原来减少2组,问这些学生共有多少人?解:设这些学生共有x人,根据题意得,解得x=48.答:这些学生共有48人.21.妇人洗碗在河滨,路人问他客几人?答曰:“不知客数目,六十五碗自分明,二人共食一碗饭,三人共吃一碗羹,四人共肉无余数,请君细算客几人?”本题的大意是:有一名妇人在河边洗碗,一个过路的人问她有多少个客人吃饭,妇人说“人数不知道,一共65个碗,其中两个人共用一碗饭,三个人共喝一碗汤,四个人共吃一碗肉,请你算算一共有多少个客人?”(请列一元一次方程解答)解:设共有客人x人,依题意可得:++=65.解之得:x=60.答:共有客人60人.22.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?解:(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.23.如图,小刚将一个正方形纸片剪去一个宽为5cm的长条后,再从剩下的长方形纸片上剪去一个宽为6cm的长条.如果两次剪下的长条面积正好相等,求两个所剪下的长条的面积之和.解:设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是5cm,第二次剪下的长条的长是(x﹣5)cm,宽是6cm,则5x=6(x﹣5),解得:x=3030×5×2=300(cm2),答:两个所剪下的长条的面积之和为300cm2.24.有一旅客携带了30千克行李乘某航空公司的飞机,按该航空公司规定,旅客最多可免费携带20千克的行李,超重部分每千克按飞机票价的1.5%购买行李票,现该旅客购买的飞机票和行李票共920元.(1)该旅客需要购买10 千克的行李票;(2)该旅客购买的飞机票是多少元?解:(1)30﹣20=10(千克).故答案为:10.(2)设该旅客购买的飞机票是x元,依题意,得:x+10×1.5%x=920,解得:x=800.答:该旅客购买的飞机票是800元.25.某中学原计划加工一批校服,现有甲、乙两个工厂加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天加工这种校服24件,且单独加工这批校服甲厂比乙厂要多用20天.(1)求这批校服共有多少件?(2)为了尽快完成这批校服,若先由甲、乙两工厂按原速度合作一段时间后,甲工厂停工,而乙工厂每天的速度提高25%,乙工厂单独完成剩下的部分,且乙工厂全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂加工多少天?解:(1)设这批校服共有x件,依题意,得:﹣=20,解得:x=960.答:这批校服共有960件.(2)设甲工厂加工了y天,则乙工厂加工了(2y+4)天,依题意,得:16y+24y+24×(1+25%)(y+4)=960,解得:y=12,∴2y+4=28.答:乙工厂加工28天.。
人教版数学七上《一元一次方程》单元测试卷(01)(含答案)一、选择题(共10小题,每小题4分,共40分)1.(4分)已知下列方程:①3x=6y;②2x=0;③;④x2+2x﹣5=0;⑤3x=1;⑥.其中是一元一次方程的有()A.2个B.3个C.4个D.5个2.(4分)下列等式变形中,不正确的是()A.若a=b,则a﹣2=b﹣2B.若am=bm,则a=bC.若a=b,则D.若x=2,则x2=2x3.(4分)将方程去分母得到3y+2+4y﹣1=12,错在()A.分母的最小公倍数找错B.去分母时,漏乘了分母为1的项C.去分母时,分子部分没有加括号D.去分母时,各项所乘的数不同4.(4分)某同学解方程5x﹣1=□x+3时,把“□”处的系数看错了,解得x=﹣4,他把“□”处的系数看成了()A.4B.﹣9C.6D.﹣65.(4分)某党支部响应“精准扶贫”政策,为一贫困户送去种植所需的甲、乙两种树苗.已知乙种树苗每棵的价格比甲种树苗每棵的价格贵20元,购买72棵乙种树苗的价格恰好与购买120棵甲种树苗的价格相同,则甲种树苗每棵的价格是()A.40元B.30元C.15元D.10元6.(4分)已知x=﹣1是关于x的方程2x﹣a=0的解,则a的值是()A.2B.1C.﹣1D.﹣27.(4分)某班参加植树活动,若每人植2棵树,则余21棵树;若每人植3棵树,则差24棵树,求该班有多少名学生?若设该班有x名学生,则可列方程是()A.2x+24=3x+21B.2x﹣24=3x﹣21C.2x﹣21=3x+24D.2x+21=3x﹣248.(4分)把一个长为4cm、宽为3cm的长方形的长增加xcm,则该长方形的面积增加了()A.2xcm2B.(2x+8)cm2C.3xcm2D.(3x+12)cm29.(4分)给出下面四个方程及其变形,其中变形正确的是()①=6变形为=3;②5﹣3x=x+7变形为4x=﹣2;③﹣=5变形为﹣x+1=10;④4x=﹣2变形为x=﹣2.A.①②④B.①②③C.②③④D.①③④10.(4分)代数式2ax+5b的值会随x的取值不同而不同,如表是当x取不同值时对应的代数式的值,则关于x的方程2ax+5b=﹣4的解是()x﹣4﹣3﹣2﹣102ax+5b12840﹣4A.12B.4C.﹣2D.0二、填空题(共6小题,每小题4分,共24分)11.(4分)若关于x的方程(n﹣1)x|n|+5=6是一元一次方程,则n的值为.12.(4分)将方程的两边同乘12,可得到3(x+2)=2(2x+3),这种变形叫,其依据是.13.(4分)商店进了一批商品,提高进价的30%后标价,又以8折卖出,结果仍获利200元,这种商品的进价为元.14.(4分)若2n﹣1=6,则4×2n﹣4=.15.(4分)如果Δ+Δ=★,〇=□+□,Δ=〇+〇+〇+〇,那么★÷□的值为.16.(4分)方程的解是.三、解答题(共8小题,共86分)17.(8分)已知x=4是关于x的方程3x+2=﹣2a的解,求2a2+a的值.18.(8分)已知关于x的方程(m+3)x|m+4|+18=0是一元一次方程,试求:(1)m的值;(2)2(3m+2)﹣3(4m﹣1)的值.19.(10分)解方程:(1)3(x+1)=2(4x﹣1);(2).20.(10分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四,问物价几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问这个物品的价格是多少元?21.(12分)某社区组织152人到香山革命纪念馆和首都博物馆参观,到首都博物馆的人数比到香山革命纪念馆的人数的2倍少1人,到两处参观的人数各是多少?22.(12分)用8个形状和大小都相同的小长方形,恰好可以拼成如图1所示的大长方形;若用这8个小长方形拼成如图2所示的正方形,则中间留下一个空的小正方形(阴影部分).设小长方形的长和宽分别为a和b(a>b).(1)由图1,可知a,b满足的等量关系是;(2)若图2中小正方形的边长为2,求小长方形的面积;(3)用含b的代数式表示图2中小正方形的面积.23.(12分)根据题意列方程求解:(1)当a为何值时,与(2a﹣9)互为相反数;(2)若比小1,则求k的值.24.(14分)我们规定:当a≥b时,a☆b=a﹣b;当a<b时,a☆b=a2﹣b2.(1)求5☆3的值;(2)若m>0,化简:(m+3)☆(2m+3);(3)若x☆3=7,求x的值.参考答案一、选择题(共10小题,每小题4分,共40分)1.B;2.B;3.C;4.C;5.B;6.D;7.D;8.C;9.B;10.D;二、填空题(共6小题,每小题4分,共24分)11.﹣1;12.去分母;等式的基本性质;13.5000;14.24;15.16;16.x=2021;三、解答题(共8小题,共86分)17.78.;18.;19.(1)x=1;(2)x=2.;20.53元.;21.到香山革命纪念馆参观的有51人,到首都博物馆参观的有101人.;22.3a=5b;23.(1)a=3;(2)k=﹣3.;24.(1)2;(2)﹣3m2﹣6m;(3)10或﹣4.。
人教版七年级数学上册《第五单元一元一次方程》单元测试题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.一元一次方程2x-1=7的解是()A.x=3B.x=4C.x=5D.x=62.下列变形中,正确的是()A.若5x−6=7,则5x=7−6B.若5x−3=4x+2,则5x−4x=2+3C.若−3x=5,则x=−35D.若x−13+x+12=1,则2(x−1)+3(x−1)=13.把方程2x−14=1−3−x8去分母后,正确的结果是().A.2x−1=1−(3−x)B.2(2x−1)=1−(3−x)C.2(2x−1)=8−(3−x)D.2(2x−1)=8−(3+x)4.若关于x的方程ax-4=a的解是x=-3,则a的值是()A.-2B.2C.-1D.15.要组织一场篮球联赛,每两队之间只赛一场,计划安排15场比赛,如果邀请x个球队参加比赛,根据题意,列出方程为()A.x(x−1)=15B.x(x+1)=15C.x(x−1)2=15D.x(x+1)2=156.我国元代朱世杰所著的《算学启蒙》一书中,有一道题目是“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之.”译文:跑得快的马每日走240里,跑得慢的马每日走150里,慢马先走12天,快马几天可以追上慢马?则下列回答正确的是().A.15天B.16天C.18天D.20天7.如图一个正方形先剪去宽为4的长方形,再剪去宽为5的长方形,且剪下来的两个长方形面积相等,那么原正方形的边长为()A.20B.16C.15D.138.若关于x的方程kx+26=12x−23的解为正整数,则所有符合条件的整数k的和为()A.0B.3C.−2D.−39.如图,这是一个用50个奇数排成的数阵,用三角形的框去框住四个数,并求出这四个数的和.在下列给出的选项中,可能是这四个数的和的是()A.146B.150C.198D.210二、填空题10.如果3x−2与2x+1的值相同;那么x=.11.将方程x+24=2x+36的两边同乘12,可得到3(x+2)=2(2x+3),这种变形叫,其依据是.12.一张桌子由一个桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有10立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?设用x立方米的木材做桌面,可列方程.13.如果x=4是方程ax=a+3的解,那么a的值为 .14.为了搞活经济,商场将一种商品A按标价的9折出售(即优惠10%)仍可得利润10%,若商品标价为33元,那么该商品的进货价为 .15.如图一个简单的数值运算程序,当输入x的值-1时,则输出的答案是5,则k的值是.16.爸爸今年的年龄是儿子年龄的13倍,6年后,儿子年龄是爸爸年龄的14,则今年爸爸岁,儿子岁.17.如图,两人沿着边长为70米的正方形,按A→B→C→D→A…的方向行走.甲从点A以65米/分的速度、乙从点B以72米/分的速度行走,甲、乙两人同时出发,当乙第一次追上甲时,将在正方形的边上.三、解答题18.解方程(1)4x+3=5x−1(2)3−2(x+1)=2(x−3)(3)x−24−2x−36=1(4)x−1−x3=x+26−119.小亮是一名七年级学生,在解方程2x−13−2x+m2=10x+16−1时,由于忽视了去分母后分式的分子要加括号,结果方程变形为4x−2−6x+3m=10x+1−6,从而求得方程错误的解为x=12,你能求出m的值吗?如果能,请求出m的值和方程正确的解.20.在大约1500年前的《孙子算经》中记载了这样一个有趣的问题:今有鸡兔同笼,上有头三十五,下有足九十四.问鸡、兔各多少.21.阅读下面的解题过程:解方程:|3x|=6.解:分两种情况:(1)当3x≥0时,原方程可化为一元一次方程3x=6,解得x=2;(2)当3x<0时,原方程可化为一元一次方程﹣3x=6,解得x=﹣2;综合(1)、(2),方程的解为x=2或x=﹣2.请仿照上面例题的解法,解方程:3|x﹣1|﹣2=10.22.某商品的进价为200元,标价为300元,打折销售后的利润率为5%,问此商品是按几折销售的?23.云南省某工厂制作一批零件,由一名工人做要80h完成,现计划由一部分工人先做2h,然后增加5名工人与他们一起做8h,完成了这项工作.假设这些工人的工作效率相同,应先安排几名工人工作?24.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定对居民生活用电实施“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时的部分a超过150千瓦时,但不超过300千瓦时的部分0.6超过300千瓦时的部分a+0.3实施“阶梯电价”收费以后,该市居民陈先生家积极响应号召节约用电,10月用电100千瓦时,交电费50元.(1)a=.(2)陈先生家11月用电280千瓦时,应交费多少元?(3)若陈先生家12月份与11月的电费相差60元,求陈先生家12月份用电量是多少?25.在一元一次方程中,如果两个方程的解相同,则称这两个方程为同解方程.(1)若关于x的两个方程2x=4与mx=m+1是同解方程,求m的值;(2)已知关于x的方程9x−3=kx+14有整数解,那么满足条件的所有整数k=_______.(3)若关于x的两个方程5x+343(m+1)=mn与2x−mn=−193(m+1)是同解方程,求此时符合要求的正整数m,n的值.参考答案1.【答案】B2.【答案】B3.【答案】C4.【答案】C5.【答案】C6.【答案】D7.【答案】A8.【答案】A9.【答案】D10.【答案】D11.【答案】去分母等式的基本性质(或方程的变形规则)或填:等式的两边都乘以(或都除以)同一个数(除数不能为0)所得结果仍是等式。
第3章一元一次方程单元测试卷一、选择题(共10小题).1.(3分)下列方程中,不是一元一次方程的为()A.3x+2=6 B.4x﹣2=x+1 C.x+1=0 D.5x+6y=12.(3分)解方程2(3x﹣1)﹣(x﹣4)=1时,去括号正确的是()A.6x﹣1﹣x﹣4=1 B.6x﹣1﹣x+4=1 C.6x﹣2﹣x﹣4=1 D.6x﹣2﹣x+4=1 3.(3分)要将等式﹣x=1进行一次变形,得到x=﹣2,下列做法正确的是()A.等式两边同时加B.等式两边同时乘以2C.等式两边同时除以﹣2 D.等式两边同时乘以﹣24.(3分)小明和小亮两人在长为50m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点……若小明跑步的速度为5m/s,小亮跑步的速度为4m/s,则起跑后60s内,两人相遇的次数为()A.3 B.4 C.5 D.65.(3分)某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是()A.90元B.72元C.120元D.80元6.(3分)若x=3是关于x的方程2x﹣k+1=0的解,则k的值()A.﹣7 B.4 C.7 D.57.(3分)下列等式变形错误的是()A.若a=b,则B.若a=b,则3a=3bC.若a=b,则ax=bxD.若a=b,则8.(3分)一项工程甲单独做要40天完成,乙单独做需要60天完成,甲先单独做4天,然后甲乙两人合作x天完成这项工程,则可以列的方程是()A.B.C.D.9.(3分)解方程5x﹣3=2x+2,移项正确的是()A.5x﹣2x=3+2 B.5x+2x=3+2 C.5x﹣2x=2﹣3 D.5x+2x=2﹣3 10.(3分)定义运算“*”,其规则为a*b=,则方程4*x=4的解为()A.x=﹣3 B.x=3 C.x=2 D.x=4二.填空题11.(3分)把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为.12.(3分)已知x=3是关于x的方程ax+2x﹣3=0的解,则a的值为.13.(3分)A、B、C三地依次在同一直线上,B,C两地相距560千米,甲、乙两车分别从B,C两地同时出发,相向匀速行驶.行驶4小时两车相遇,再经过3小时,甲车到达C地,然后立即调头,并将速度提高10%后与乙车同向行驶,经过一段时间后两车同时到达A地,则A,B两地相距千米.14.(3分)一元一次方程﹣y=﹣1的解为.15.(3分)若x3n﹣5+5=0是关于x的一元一次方程,则n=.三.解答题16.解下列方程.(1)2y+3=11﹣6y(2)x﹣1=+317.已知y1=6﹣x,y2=2+7x,解答下列问题:(1)当y1=2y2时,求x的值;(2)当x取何值时,y1比y2小﹣3.18.列方程解应用题:冬季来临,某电器商城试销A,B两种型号的电暖器,两周内共销售50台,销售收入14400元,A型号电暖器每台300元,B型号电暖器每台280元.试销期间A,B两种型号的电暖器各销售了多少台?19.设x、y是任意两个有理数,规定x与y之间的一种运算“⊕”为:x⊕y=(1)求1⊕(﹣1)的值;(2)若(m﹣2)⊕(m+3)=2,求m的值.20.下面是小明解方程7(x﹣1)﹣3x=2(x+3)﹣3的过程,请你仔细阅读,并解答所提出的问题:解:去括号,得7x﹣7﹣3x=2x+3﹣3.(第一步)移项,得7x﹣3x﹣2x=7+3﹣3.(第二步)合并同类项,得2x=7.(第三步)系数化为1,得x=.(第四步)(1)该同学解答过程从第步开始出错,错误原因是;(2)写出正确的解答过程.参考答案一.选择题1.(3分)下列方程中,不是一元一次方程的为()A.3x+2=6 B.4x﹣2=x+1 C.x+1=0 D.5x+6y=1解:A.3x+2=6是一元一次方程;B.4x﹣2=x+1是一元一次方程;C.x+1=0是一元一次方程;D.5x+6y=1含有2个未知数,不是一元一次方程;故选:D.2.(3分)解方程2(3x﹣1)﹣(x﹣4)=1时,去括号正确的是()A.6x﹣1﹣x﹣4=1 B.6x﹣1﹣x+4=1 C.6x﹣2﹣x﹣4=1 D.6x﹣2﹣x+4=1 解:去括号得:6x﹣2﹣x+4=1,故选:D.3.(3分)要将等式﹣x=1进行一次变形,得到x=﹣2,下列做法正确的是()A.等式两边同时加B.等式两边同时乘以2C.等式两边同时除以﹣2 D.等式两边同时乘以﹣2解:将等式﹣x=1进行一次变形,等式两边同时乘以﹣2,得到x=﹣2.故选:D.4.(3分)小明和小亮两人在长为50m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点……若小明跑步的速度为5m/s,小亮跑步的速度为4m/s,则起跑后60s内,两人相遇的次数为()A.3 B.4 C.5 D.6解:设两人起跑后60s内,两人相遇的次数为x次,依题意得;每次相遇间隔时间t,A、B两地相距为S,V甲、V乙分别表示小明和小亮两人的速度,则有:(V甲+V乙)t=2S,则t==,则x=60,解得:x=5.4,∵x是正整数,且只能取整,∴x=5.故选:C.5.(3分)某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是()A.90元B.72元C.120元D.80元解:设两件商品以x元出售,由题意可知:×100%=20%,解得:x=96,设乙商品的成本价为y元,∴96﹣y=﹣20%×y,解得:y=120,故选:C.6.(3分)若x=3是关于x的方程2x﹣k+1=0的解,则k的值()A.﹣7 B.4 C.7 D.5解:将x=3代入2x﹣k+1=0,∴6﹣k+1=0,∴k=7,故选:C.7.(3分)下列等式变形错误的是()A.若a=b,则B.若a=b,则3a=3bC.若a=b,则ax=bxD.若a=b,则解:根据等式的性质可知:A.若a=b,则=.正确;B.若a=b,则3a=3b,正确;C.若a=b,则ax=bx,正确;D.若a=b,则=(m≠0),所以原式错误.故选:D.8.(3分)一项工程甲单独做要40天完成,乙单独做需要60天完成,甲先单独做4天,然后甲乙两人合作x天完成这项工程,则可以列的方程是()A.B.C.D.解:设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为:.故选:C.9.(3分)解方程5x﹣3=2x+2,移项正确的是()A.5x﹣2x=3+2 B.5x+2x=3+2 C.5x﹣2x=2﹣3 D.5x+2x=2﹣3 解:移项得:5x﹣2x=2+3,故选:A.10.(3分)定义运算“*”,其规则为a*b=,则方程4*x=4的解为()A.x=﹣3 B.x=3 C.x=2 D.x=4解:根据题中的新定义化简得:=4,去分母得:8+x=12,解得:x=4,故选:D.二.填空题11.(3分)把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为12.解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.12.(3分)已知x=3是关于x的方程ax+2x﹣3=0的解,则a的值为﹣1.解:将x=3代入方程得:3a+2×3﹣3=0,解得:a=﹣1.故答案为:﹣1.13.(3分)A、B、C三地依次在同一直线上,B,C两地相距560千米,甲、乙两车分别从B,C两地同时出发,相向匀速行驶.行驶4小时两车相遇,再经过3小时,甲车到达C地,然后立即调头,并将速度提高10%后与乙车同向行驶,经过一段时间后两车同时到达A地,则A,B两地相距760千米.解:设乙车的平均速度是x千米/时,则4(+x)=560.解得x=60即乙车的平均速度是60千米/时.设甲车从C地到A地需要t小时,则乙车从C地到A地需要(t+7)小时,则80(1+10%)t=60(7+t)解得t=15.所以60(7+t)﹣560=760(千米)故答案是:760.14.(3分)一元一次方程﹣y=﹣1的解为y=2.解:方程﹣y=﹣1,解得:y=2.故答案为:y=2.15.(3分)若x3n﹣5+5=0是关于x的一元一次方程,则n=2.解:∵x3n﹣5+5=0是关于x的一元一次方程,∴3n﹣5=1,解得:n=2,故答案为:2.三.解答题16.解下列方程.(1)2y+3=11﹣6y(2)x﹣1=+3解:(1)移项合并得:8x=8,解得:y=1;(2)去分母得:4x﹣6=3x+18,移项合并得:x=24.17.已知y1=6﹣x,y2=2+7x,解答下列问题:(1)当y1=2y2时,求x的值;(2)当x取何值时,y1比y2小﹣3.解:(1)由题意得:6﹣x=2(2+7x).∴x=.(2)由题意得:2+7x﹣(6﹣x)=﹣3,∴x=.18.列方程解应用题:冬季来临,某电器商城试销A,B两种型号的电暖器,两周内共销售50台,销售收入14400元,A型号电暖器每台300元,B型号电暖器每台280元.试销期间A,B两种型号的电暖器各销售了多少台?解:设A型号的电暖器销售了x台,则B型号的电暖器销售了(50﹣x)台,依题意有300x+280(50﹣x)=14400,解得x=20,50﹣x=50﹣20=30.故A型号的电暖器销售了20台,B型号的电暖器销售了30台.19.设x、y是任意两个有理数,规定x与y之间的一种运算“⊕”为:x⊕y=(1)求1⊕(﹣1)的值;(2)若(m﹣2)⊕(m+3)=2,求m的值.解:(1)根据题中的新定义得:原式=3×1+4×(﹣1)﹣5=3﹣4﹣5=﹣6;(2)显然m﹣2<m+3,利用题中的新定义化简已知等式得:4(m﹣2)+3(m+3)﹣5=2,去括号得:4m﹣8+3m+9﹣5=2,移项合并得:7m=6,解得:m=.20.下面是小明解方程7(x﹣1)﹣3x=2(x+3)﹣3的过程,请你仔细阅读,并解答所提出的问题:解:去括号,得7x﹣7﹣3x=2x+3﹣3.(第一步)移项,得7x﹣3x﹣2x=7+3﹣3.(第二步)合并同类项,得2x=7.(第三步)系数化为1,得x=.(第四步)(1)该同学解答过程从第一步开始出错,错误原因是去括号时,3没乘以2;(2)写出正确的解答过程.解:(1)该同学解答过程从第一步开始出错,错误原因是去括号时,3没乘以2,故答案为:一;去括号时,3没乘以2;(2)正确的解答过程为:去括号得:7x﹣7﹣3x=2x+6﹣3,移项得:7x﹣3x﹣2x=6﹣3+7,合并得:2x=10,系数化为1,得x=5.。
人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)一、单选题1.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利20元C .亏损10元D .亏损30元2.下列方程中,一元一次方程一共有( )①9x+2;②12x =;③(1-x)(1+x)=3;④()1113352x x x -=- A .1个 B .2个 C .3个 D .4个3.(古代数学问题)今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?设有x 人,则根据题意列出方程正确的是( ) A .8x+3=7x ﹣4B .8x ﹣3=7x+4C .8x ﹣3=7x ﹣4D .8x+3=7x+44.下图是某超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请帮忙第一算,该洗发水的原价是:( )A .22元B .23元C .24元D .25元5.若关于x 的方程321(32)x a x a ++=-+的解是0,则a 的值为( )A .15B .35C .15- D .356.下列方程:21126740.343492x x x x x x x +=-=+=-=①;②;③;④;0x =⑤;328x y -=⑥;112x =⑦;12x=⑧中是一元一次方程的个数是( ) A .6个 B .5个 C .4个 D .3个7.下列运用等式的性质,变形正确的是( )A .若x ﹣m =y +m ,则x =yB .若a =b ,则ac =bcC .若x =y ,则x ﹣m =y +mD .若ac =bc ,则a =b8. 下列方程中,属于一元一次方程的是( ).A .021=+xB .2y 432=+x C .22x 3x =+x D .x 31232=++x x9.某书店把一本新书按标价的八折出售,仍获利20%,若该书进价为20元,则标价( ) A .24元 B .26元 C .28元 D .30元10.方程3x ﹣6=0的解是( )A .x =3B .x =﹣3C .x =2D .x =﹣2第II 卷(非选择题)二、填空题11.关于x 的方程a 2x+x=1的解是__.12.某学校组织八年级6个班参加足球比赛,如果采用单循环制,一共安排______场比赛 13.某商品进价为40元,若按标价的8折出售仍可获利20%,则按标价出售可获利______元.14.当x=4时,式子5(x+b )﹣10与bx+4x 的值相等,则b=_____.15.我国古代数学著作《孙子算经》中记载了这样一个有趣的数学问题“今有五等诸侯,共分橘子60颗,人别加三颗,问五人各得几何?”题目大意是:诸侯5人,共同分60个橘子,若后面的人总比前一个人多分3个,问每个人各分得多少个橘子?若设中间的那个人分得x 个,依题意可列方程得_____.16.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数是____.17.若293x +=2,且x y =94,则x =______,y =_______. 18.当a =____时,关于x 的方程314x -=-与方程562a x -=-的解相同.三、解答题19.解方程:x ﹣3=﹣12x ﹣4. 20.解方程:(1)5(x-1)+2=3-x(2)2121 1=63x x-+ -21.某纺织厂收购某种特色棉花,若直接转卖这种特色棉花,则每吨可获得的利润为500元.若经过B级加工再转卖,则每吨可获得的利润为1000元;若经过A级加工再转卖,则每吨可获得的利润为2000元.已知该纺织厂对棉花进行B级加工,每天可加工16吨;进行A级加工,每天可加工6吨,且这两种等级的加工不能同时进行.若该纺织厂收购了140吨这种特色棉花,决定15天内加工完,且有如下三种可行方案:方案一:将所收购的特色棉花直接转卖.方案二:将尽可能多的特色棉花进行A级加工,余下的部分直接转卖.方案三:一部分进行A级加工,另一部分进行B级加工,恰好15天完成.若你是该纺织厂负责人,想要获利最多,你决定使用哪套方案?请说明理由.22.一列客车和一列货车同时从甲、乙两个城市相对开出,已知客车每小时行55千米,客车速度与货车速度的比是11:9,两车开出后5小时相遇,甲、乙两城市间的铁路长多少千米?23.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是(A,B)的好点.例如,如图1,点A表示的数为-1,点B表示的数为2,表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.知识运用:(1)如图2,M,N为数轴上两点,点M所表示的数为-2,点N所表示的数为4.①在点M和点N中间,数_______所表示的点是(M,N)的好点:②在数轴上,数________和数_________所表示的点都是(N,M)的好点;(2)如图3,A、B为数轴上两点,点A所表示的数为-20,点B所表示的数为40,现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止,当t为何值时,P,A和B中恰有一个点为其余两点的好点?24.某电影院某日某场电影的票价是:成人票30元,学生票15元,满40人可以购买团体票(不足40人可按40人计算,票价打9折).某班在4位老师带领下去电影院看电影,学生人数为x人.(1)若学生人数为31人,该班买票至少应付多少元?(2)若学生人数为32人,该班买票至少应付多少元?(3)请用含x的代数式表示该班买票至少应付多少元.25.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了______条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.26.一队学生去校外进行军事野营训练,他们以6千米/时的速度行进,在他们走了一段时间后,学校要将一个紧急通知传给队长,通讯员从学校出发,以10千米/时的速度按原路追上去,用了15分钟追上了学生队伍,问通讯员出发前,学生走了多少时间?27.如图,已知A、B、C是数轴上的三点,点C表示的数为6,BC=4,AB=14,动点P、Q分别从A、C同时出发,点P以每秒3个单位的速度沿数轴向右匀速运动,点Q以每秒1个单位的速度沿数轴向左匀速运动,M为AP的中点,点N在线段CQ上,且CQ=3CN.设运动的时间为t(t>0)秒.(1)写出点A表示的数,点B表示的数;(2)求MN的长(用含t的式子表示);(3)t为何值时,原点O恰为线段PQ的中点.参考答案1.C2.A3.B4.C5.D6.C7.B8.C9.D10.C11.211a.12.1513.2014.615.(x﹣6)+(x﹣3)+x+(x+3)+(x+6)=60.16.45.17.-32218.-319.x=-2320.(1)x=1;(2)x=5621.选方案二.理由见解析22.500.23.①2,②0或-8;(2)10秒、15秒或20秒24.(1)585;(2)594;(3)若0<x≤31时,该班买票至少应付(120+15x)元;若32≤x≤36时,该班买票至少应付594元;若x>36时,该班买票至少应付(108+13.5x)元.25.(1)8;(2)答案见解析:(3)200000立方厘米26.1627.(1)A:-12,B:2;(2) 18−116t;。
人教版七年级数学上册第三章一元一次方程单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式中:①215x -=;②4812+=;③58y +;④230x y +=;⑤221x x +=;⑥2251x x --,是方程的是( ).A .①②④⑤B .①②⑤C .①④⑤D .6个都不是 2、将方程1322532x x ---=+去分母,得( ) A .6(1)10(12)x x --=+-B .12(1)30(12)x x --=+-C .2(1)5(12)x x --=+-D .122(1)303(32)x x --=+-3、下列式子中,是方程的是( )A .10x -≠B .32x -C .235+=D .36x =4、某市出租车收费标准是:起步价8元(即行驶距离不超过3km ,付8元车费),超过3km ,每增加1km 收1.6元(不足1km 按1km 计),小梅从家到图书馆的路程为xkm ,出租车车费为24元,那么x 的值可能是( )A .10B .13C .16D .185、某城市的出租车收费标准是:起步价6元(即行驶距离不超过3千米需付6元车费),超过3千米后,每增加1千米加收1.5元(不足1千米按1千米计),小王乘这种出租车从甲地到乙地支付车费18元,设他乘坐的路程为x 千米,则x 的最大值为( ).A .7B .9C .10D .116、一项工程甲独做10天完成,乙的工作效率是甲的2倍,两人合作了m 天未完成,剩下的工作量由乙完成,还需的天数为( )A .111105m ⎛⎫-+ ⎪⎝⎭B .352m -C .mD .以上都不对7、已知等式3a =2b +5,则下列等式变形不正确的是( )A .3a ﹣5=2bB .3a +1=2b +6C .a =23b +53 D .3ac =2bc +58、若使方程()31m x -=是关于x 的一元一次方程,则m 的值是( )A .3m ≠-B .0m ≠C .3m ≠D .3m >9、方程()3259x --=的解是( )A .2x =-B .1x =C .23x =D .2x =10、下列等式的变形正确的是( )A .如果2x y -=,那么2x y =-B .如果163x =,那么2x = C .如果x y =,那么x y -=- D .如果x y =,那么xy a a= 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知A ,B 两点在数轴上,点A 表示的数为10-,点B 表示的数为30,点M 以每秒6个单位长度的速度从点A 向右运动,点N 以每秒2个单位长度的速度从点O 向右运动,其中点M 、点N 同时出发,经过_________秒,点M 、点N 分别到原点O 的距离相等.2、当3x =时,式子22x +与5x k +的值相等,则k 的值是______.3、当x =__________时,3x +1的值与2(3–x )的值互为相反数.4、如图为甲、乙、丙三根笔直的钢管平行摆放在地面上的情形.已知乙有一部分只与甲重叠,其余部分只与丙重叠,甲没有与乙重叠的部分的长度为2m ,丙没有与乙重叠的部分的长度为3m .若乙的长度最长且甲、乙的长度相差x m ,乙、丙的长度相差y m ,则乙的长度为_______m (用含有x 、y 的代数式表示).5、如将()x y -看成一个整体,则化简多项式22()5()4()3()x y x y x y x y -----+-=__.三、解答题(5小题,每小题10分,共计50分)1、37144x x -=-2、劳作课上,王老师组织七年级5班的学生用硬纸制作圆柱形笔筒.七年级5班共有学生55人,其中男生人数比女生人数少3人,每名学生每小时能剪筒身30个或剪筒底90个.(1)七年级5班有男生,女生各多少人;(2)原计划女生负责剪筒身,男生负责剪筒底,要求一个筒身配两个筒底,那么每小时剪出的筒身与筒底能配套吗?如果不配套,男生应向女生支援多少人,才能使每小时剪出的筒身与筒底配套.3、小明同学在解方程21133x x a -+=-去分母时,方程右边的1-没有乘3,因而求得方程的解为3x =,试求a 的值,并正确地解方程.4、(1)如图,有一个玩具火车放置在数轴上,若将火车在数轴上水平移动,则当A 点移动到B 点时,B 点所对应的数为12;当B 点移动到A 点时,A 点所对应的数为3(单位:单位长度).由此可得玩具火车的长为 个单位长度.(2)现在你能用“数轴”这个工具解决下面问题吗?一天,小明去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?你能帮小明求出来吗?(可使用你喜欢的方法)(3)在(1)的条件下数轴上放置与AB 相同的玩具火车CD ,使原点O 与点C 重合,两列玩具火车分别从点O 和点A 同时在数轴上同时移动,已知CD 火车速度1个单位/秒,AB 火车速度为0.5个单位/秒(两火车都可前后开动),问几秒后两火车的A 处与C 处相距1个单位?5、解方程2(1)x x -=-参考答案-一、单选题1、C【解析】【分析】根据方程的定义对各小题进行逐一分析即可.【详解】解:①2x -1=5符合方程的定义,故本小题正确;②4+8=12不含有未知数,不是方程,故本小题错误;③5y +8不是等式,故本小题错误;④2x +3y =0符合方程的定义,故本小题正确;⑤2x 2+x =1符合方程的定义,故本小题正确;⑥2x 2-5x -1不是等式,故本小题错误.综上,是方程的是①④⑤.故选:C .【考点】本题考查了方程的定义,熟知含有未知数的等式叫方程是解答此题的关键.2、D【解析】【分析】直接将方程两边同乘以“6”即可求解.【详解】解:方程两边同乘以“6”得:()()122130332x x --=+-,故选:D .【考点】本题考查解一元一次方程,解题的关键是熟练掌握通分的方法.3、D【解析】【分析】根据方程的定义,对选项逐个判断即可.【详解】解:A .不是等式,故不是方程,选项不符合题意;B .是多项式,不是等式,故不是方程,选项不符合题意;C.不含未知数,故不是方程,选项不符合题意;D.是含有未知数的等式,故是方程,选项符合题意;故选D.【考点】此题考查了方程的定义,含有未知数的等式叫做方程,掌握方程的定义是解题的关键.4、B【解析】【分析】根据等量关系(经过的路程-3)×1.6+起步价=24,列式即可;【详解】解:由题意得,x+-⨯=,8(3) 1.624x-+=,1.6 4.8824x=+-,1.624 4.881.620.8x=,x=,解得13故选:B.【考点】本题主要考查了一元一次方程的应用,准确列方程计算是解题的关键.5、D【解析】【分析】根据题意186>判断小王行驶路程3x >千米,再由出租车从甲地到乙地支付车费18元,列一元一次不等式6+1.5(3)x -≤18,解此不等式即可解题.【详解】解:186>3x ∴>设小王从甲地到乙地经过的路程是x 千米,根据题意得:6+1.5(3)x -≤18,解得x ≤11,∴小王从甲地到乙地经过的路程的最大值为11千米,故选:D .【考点】本题考查一元一次不等式的运用,是基础考点,掌握相关知识是解题关键.6、B【解析】【分析】 根据题意甲的效率为110,乙的效率为15,设工作量为1,剩下的工作还需要x 天完成,根据题意,列一元一次方程解决问题.【详解】 根据题意甲的效率为110,乙的效率为15,设工作量为1,剩下的工作还需要x 天完成,根据题意,得,111()11055m x +⨯+= 解得352x m =-.故选B .【考点】本题考查了一元一次方程的应用,根据题意列出一元一次方程是解题的关键.7、9-x=答:该队前9场比赛共胜了6场.故选:A.【考点】本题考查了一元一次方程的应用,解题的关键是根据题意找到等量关系并正确的列出方程.6.D【解析】【分析】根据等式的性质逐个判断即可.【详解】解:A.∵3a=2b+5,∴等式两边都减去5,得3a﹣5=2b,故本选项不符合题意;B.∵3a=2b+5,∴等式两边都加1,得3a+1=2b+6,故本选项不符合题意;C.∵3a=2b+5,∴等式两边都除以3,得a=23b+53,故本选项不符合题意;D.∵3a=2b+5,∴等式两边都乘c,得3ac=2bc+5c,故本选项符合题意;故选:D.【考点】本题考查了等式的性质,能熟记等式的性质是解此题的关键,注意:等式的性质1:等式的两边都加(或减)同一个数或式子,等式仍成立;等式的性质2:等式的两边都乘同一个数或式子,等式仍成立,等式的两边都除以同一个不等于0的数或式子,等式仍成立.8、C【解析】【分析】根据一元一次方程的定义:只含有一个未知数,未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程进行求解即可【详解】解:∵方程()31m x -=是关于x 的一元一次方程,∴30m -≠即3m ≠,故选C .【考点】本题主要考查了一元一次方程的定义,解题的关键在于能够熟练掌握一元一次方程的定义.9、D【解析】【分析】方程去括号,移项合并,把x 系数化为1,即可求出解.【详解】解:去括号得:3-2x +10=9,移项合并得:-2x =-4,解得:x =2,故选:D .【考点】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.10、C【解析】【分析】根据等式的性质,两边都加或减同一个数或同一个整式,结果不变,可判断A,根据等式的性质,两边都乘或除以同一个不为零的数或同一个整式,结果不变,可判断B、C、D.【详解】A选项等式的左边加2,右边减2,故不符合题意;B选项等式的左边乘以3,右边除以3,故不符合题意;C选项等式的两边都乘以-1,故C正确;D选项,当a=0时,0不能作除数,故不符合题意;故选:C.【考点】本题考查了等式的性质,熟记并掌握等式两边都加或减同一个数或同一个整式,结果不变;等式两边都乘或除以同一个不为零的数或同一个整式,结果不变,是解题的关键.二、填空题1、54或52【解析】【分析】设经过t秒点M、N到原点O的距离相等,然后分两种情况:若点M在点O左侧,若点M在点O的右侧,即可求解.【详解】解:设经过t秒点M、N到原点O的距离相等,若点M在点O左侧,则-(-10+6t)=2t,解得:54t=,若点M在点O的右侧,则点M与点N重合时,点M、N到原点O的距离相等,则-10+6t=2t,解得:52t=,综上所述,经过54或52秒,点M、点N分别到原点O的距离相等.故答案为:54或52【考点】本题主要考查了数轴上的动点问题,利用方程思想和分类讨论思想解答是解题的关键.2、-7【解析】【分析】把x=3代入两个式子即可表示出两个式子的值,就可得到一个关于k的方程,从而求得k的值.【详解】解:由题意得:8 =15+k,解得:k=-7,故答案为:-7【考点】本题要注意列出方程,求出未知数的值.3、-7【解析】【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到x 的值.【详解】解:∵3x +1的值与2(3﹣x )的值互为相反数∴3x +1+2(3-x )=0,去括号得:3x +1+6-2x =0,移项合并得:x =-7,故答案是:-7【考点】考查了解一元一次方程,其步骤为:去分母;去括号;移项合并;将未知数系数化为1即可. 4、(5)x y ++【解析】【分析】设乙的长度为a 米,则甲的长度为:()a x -米;丙的长度为:()a y -米,甲与乙重叠的部分长度为:()2a x --米;乙与丙重叠的部分长度为:()3a y --米,由图可知:甲与乙重叠的部分长度+乙与丙重叠的部分长度=乙的长度,列出方程()()23a x a y a --+--=,即可解答.【详解】解:设乙的长度为a 米,乙的长度最长且甲、乙的长度相差x 米,乙、丙的长度相差y 米,∴甲的长度为:()a x -米;丙的长度为:()a y -米,∴甲与乙重叠的部分长度为:(2)a x --米;乙与丙重叠的部分长度为:(3)a y --米,由图可知:甲与乙重叠的部分长度+乙与丙重叠的部分长度=乙的长度,(2)(3)a x a y a ∴--+--=,23a x a y a --+--=,23a a a x y +-=+++,5a x y =++,∴乙的长度为:(5)x y ++米,故答案为:(5)x y ++.【考点】本题考查了考查了列代数式,解决本题的关键是根据图形表示出长度,找到等量关系,列方程. 5、23()2()x y x y ----【解析】【分析】把x -y 看作整体,根据合并同类项的法则,系数相加作为系数,字母和字母的指数不变,计算即可.【详解】(x -y )2-5(x -y )-4(x -y )2+3(x -y )=(1-4)(x -y )2+(-5+3)(x -y )=-3(x -y )2-2(x -y )故答案为:-3(x -y )2-2(x -y )【考点】本题考查了合并同类项的法则,系数相加作为系数,字母和字母的指数不变,是基础知识比较简单.三、解答题1、3x =【解析】【分析】根据移项,合并,化系数为1的步骤进行求解即可.【详解】解:37144-=-x x移项得:34147+=+,x xx=,合并得:721x=.化系数为1得:3【考点】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法.2、(1)七年级5班有男生26人,女生29人;(2)不配套,男生应向女生支援4人,才能使每小时剪出的筒身与筒底配套.【解析】【分析】(1)设七年级5班有男生x人,则有女生(x+3)人,根据男生人数+女生人数=55列出方程,求解即可;(2)分别计算出26名男生和29名女生剪出的筒底和筒身的数量,可得不配套;设男生应向女生支援y人,根据制作筒底的数量=筒身的数量×2列出方程,求解即可.【详解】解:(1)设七年级5班有男生x人,则有女生(x+3)人,由题意得:x+x+3=55,解得x=26,女生:26+3=29(人).答:七年级5班有男生26人,女生29人;(2)男生剪筒底的数量:26×90=2340(个),女生剪筒身的数量:29×30=870(个),∵一个筒身配两个筒底,2340:870≠2:1,∴原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不配套.设男生应向女生支援y 人,由题意得:90×(26﹣y )=(29+y )×30×2,解得y=4.答:男生应向女生支援4人,才能使每小时剪出的筒身与筒底配套.【考点】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,再列出方程. 3、3a =,1x =【解析】【分析】根据题意得出方程,将x =3代入求出a 的值,即可求出正确的解.【详解】解:把3x =代入方程()211x x a -=+-,得()6131a -=+-,解得3a =.把3a =代入21133x x a -+=-, 得213133x x -+=-. 去分母,得2133x x -=+-,移项,得2331x x -=-+,x .合并同类项,得1【考点】此题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解,同时考查了一元一次方程的解法,正确求出a的值是解题的关键.4、(1)3;(2)奶奶的年龄是64岁,能,见解析;(3)10秒后两火车头A与C相距1个单位.【解析】【分析】(1)此题关键是正确识图,由数轴观察求得三个玩具火车长,则一个玩具火车长为3个单位长度;(2)在求奶奶年龄时,借助数轴,把小明与奶奶的年龄差看做玩具火车AB,类似奶奶和小明一样大时看做当B点移动到A点时,此时A′点所对应的数为﹣40,小明和奶奶一样时看做当A点移动到B 点时,此时B′点所对应的数为116,由此可知奶奶的年龄;(3)根据(1)可知CA=6,由于两列玩具火车分别从O和A同时出发向右移动,根据速度可知两玩具火车每秒的路程差是1﹣0.5=0.5个单位,设x秒后两火车头A与C相距1个单位,根据题意可得方程,再解方程即可.【详解】解:(1)根据题意画出图形,由数轴观察知三个玩具火车的长为12﹣3=9,则一个玩具火车长为9÷3=3,故答案为:3;(2)借助数轴,把奶奶的年龄差看做玩具火车AB,类似奶奶和小明一样大时看做当B点移动到A点时,此时A′点所对应的数为﹣40.小明和奶奶一样时看做当A点移动到B点时,此时B′点所对应的数为116.∴可知奶奶比小明大[116﹣(﹣40)]÷3=52,可知奶奶的年龄为116﹣52=64.答:奶奶的年龄是64岁;(3)由(1)得:AC =6,设x 秒后两火车头A 与C 相距1个单位,由题意得:(1﹣0.5)x =6﹣1,解得:x =10.答:10秒后两火车头A 与C 相距1个单位.【考点】本题需注意考查数轴及一元一次方程的应用,熟练掌握数轴上数的表示及一元一次方程的应用是解题的关键.5、2x =【解析】【分析】先去括号,再移项、合并同类项即可求出x 的值.【详解】解:去括号得:22x x -=,移项得:22x x -=,合并得:2x =.【考点】本题考查了一元一次方程的解法,比较简单,注意移项要变号.。
一、初一数学一元一次方程解答题压轴题精选(难)1.某旅行社组织一批游客外出旅游,原计划根用45座客车若干辆,但有15人没有座位:若租用同样数量的60座客年,则多出一辆车无人坐,且其余客车恰好坐满。
已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?【答案】(1)解:设原计划租用x辆45座客年根据题意,得45x+15=60(x-1)解得x=5则45x+15=45×5+15=240.答:这批游客共240人,原计划租5辆45座客车。
(2)解:租45座客车:240÷45≈5.3(辆),所以需租6辆,租金为220×6=1320(元).租60座客车:240÷60=4(辆),租念为300×4=1200(元).答:租用4辆60座客车更合算。
【解析】【分析】(1)设原计划租用x辆45座客车,根据等量关系,列出方程,求出x 的值,进而求出游客的人数,即可;(2)分别求出租45座的车和60座的车的费用,进行比较,即可.2.已知有理数,定义一种新运算:⊙ =(a+1).如:⊙ =(2+1)(1)计算(-3)⊙的值;(2)若⊙(-4)=6,求的值.【答案】(1)解:∵⊙ =(a+1),∴(-3)⊙ = ,= ,= ,= ;(2)解:∵⊙(-4)=6,∴,即,解得 .【解析】【分析】(1)根据⊙ =(a+1),直接代入计算即可;(2)根据新定义可得方程,解方程即可.3.某织布厂有150名工人,为了提高经济效益,增设制衣项目,已知每人每天能织布30m,或利用所织布制衣4件,制衣一件需要布1.5m,将布直接出售,每米布可获利2元,将布制成衣后出售,每件可获利25元,若每名工人每天只能做一项工作,且不计其他因素,设安排x名工人制衣.(1)一天中制衣所获利润P是多少(用含x的式子表示);(2)一天中剩余布所获利润Q是多少 (用含x的式子表示);.(3)一天当中安排多少名工人制衣时,所获利润为11806元?【答案】(1)解:由题意得,P=25×4×x=100x.故答案是:100x;(2)解:由题意得,Q=[(150−x)×30−6x]×2=9000−72x.故答案是:(9000−72x);(3)解:根据题意得解得答:应安排100名工人制衣.【解析】【分析】(1)根据一天的利润=每件利润×件数×人数,列出代数式;(2)安排x名工人制衣,则织布的人数为(150-x),根据利润=(人数×米数-制衣用去的布)×每米利润,列代数式即可;(3)根据总利润=11806,列方程求解即可.4.阅读下列例题,并按要求回答问题:例:解方程.解:①当时,,解得;②当时,,解得.所以原方程的解是或.(1)以上解方程的方法采用的数学思想是________.(2)请你模仿上面例题的解法,解方程:.【答案】(1)分类讨论(2)解:①当时,,解得,②当时,,解得,∴原方程的解是或.【解析】【分析】(1)材料中是分①、②两种情况来解答题目,明确的体现了“分类讨论”的数学思想;(2)模仿例题,分两种情况分别求解即可.5.已知,两正方形在数轴上运动,起始状态如图所示.A、F表示的数分别为-2、10,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,两正方形同时出发,相向而行,小正方形的速度是大正方形速度的两倍,两个正方形从相遇到刚好完全离开用时2秒.完成下列问题:(1)求起始位置D、E表示的数;(2)求两正方形运动的速度;(3)M、N分别是AD、EF中点,当正方形开始运动时,射线MA开始以15°/s的速度顺时针旋转至MD结束,射线NF开始以30°/s的速度逆时针旋转至NE结束,若两射线所在直...线.互相垂直时,求MN的长.【答案】(1)解:∵A、F表示的数分别为-2、10,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,∴D表示的数为:-2+2=0,E表示的数为:10-4=6(2)解:设小正方形的速度是2x个单位/秒,大正方形的速度是x个单位/秒,则有2(2x+x)=2+4,解得:x=1,∴小正方形的速度是2个单位/秒,故小正方形速度2个单位/秒,大正方形速度1个单位/秒(3)解:设运动时间为t,由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°,①15°t+30°t=90°,解得t=2,此时小正方形运动了4个单位,D点在数字4的位置,大正方形运动了2个单位,E点也在数字4的位置,即D,E重合,∵M、N分别是AD、EF中点,∴MN=3;②15°t+30°t=270°,解得t=6,此时小正方形运动了12个单位,D点在数字12的位置,大正方形运动了6个单位,E点在数字0的位置,∵M、N分别是AD、EF中点,∴此时M点位于数字11的位置,N点位于数字2的位置,∴MN=11-2=9;综上:当t=2时,MN=3;当t=6时,MN=9.【解析】【分析】(1)利用图象和正方形的边长即可得出;(2)设小正方形的速度是2x 个单位/秒,大正方形的速度是x个单位/秒,然后列方程计算即可;(3)由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°两种情况,根据两种情况分别讨论即可.6.小明和父母打算去某火锅店吃火锅,该店在网上出售“ 元抵元的全场通用代金券”(即面值元的代金券实付元就能获得),店家规定代金券等同现金使用,一次消费最多可用张代金券,而且使用代金券的金额不能超过应付总金额.(1)如果小明一家应付总金额为元,那么用代金券方式买单,他们最多可以优惠多少元:(2)小明一家来到火锅店后,发现店家现场还有一个优惠方式: 除锅底不打折外,其余菜品全部折.小明一家点了一份元的锅底和其他菜品,用餐完毕后,聪明的小明对比两种优惠,选择了现场优惠方式买单,这样比用代金券方式买单还能少付元.问小明一家实际付了多少元?【答案】(1)解:∴最多购买并使用两张代金券,最多优惠元(2)解:设小明一家应付总金额为元,当时,由题意得, .解得: (舍去).当时,由题意得, .解得: (舍去).当时,由题意得, .解得: .∴ .答:小明一家实际付了元【解析】【分析】(1)根据,即最多购买并使用两张代金券,即可得到答案;(2)设小明一家应付总金额为元,则对应付金额进行分析,然后列式进行计算,即可得到答案.7.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a-b|.利用数形结合思想回答下列问题:(1)数轴上表示1和3两点之间的距离是________(2)数轴上表示和-1的两点之间的距离表示为________(3)若表示一个有理数,且,则=________(4)若表示一个有理数,且=8,则有理数的值是________【答案】(1)2(2)或(3)6(4)-5,3【解析】【解答】解:(1)由题意得1和3两点之间的距离为;(2)和-1的两点之间的距离表示为,或;(3)∵-4<x<2, 则x-2<0, x+4>0,∴=-(x-2)+(x+4)=-x+2+x+4=6;(4)当x<-4时,则x-2<0,x+4<0,=-(x-2)-(x+4)=2-x-x-4=-2x-2=8,解得x=-5;当4≤x<2, 则x-2<0, x+4≥0,=-(x-2)+(x+4)=-x+2+x+4=6≠8,无解;当x≥2时,则x-2≥0, x+4>0,∴=x-2+x+4=2x+2=8解得x=3.【分析】(1)(2)由题意可知数轴两点间的距离即是两点所表示的数相减所得的数的绝对值,据此计算即可;(3)先根据x的范围确定绝对值里面的代数式的正负,再根据绝对值的非负性去绝对值,然后再化简计算即得结果;(4)分三种情况讨论,即把整个数轴分三部分,即x<-4, -4≤x<2, x≥2,然后分别根据绝对值的非负性去绝对值,化简计算,再根据所得的结果等于8解方程求出x即可.8.某城市开展省运会,关心中小学生观众,门票价格优惠规定见表.某中学七年级甲、乙两个班共86人去省运会现场观看某一比赛项目,其中乙班人数多于甲班人数,甲班人数不少于35人.如果两班都以班级为单位分别团体购买门票,则一共应付8120元.购票张数 1~40张 41~80张 81张(含81张)以上平均票价(元/张) 100 90 80买门票能节省多少钱?(2)问甲、乙两个班各有多少名学生?(3)如果乙班有m(0<m<20,且m为整数)名学生因事不能参加,试就m的不同取值,直接写出最省钱的购买门票的方案?【答案】(1)解:一起购买门票,所需费用为:80×86=6880(元),能节省8120﹣6880=1240(元),答:联合起来购买门票能节省1240元钱(2)解:设甲班有x人,86×90=7740(元),7740<8120,∴35≤x≤40,40<86﹣x≤80,根据题意得:100x+90(86﹣x)=8120,解得:x=38,86﹣x=48,答:甲班有38人,乙班有48人(3)解:若0<m<6时,此时总人数大于等于81人,则最省钱的购买门票的方案为:购买(86﹣m)张,当m≥6时,若90(86﹣m)>81×80,解得:m<14,即6≤m<14时,最省钱的购买门票的方案是:购买81张,若90(86﹣m)=81×80,解得:m=14,即m=14时,最省钱的购买门票的方案是:购买81张或72张,若14<m<20时,最省钱的购买门票的方案为:购买(86﹣m)张,综上可知:当0<m<6或14<m<20时,购买(86﹣m)张最省钱,当m=14时,购买72或81张最省钱,当6≤m<14时,购买81张最省钱【解析】【分析】(1)依据表格中的数据计算出联合购票的钱数,与分别购买团体票的钱数之间的差为节省出来的钱;(2)依题意设甲班有x人,并且x≥35,确定x的取值范围,假设两班人数都是41人到80人之间,则方程无解;因为乙班人数多于甲班人数,所以甲班人数在35≤x≤40 乙班人数在40<86﹣x≤80,列方程解方程即可.(3)依据题意分类讨论:①总人数在81人以上时,即0<m<6时,求出(86﹣m)张;②当总人数小于81,当总价款又大于团购81张的总价款时,即6≤m<14时,按81张购买即可;③当总人数小于81,当平均票价为90元的总价款等于团购81张的总价款时,即m=14时,有两种方式购买81张或72张;④当总人数小于81,平均票价为90元是最省钱方式,即14<m<20时,得出(86﹣m)张.9.已知数轴上有A、B、C三个点,分别表示有理数-12、-5、5,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为秒。
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?【答案】(1)解:设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据题意得:3×(2x+3x)=15,解得:x=1,∴3x=3,2x=2,答:动点A的运动速度为3个单位长度/秒,动点B的运动速度为2个单位长度/秒;(2)解:3×3=9,2×3=6,∴运动到3秒钟时,点A表示的数为﹣9,点B表示的数为6;(3)解:设运动的时间为t秒,当A、B两点向数轴正方向运动时,有|3t﹣2t﹣15|=4,解得:t1=11,t2=19;当A、B两点相向而行时,有|15﹣3t﹣2t|=4,解得:t3= 或t4= ,答:经过、、11或19秒,A、B两点之间相距4个单位长度.【解析】【分析】(1)根据已知:动点A、B的运动速度比之是3∶2,因此设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据两点相距15,列方程,求解即可。
(2)根据两点的运动速度,就快求出A、B两点运动到3秒时停止运动,就可得出它们的位置。
(3)设运动的时间为t秒,分两种情况:当A、B两点向数轴正方向运动时;当A、B两点相向而行时,分别根据A、B两点之间相距4个单位长度,列方程求出t的值。
2.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|的值.(2)若|x﹣2|=5,求x的值是多少?(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,写出求解的过程.【答案】(1)解:∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)解:|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)解:∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.【解析】【分析】(1)根据4与-2两数在数轴上所对应的两点之间的距离是6,可得|4-(-2)|=6.(2)根据|x-2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,可得x=-3或7.(3)因为4与-2两数在数轴上所对应的两点之间的距离是6,所以使得|x-4|+|x+2|=6成立的整数是-2和4之间的所有整数(包括-2和4),据此求出这样的整数有哪些即可.3.某食品厂从生产的袋装食品中抽出样品若干袋,用以检测每袋的质量是否符合标准,超过或不足标准质量的部分用正数或负数来表示(单位:克),记录如下表:(2)若每袋的标准质量为50克,每克的生产成本2元,求这批样品的总成本.【答案】(1)解:设被墨水涂污了的数据为x,则0.5×2+0.8×1+0.6×3+(﹣0.4)×2+(﹣0.7)x=1.4,解得:x=2,故这个数据为2(2)解:[50+1.4÷(2+1+3+2+2)]×(2+1+3+2+2)×2=1002.8元,答:这批样品的总成本是1002.8元【解析】【分析】(1)设被墨水涂污了的数据为x,根据题意列方程,即可得到结论;(2)根据题意计算计算即可.4.某航空公司开展网络购机票优惠活动:凡购机票每张不超过2000元的一律八折优惠;超过2000元的,其中2000元按八折算,超过2000的部分按七折算.(1)甲旅客购买了一张机票的原价为1500元,需付款________元;(2)乙旅客购买了一张机票的原价为x(x>2000)元,需付款________元(用含x的代数式表示);(3)丙旅客因出差购买了两张机票,第一张机票实际付款1440元,第二张机票享受了七折优惠,他査看了所买机票的原价,发现两张票共节约了910元,求丙旅客第二张机票的原价和实际付款各多少元?【答案】(1)1200(2)0.7x+200(3)解:第一张机票的原价为1440÷0.8=1800(元).设丙旅客第二张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,根据题意得:1440+0.7y+200=1800+y-910,解得:y=2500,∴1800+y-910-1440=1950.答:丙旅客第二张机票的原价为2500元,实际付款1950元【解析】【解答】解:(1)1500×0.8=1200(元).故答案为:1200.(2)根据题意得:需付款=2000×0.8+(x-2000)×0.7=0.7x+200(元).故答案为:(0.7x+200).【分析】(1)利用需付款=原价×0.8,即可求出结论;(2)根据需付款=2000×0.8+0.7×超出2000元部分,即可求出结论;(3)根据原价=需付款÷0.8可求出第一张机票的原价,设丙旅客第二张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,根据(2)的结论,即可得出关于y的一元一次方程,解之即可得出结论.5.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9.5折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为20元,乙平均每本书的价格为25元,优惠后甲乙两人的书费共323元.(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场8.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?【答案】(1)解:设甲购书x本,则乙购书(15﹣x)本,根据题意得:[20x+25(15﹣x)]×0.95=323,解得:x=7,∴15﹣x=8.答:甲购书7本,乙购书8本(2)解:(20×7+25×8)×0.85+20=309(元),323﹣309=14(元).答:办会员卡比不办会员卡购书共节省14元钱【解析】【分析】(1)设甲购书x本,则乙购书(15﹣x)本,根据两人买书共消费了323元列出方程,求解即可;(2)先求出办会员卡购书一共需要多少钱,再用323元减去这个钱数即可.6.小明和父母打算去某火锅店吃火锅,该店在网上出售“ 元抵元的全场通用代金券”(即面值元的代金券实付元就能获得),店家规定代金券等同现金使用,一次消费最多可用张代金券,而且使用代金券的金额不能超过应付总金额.(1)如果小明一家应付总金额为元,那么用代金券方式买单,他们最多可以优惠多少元:(2)小明一家来到火锅店后,发现店家现场还有一个优惠方式: 除锅底不打折外,其余菜品全部折.小明一家点了一份元的锅底和其他菜品,用餐完毕后,聪明的小明对比两种优惠,选择了现场优惠方式买单,这样比用代金券方式买单还能少付元.问小明一家实际付了多少元?【答案】(1)解:∴最多购买并使用两张代金券,最多优惠元(2)解:设小明一家应付总金额为元,当时,由题意得, .解得: (舍去).当时,由题意得, .解得: (舍去).当时,由题意得, .解得: .∴ .答:小明一家实际付了元【解析】【分析】(1)根据,即最多购买并使用两张代金券,即可得到答案;(2)设小明一家应付总金额为元,则对应付金额进行分析,然后列式进行计算,即可得到答案.7.已知线段AB=60cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以4厘米/秒运动,问经过几秒后P、Q相遇?(2)在(1)的条件下,几秒钟后,P、Q相距12cm?(3)如图2,AO=PO=10厘米,∠POB=40°,点P绕着点O以10度/秒的速度顺时针旋转一周停止,同时点Q沿线段BA自B点向A点运动,假若点P、Q两点能相遇,求点Q 运动的速度.【答案】(1)解:设经过t秒后P、Q相遇,由题意得:2t+4t=60,解得t=10,答:经过10秒钟后P、Q相遇(2)解:设经过x秒P、Q相距12cm,当相遇前相距12cm时,由题意得:2x+4x+12=60,解得:x=8,当相遇后相距12cm时,由题意得:2x+4x-12=60,解得:x=12,答:经过8秒钟或12秒钟后,P、Q相距12cm(3)解:设点Q运动的速度为ycm/s,∵点P,Q只能在直线AB上相遇,∴点P第一次旋转到直线AB上的时间为:40÷10=4s,若此时相遇,则4y=60-20,解得:y=10,点P第二次旋转到直线AB上的时间为:(40+180)÷10=22s,若此时相遇,则22y=60,解得:y=,答:点Q运动的速度为10cm/s或 cm/s.【解析】【分析】(1)根据相遇问题中的等量关系列方程求解即可;(2)分相遇前相距12cm和相遇后相距12cm,分别列方程求解即可;(3)由于点P,Q只能在直线AB上相遇,所以可先求出点P两次旋转到直线AB上的时间,然后分别列出方程求解即可.8.阅读理解:一部分同学围在一起做“传数”游戏, 我们把某同学传给后面的同学的数称为该同学的“传数”.游戏规则是: 同学1心里先想好一个数, 将这个数乘以2再加1后传给同学2,同学2把同学1告诉他的数除以2再减后传给同学3,同学3把同学2传给他的数乘以2再加1后传给同学4,同学4把同学3告诉他的数除以2再减后传给同学5,同学5把同学4传给他的数乘以2再加1后传给同学6,……,按照上述规律,序号排在前面的同学继续依次传数给后面的同学,直到传数给同学1为止.(1)若只有同学1,同学2,同学3做“传数”游戏.①同学1心里想好的数是2, 则同学3的“传数”是________;②这三个同学的“传数”之和为17,则同学1心里先想好的数是________.(2)若有个同学(n为大于1的偶数)做“传数”游戏,这个同学的“传数”之和为,求同学1心里先想好的数是多少.【答案】(1)5;3(2)解:设同学1心里先想好的数为x,由题意得:同学1的“传数”是2x+1同学2的“传数”是同学3的“传数”是2x+1同学4的“传数”是x……同学n(n为大于1的偶数)的“传数”是x于是∵n为大于1的偶数∴n≠0∴解得:故同学1心里先想好的数是13.【解析】【解答】解:(1)①由题意得:故同学3的“传数”是5;②设同学1想好的数是a,则解得:故答案为:3【分析】(1)根据题意分别计算出同学1和同学2、同学3的传数即可;(2)设同学1想好的数是a,由题意列出方程,再解方程求得a的值即可;(3)设同学1心里先想好的数为x,根据题意分别表示同学2、同学3、同学4的传数,找出规律,即可知同学n(n为大于1的偶数)的“传数”是x,得,化简得,根据n为大于1的偶数,即可得出答案.9.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a-b|.利用数形结合思想回答下列问题:(1)数轴上表示1和3两点之间的距离是________(2)数轴上表示和-1的两点之间的距离表示为________(3)若表示一个有理数,且,则=________(4)若表示一个有理数,且=8,则有理数的值是________【答案】(1)2(2)或(3)6(4)-5,3【解析】【解答】解:(1)由题意得1和3两点之间的距离为;(2)和-1的两点之间的距离表示为,或;(3)∵-4<x<2, 则x-2<0, x+4>0,∴=-(x-2)+(x+4)=-x+2+x+4=6;(4)当x<-4时,则x-2<0,x+4<0,=-(x-2)-(x+4)=2-x-x-4=-2x-2=8,解得x=-5;当4≤x<2, 则x-2<0, x+4≥0,=-(x-2)+(x+4)=-x+2+x+4=6≠8,无解;当x≥2时,则x-2≥0, x+4>0,∴=x-2+x+4=2x+2=8解得x=3.【分析】(1)(2)由题意可知数轴两点间的距离即是两点所表示的数相减所得的数的绝对值,据此计算即可;(3)先根据x的范围确定绝对值里面的代数式的正负,再根据绝对值的非负性去绝对值,然后再化简计算即得结果;(4)分三种情况讨论,即把整个数轴分三部分,即x<-4, -4≤x<2, x≥2,然后分别根据绝对值的非负性去绝对值,化简计算,再根据所得的结果等于8解方程求出x即可.10.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b ﹣2)2=0.(1)求A、B所表示的数;(2)点C在数轴上对应的数为x,且x是方程2x+1= x﹣8的解①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.【答案】(1)解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2。
一、初一数学一元一次方程解答题压轴题精选(难)1.如图1,已知,在内,在内,.(1)从图1中的位置绕点逆时针旋转到与重合时,如图2,________ ;(2)若图1中的平分,则从图1中的位置绕点逆时针旋转到与重合时,旋转了多少度?(3)从图2中的位置绕点逆时针旋转,试问:在旋转过程中的度数是否改变?若不改变,请求出它的度数;若改变,请说明理由.【答案】(1)100(2)解:∵平分,∴,设,则,,由,得:,解得:,∴从图1中的位置绕点逆时针旋转到与重合时,旋转了12度;(3)解:不改变①当时,如图,,,∵,,∴;② 时,如图,此时,与重合,此时,;③当时,如图,,,;综上,在旋转过程中,的度数不改变,始终等于【解析】【解答】(1)解:由题意:∠EOF= ∠AOB+ ∠COD=80°+20°=100°【分析】(1)根据∠EOF=∠BOE+∠BOF计算即可;(2)设,得,,再根据列方程求解即可;(3)分三种情形分别计算即可;2.已知数轴上A.B两点对应的数分别为−4和2,点P为数轴上一动点,其对应的数为x.(1)若点P到点A.点B的距离相等,写出点P对应的数;(2)数轴上是否存在点P,使点P到点A.点B的距离之和为10?若存在,求出x的值;若不存在,请说明理由;(3)若点A点B和点P(点P在原点)同时向右运动,它们的速度分别为2、1、1个长度单位/分,问:多少分钟后P点到点A点B的距离相等?(直接写出结果)【答案】(1)解:∵A、B两点对应的数分别为−4和2,∴AB=6,∵点P到点A. 点B的距离相等,∴P到点A. 点B的距离为3,∴点P对应的数是−1(2)解:存在;设P表示的数为x,①当P在AB左侧,PA+PB=10,−4−x+2−x=10,解得x=−6,②当P在AB右侧时,x−2+x−(−4)=10,解得:x=4(3)解:∵点B和点P的速度分别为1、1个长度单位/分,∴无论运动多少秒,PB始终距离为2,设运动t分钟后P点到点A. 点B的距离相等,|−4+2t|+t=2,解得:t=2【解析】【分析】(1)根据点P到点A、点B的距离相等,结合数轴可得答案;(2)此题要分两种情况:①当P在AB左侧时,②当P在AB右侧时,然后再列出方程求解即可;(3)根据题意可得无论运动多少秒,PB始终距离为2,且P在B的左侧,因此A也必须在A的左侧,才有P点到点A、点B的距离相等,设运动t分钟后P点到点A、点B 的距离相等,表示出AP的长,然后列出方程即可.3.对于任意有理数,我们规定 =ad-bc.例如 =1×4-2×3=-2(1)按照这个规定,当a=3时,请你计算(2)按照这个规定,若 =1,求x的值。
一、初一数学一元一次方程解答题压轴题精选(难)1.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.【答案】(1)解:①∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,解得:t=15°÷3°=5秒;②是,理由如下:∵∠CON=15°,∠AON=15°,∴ON平分∠AOC(2)解:15秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90°,∠CON=∠COM,∵∠MON=90°,∴∠CON=∠COM=45°,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∵∠AOC﹣∠AON=45°,可得:6t﹣3t=15°,解得:t=5秒(3)解:OC平分∠MOB∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为(90°﹣3t),∵∠BOM+∠AON=90°,可得:180°﹣(30°+6t)= (90°﹣3t),解得:t=23.3秒;如图:【解析】【分析】(1)①根据∠AON+∠BOM=90°,∠COM=∠MOB,及平角的定义∠BOC=2∠COM=150°,故∠COM=75°,根据角的和差得出∠CON=15°从而得到AON=∠AOC ﹣∠CON=30°﹣15°=15°,根据旋转的速度,就可以算出t的值了;②根据∠CON=15°,∠AON=15°,即可得出ON平分∠AOC ;(2)15秒时OC平分∠MON,理由如下:∠AON+∠BOM=90°,∠CON=∠COM,从而得出∠CON=∠COM=45°,又三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,根据∠AOC﹣∠AON=45°得出含t的方程,求解得出t的值;(3)根据∠AON+∠BOM=90°,∠BOC=∠COM,及三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,故设∠AON为3t,∠AOC为30°+6t,从而得到∠COM为(90°﹣3t),又∠BOM+∠AON=90°,从而得出含t的方程,就能解出t的值。
人教版七年级数学上册第三章一元一次方程单元测试(解析版)一、选择题1.下列等式中,正确的是()A. B. C. D.2.下列利用等式的性质,错误的是()A. 由a=b,得到1-2a=1-2bB. 由ac=bc,得到a=bC. 由,得到a=bD. 由a=b,得到3.下列变形正确的是()A. 从5x=4x+8,得到5x﹣4x=8B. 从7+x=13,得到x=13+7C. 从9x=﹣3,得到x=-3D. 从-2x=0,得x=-24.关于y的方程2m+y=m与3y-3=2y-1的解相同,则m的值为()A. 0B. -2C. -D. 25.下列方程是一元一次方程的是………………………………()A. B. C. D.6.方程-3(•-9)=5x-1,•处被墨水盖住了,已知方程的解x=2,那么•处的数字是()A. 2B. 3C. 4D. 67.某商品进价为800元,售价为1200元,由于受市场供求关系的影响,现准备打折销售,但要求利润率(利润率=)不低于5%,则至多能打( )A. 六折B. 七折C. 八折D. 九折8.下列方程中的解是的方程是()A. 6x+1=1B. 7x-1=x-1C. 2x=D. 5x=x+29.若关于x的方程mx m-2-m+3=0是一元一次方程,则这个方程的解是()A. x=0B. x=3C. x=-3D. x=210.在《九章算术》中有“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问人数是多少?若设人数为x,则下列关于x的方程符合题意的是()A. 8x-3=7x+4B. 8(x-3)=7(x+4)C. 8x+4=7x-3D. x+4二、填空题11.关于x方程(m+1)x|m+2|+3=0是一元一次方程,那么m=______..12.某商店将彩电按成本价提高50%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电成本价是______.13.已知方程的解是,那么______.14.已知a=b,根据等式的基本性质填空.(1)a+c=b+________;(2)a-c=________;(3)c-a=________;(4).15.对于方程,用含x的代数式表示y为_____________.16.若关于x的方程x+2=a和2x-4=4有相同的解,则a=______.17.请自编一个解为x=2的方程______.18.轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了______小时.19.A、B两地相距108千米,甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度为14千米/小时,乙的速度为22千米/小时,经过______小时后两人相距36千米.三、解答题20.解方程:(1)4x-3(20-x)=-4(2)-1=.21.解下列方程(1)x-4=2-5x(2)4x-3(20-x)=5x-7(20-x)(3)6+=(4)=+.22.某商场推出新年大促销活动,其中标价为1800元的某种商品打9折销售,该种商品的利润率为8%.(1)求该商品的成本价是多少;(2)该商品在降价前一周的销售额达到了97200元,要使该商品降价后一周内的销售额也达到97200元,降价后一周内的销售数量应该比降价前一周内的销售数量增加多少?23.某商场出售的甲种商品每件售价80元,利润为30元;乙种商品每件进价40元,售价60元.(1)甲种商品每件进价为______元,每件乙种商品利润率为______.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小明第一天只购买甲种商品,实际付款360元,第二题只购买乙种商品实际付款432元,求小明这两天在该商场购买甲、乙两种商品一共多少件?24.甲班有35人,乙班有26人.现在需要从甲、乙两班各抽调一些同学去养老院参加敬老活动.如果从甲班抽调的人数比乙班多3人,那么甲班剩余的人数恰好是乙班剩余人数的2倍.问从乙班抽调了多少人参加了这次敬老活动?答案和解析1.【答案】B【解析】【分析】本题考查了等式和绝对值的相关知识,根据绝对值的法则逐项分析即可解答. 【解答】解:A.当x≥0时,|x|-x=0;当x<0时,|x|-x=-2x,故A错误;B.无论x取何值,|-x|-|x|=0,故B正确;C.无论x取何值,-x-x=-2x,故C错误;D.当x≥0时,|-x|+|x|=2x;当x<0时,|-x|+|x|=-2x,故D错误.故选B.2.【答案】B【解析】【分析】本题考查了等式的性质.等式性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式.利用等式的性质对每个式子进行变形即可找出答案.【解答】解:A. 根据等式性质1和2,a=b两边都乘-2再加1,即可得到1-2a=1-2b,变形正确,故选项不符合题意;B.根据等式性质2,ac=bc两边都除以c不能得到a=b,只有当(c≠0),等式才成立,变形错误,故符合题意;C. 根据等式性质2,两边都乘以c,即可得到a=b,变形正确,故选项不符合题意;D. 因为c2+1≠0,所以根据等式性质2,a=b两边都除以c2+1能得到,变形正确,故选项不符合题意.故选B.3.【答案】A【解析】【分析】本题主要考查等式的基本性质,解题的关键是熟练掌握等式的性质:等式两边加同一个数(或式子)结果仍得等式、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.根据等式的基本性质逐一计算可得.【解答】解:A.从5x=4x+8,得到5x-4x=8,此选项正确;B.从7+x=13,得到x=13-7,此选项错误;C.从9x=-3,得到x=-,此选项错误;D.从-2x=0,得x=0,此选项错误;故选A.4.【答案】B【解析】解:由3y-3=2y-1,得y=2.由关于y的方程2m+y=m与3y-3=2y-1的解相同,得2m+2=m,解得m=-2.故选:B.分别解出两方程的解,两解相等,就得到关于m的方程,从而可以求出m的值.本题考查了同解方程,解决的关键是能够求解关于x的方程,根据同解的定义建立方程.5.【答案】D【解析】【分析】本题主要考查一元一次方程,根据一元一次方程的概念可求解.【解答】解:A.,不是整式方程,故该选项错误;B.,由两个未知数,故该选项错误;C.,未知数的最高次数为2,故该选项错误;D.,是一元一次方程,故该选项错误.故选D.6.【答案】D【解析】解:设•处的数字是a,则-3(a-9)=5x-1,将x=2代入,得:-3(a-9)=9,解得a=6,故选:D.设•处的数字是a,把x=2代入已知方程,可以列出关于a的方程,通过解该方程可以求得•处的数字.此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.7.【答案】B【解析】【解析】主要考查一元一次方程的应用,根据题意列方程,解出结果即可.【解答】解:设至多能打x折,根据题意:,解得:.所以至多可以打7折.故答案为B.8.【答案】C【解析】【分析】本题主要考查一元一次方程的解法.依次求出各个方程的解,即可得出答案. 【解答】解:.A.6x+1=1x=0;B.7x-1=x-1x=0 ;C.;D.5x=x+2.故选C.9.【答案】A【解析】【分析】此题主要考查了一元一次方程定义,一元一次方程的解法,关键是掌握只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.根据一元一次方程定义可得m-2=1,解出m的值,进而可得方程,然后再解一元一次方程即可.【解答】解:由题意得:m-2=1,解得:m=3,则方程为3x-3+3=0,解得:x=0.故选A.10.【答案】A【解析】解:设人数为x,则可列方程为:8x-3=7x+4,故选:A.根据“总钱数不变”可列方程.本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并依据此列出方程.11.【答案】-3【解析】【分析】根据一元一次方程的定义求解即可.本题考查了一元一次方程的定义,利用一元一次方程的定义求解是解题关键.【解答】由题意,得|m+2|=1且m+1≠0,解得m=-3,故答案为:-3.12.【答案】1350元【解析】解:设每台彩电成本价是x元,依题意得:(50%•x+x)×0.8-x=270,解得:x=1350.故答案是:1350元.根据利润=售价-成本价,设每台彩电成本价是x元,列方程求解即可.本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.13.【答案】-1【解析】【分析】本题考查了一元一次方程的解,解决本题的关键是解一元一次方程;把x=-6代入方程2a-5=x+a,即可解答.【解答】解:x=-6代入方程2a-5=x+a得:2a-5=-6+a,解得:a=-1,故答案为-1.14.【答案】(1)c(2)b-c(3)c-b(4)【解析】【分析】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.根据等式的基本性质填空即可.【解答】解:∵a=b,∴(1)a+c=b+c;(2)a-c=b-c;(3)c-a=c-b;(4).故答案为(1)c;(2)b-c;(3)c-b;(4).15.【答案】【解析】【分析】此题考查了解二元一次方程,解题的关键是将一个未知数看做已知数,求出另一个未知数,把x看做已知数求出y即可.【解答】解:由x-3y=4,得到3y=x-4,∴,故答案为.16.【答案】6【解析】解:方程2x-4=4,移项合并得:2x=8,解得:x=4,把x=4代入x+2=a中,得:a=6.故答案为:6.求出第二个方程的解,代入第一个方程求出a的值即可.此题考查了同解方程,同解方程即为两个方程的解相同的方程.17.【答案】2x=4【解析】解:自编一个解为x=2的方程为2x=4,故答案为:2x=4.根据使方程左右两边的值相等的未知数的值是该方程的解,可得答案.本题考查了方程的解,解题的关键是根据方程的解的定义,使方程左右两边的值相等的未知数的值是该方程的解.18.【答案】10【解析】解:设轮船在静水中的速度为x千米/时,根据题意得2x=28+24,解得x=26.即:轮船在静水中的速度为26千米/时.所以漂浮时间为:=10(小时)故答案是:10.设轮船在静水中的速度为x千米/时,根据静水速度+水流速度=顺水速度,静水速度-水流速度=逆水速度,可得静水速度×2=顺水速度+逆水速度,依此列方程即可求解.然后根据漂流路程求得漂流时间.本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.19.【答案】2或4【解析】解:设经过x小时后两人相距36千米,根据题意得:(14+22)x=108-36或(14+22)x=108+36,解得:x=2或x=4.答:经过2或4小时后两人相距36千米.故答案为:2或4.设经过x小时后两人相距36千米,根据路程=速度×时间,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.20.【答案】解:(1)去括号得:4x-60+3x=-4,整理得:7x=56,解得:x=8;(2)去分母得:3(3x-1)-12=2(5x-7),去括号得:9x-3-12=10x-14,移项得:9x-10x=-14+3+12,合并同类项得:-x=1,方程两边除以-1得:x=-1.【解析】(1)方程去括号后,移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.21.【答案】解:(1)移项得:x+5x=2+4,合并得:6x=6,解得:x=1;(2)去括号得:4x-60+3x=5x-140+7x,移项得:4x+3x-5x-7x=-140+60,合并得:-5x=-80,解得:x=16;(3)去分母得:36+2x=24-6x,移项得:2x+6x=24-36,合并得:8x=-12,解得:x=-1.5;(4)方程整理得:=+,去分母得:48x+54=15x+75+30x-20,移项得:48x-15x-30x=75-20-54,合并得:3x=1,解得:x=.【解析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.22.【答案】解:(1)设该商品的成本价为x元,根据题意,得8%x=1800×90%-x解得x=1500,答:该商品的成本价为1500元.(2)1500×8%=120(元),97200÷(1500+120)-97200÷1800=60-54=6.答:要使该商品销售额达到97200,降价后的销售数量应该比降价前多6.【解析】本题主要考查一元一次方程的应用.根据题意找到合适的等量关系,列出方程即可求解.(1)该商品的成本价为x元,根据售价-成本价=利润列出方程,解方程即可;(2)先根据成本价×利润率=利润,即可求出降价后的价格,根据总价÷单价=数量进行计算即可.23.【答案】50;50%【解析】解:(1)(80-30)=50(元)(60-40)÷40=50%.故答案为:50,50%;(2)设该商场购进甲种商品x件,根据题意可得:50x+40(50-x)=2100,解得:x=10;乙种商品:50-10=40(件).答:该商场购进甲种商品10件,乙种商品40件.(3)根据题意得,第一天只购买甲种商品,享受了9折优惠条件,∴360÷0.9÷80=5件第二天只购买乙种商品有以下两种情况:情况一:购买乙种商品打九折,432÷90%÷60=8件;情况二:购买乙种商品打八折,432÷80%÷60=9件.一共可购买甲、乙两种商品5+8=13件或5+9=14件.答:小聪这两天在该商场购买甲、乙两种商品一共13或14件.(1)根据商品利润率=,可求每件甲种商品利润率,乙种商品每件进价;(2)首先设出购进甲商品的件数,然后根据“同时购进甲、乙两种商品共50件”表示出购进乙商品的件数;然后根据“恰好用去2100元”列方程求出未知数的值,即可得解;(3)第一天的总价为360元,享受了9折,先算出原价,然后除以单价,得出甲种商品的数量;第二天的也可能享受了9折,也可能享受了8折.应先算出原价,然后除以单价,得出乙种商品的数量.考查了一元一次方程的应用,解题的关键是理解题意,学会构建方程解决问题,属于中考常考题型.24.【答案】解:设从乙班抽调了x人参加了敬老活动.根据题意列方程,得35-(x-3)=2(26-x).解方程得:x=20.答:从乙班抽调了20人参加了这次敬老活动.【解析】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出等量关系,列方程求解.设从乙班抽调了x人,那么从甲班抽调了(x-3)人,根据抽调之后甲班剩余人数恰好是乙班剩余人数的2倍,列方程求解.人教版七年级数学上册第三章《一元一次方程》单元检测试题(有答案)一、选择题1.下列四个式子中,是一元一次方程的是( )A .1+2+3+4=10B .2x -3 C.x -13=x 2+1 D .x +3=y 2.若关于x 的方程x m -1+2m +1=0是一元一次方程,则这个方程的解是( )A.-5B.-3C.-1D.53. 下列方程属于一元一次方程的是( )A. 1x-1=0 B. 6x +1=3y C. 3m =2 D. 2y 2-4y +1=0 4.关于x 的方程2(x -2)-3(4x -1)=9,下面解答正确的是( )A . 2x -4-12x +3=9,-10x =9+4-3=10,x =1B . 2x -4-12x +3=9,-10x =10,x =-1C . 2x -4-12x -3=9,-10x =2,x =−D . 2x -2-12x +1=9,-10x =10,x =15.设有x 个人共种m 棵树苗,如果每人种8棵,则剩下2棵树苗未种,如果每人种10棵,则缺6棵树苗.根据题意,列方程正确的是( )A .-2=+6B .+2=-6C .D .6.下列等式变形正确的是( )A.若a =b ,则a -3=3-bB.若x =y ,则x a =y aC.若a =b ,则ac =bcD.若b a =d c,则b =d 7. 已知||3x -y =0,||x =1,则y 的值等于( )A. 3或-3B. 1或-1C. -3D. 38.关于x 的方程5x 3m =2的解是x =m ,则m 的值是( )A .1B . 1C .2D . 29.两地相距600千米,甲、乙两车分别从两地同时出发相向而行,甲比乙每小时多行10千米,4小时后两车相遇,则乙的速度是( )A.70千米/时B.75千米/时C.80千米/时D.85千米/时10.元旦节日期间,百货商场为了促销,对某种商品按标价的8折出售,仍获利160元,若商品的标价为2200元,那么它的成本为( )A . 1600元B . 1800元C . 2000元D . 2100元11.图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为( )A.2314B.3638C.42D.4412. 某同学在解关于x 的方程3a -x =13时,误将“-x ”看成“x ”,从而得到方程的解为x =-2,则原方程正确的解为( )A.x =-2B.x =-12C.x =12D.x =2 二、填空题13.若-x n +1与2x 2n -1是同类项,则n = .14.. 三个连续偶数的和是60,那么这三个数分别是 - .15.一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,则原来的两位数是 .16.对于两个非零的有理数a ,b ,规定a ☆b =12b -13a ,若x ☆3=1,则x 的值为________. 17.图①是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm 3.18.某汽车以20米/秒的速度在公路上行驶,开向寂静的山谷,驾驶员按一下喇叭,5秒后听到回声,这时汽车离山谷多远?已知在空气中声音的传播速度约为340米/秒.设按喇叭时,汽车离山谷y 米,根据题意,可列方程为______________.19.七年级三班发作业本,若每人发4本,则剩余12本;若每人发5本,则少18本,那么该班有 名学生.20.一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;…根据观察得到的规律,解是x=7的方程是三、解答题21.解下列方程:(1)4x -3(12-x )=6x -2(8-x ); (2)2x -13-2x -34=1;(3)7x -13-5x +12=2-3x +24; (4)2x 0.3-1.6-3x 0.6=31x +83.22. (1)如果方程2x +a =x -1的解是x =4,求2a +3的值;(2)已知等式(a -2)x 2+(a +1)x -5=0是关于x 的一元一次方程,求这个方程的解.23.在校运动会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1800条或者脖子上的丝巾1200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?24.如图,一块长5厘米、宽2厘米的长方形纸板,一块长4厘米、宽1厘米的长方形纸板,与一块正方形纸板以及另两块长方形纸板,恰好拼成一个大正方形.问大正方形的面积是多少?25.某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?26.一项筑路工程,甲队单独完成需要80天,乙队单独完成需要120天.(1)求甲,乙两队每天的工作量之比;(2)若甲队每天比乙队多筑路50 m,求这项工程共需筑路多少米?27.某商店5月1日当天举行优惠促销活动,当天到该商店购买商品有两种优惠方案:方案1:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的八折优惠;方案2:若不购买会员卡,则购买商店内任何商品,一律按商品价格的九五折优惠.已知小红5月1日前不是该商店的会员.(1)若小红不购买会员卡,所购买商品的总价格为120元,则实际应支付多少元?(2)请问购买商品的总价格是多少时,两种方案的优惠情况相同?(3)你认为哪种方案更合算?(直接写出答案)参考答案一、1. C 2. A. 3. C 4. B 5 C. 6. C 7. D 8. B 9. A 10. A 11. C 12. D二、13.214. 18,20,22 .15.4816. 3 217.100018.2y-100=1 700 19.3020.=1三、21.解:(1)x=-20. (2)x=7 2.(3)去分母,得4(7x-1)-6(5x+1)=2×12-3(3x+2),去括号,得28x -4-30x -6=24-9x -6,移项,得28x -30x +9x =24+6+4-6,合并同类项,得7x =28,系数化为1,得x =4.(4)原方程可化为20x 3-16-30x 6=31x +83.去分母,得40x -(16-30x )=2(31x +8).去括号,得40x -16+30x =62x +16.移项,得40x +30x -62x =16+16.合并同类项,得8x =32. 系数化为1,得x =4.22.解:(1)把x =4代入方程,得8+a =4-1.解得a =-5.所以2a +3=2×(-5)+3=-7.(2)由题意,得a -2=0且a +1≠0.解得a =2,即方程为3x -5=0.解得x =53. 23. 解:设应分配x 名工人生产脖子上的丝巾,则(70-x )名工人生产手上的丝巾.根据题意,得1800(70-x )=2×1200x , 解得x=30,70-x=70-30=40.答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾.24.解:设大正方形的边长为x 厘米,由题图可得x -2-1=4+5-x ,解得x =6,则6×6=36(平方厘米).所以大正方形的面积为36平方厘米.25.解:设甲种票买了x 张,则乙种票买了(35-x )张,(2分)依题意有24x +18(35-x )=750,解得x =20.则35-x =15.(8分) 甲种票买了20张,乙种票买了15张.26.解:(1)甲,乙两队的筑路时间之比为80∶120=2∶3,所以甲,乙两队每天筑路工作量之比为3∶2.(2)设乙队每天筑路x m ,则甲每天筑路(x +50)m.依题意,得80(x +50)=120x .解得x =100.故120x =12 000(m).这项工程共需筑路12 000 m.27.解:(1)120×0.95=114(元).故实际应支付114元.(2)设小红所购买商品的总价格为x 元,依据题意,得0.8x +168=0.95x ,解得x =1 120.故当购买商品的总价格是1 120元时,两种方案的优惠情况相同.(3)当购买商品的总价格低于1 120元时,方案2更合算;当购买商品的总价格等于1 120元时,两种方案的花费相同;当购买商品的总价格大于1 120元时,方案1更合算.人教版七年级上册第三章一元一次方程单元测试卷(3)一、选择题(每小题3分,共30分)1把方程3x +2x -13=3-x +12去分母正确的是( ) A.18x +2(2x -1)=18-3(x +1) B.3x +(2x -1)=3-(x +1)C.18x +(2x -1)=18-(x +1)D.3x +2(2x -1)=3-3(x +1)2.若关于x 的方程x m -1+2m +1=0是一元一次方程,则这个方程的解是( ) A.-5 B.-3 C.-1 D.53.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为( )A.518=2(106+x )B.518-x =2×106C.518-x =2(106+x )D.518+x =2(106-x )4.下列方程是一元一次方程的是( )A.x -2=3B.1+5=6C.x 2+x =1D.x -3y =05.方程2x +3=7的解是( )A.x =5B.x =4C.x =3.5D.x =26.下列等式变形正确的是( )A.若a =b ,则a -3=3-bB.若x =y ,则x a =y aC.若a =b ,则ac =bcD.若b a =d c,则b =d 7.小马虎在做作业,不小心将方程中的一个常数污染了,被污染的方程是2(x -3)-■=x +1,怎么办呢?他想了想便翻看书后的答案,方程的解是x =9,请问这个被污染的常数是( )A.1B.2C.3D.48.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( )A.562.5元B.875元C.550元D.750元9.两地相距600千米,甲、乙两车分别从两地同时出发相向而行,甲比乙每小时多行10千米,4小时后两车相遇,则乙的速度是( )A.70千米/时B.75千米/时C.80千米/时D.85千米/时10.图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为( )A.2314B.3638C.42D.44二、填空题(每小题3分,共24分)11.方程3x -3=0的解是 .12.若-x n +1与2x 2n -1是同类项,则n = .13.已知多项式9a +20与4a -10的差等于5,则a 的值为 .14.若方程x +2m =8与方程2x -13=x +16的解相同,则m = . 15.在有理数范围内定义一种新运算“⊕”,其运算规则为:a ⊕b =-2a +3b ,如:1⊕5=-2×1+3×5=13,则方程x ⊕4=0的解为 .16.七年级三班发作业本,若每人发4本,则剩余12本;若每人发5本,则少18本,那么该班有 名学生.17.某商场有一款春季大衣,如果打八折出售,每件可盈利200元,如果打七折出售,每件还可以盈利50元,那么这款大衣每件的标价是 元.18.图①是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm 3.三、解答题(共66分)19.(15分)解下列方程:(1)4x -3(12-x )=6x -2(8-x ); (2)2x -13-2x -34=1;(3)12x +2⎝⎛⎭⎫54x +1=8+x .20.(8分)已知3+a 2与-13(2a -1)-1互为相反数,求a 的值.21.(9分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?22.(10分)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图①所示).使用时,可将鱼竿的每一节套管都完全拉伸(如图②所示).图③是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm ,第2节套管长46cm ,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.23.(12分)为举办校园文化艺术节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(其中甲班比乙班人多,且甲班不到90人),下面是供货商给出的演出服装的价格表:如果两班单独给每位同学购买一套服装,那么一共应付5020元.(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱?(2)甲、乙两班各有多少名同学?24.(12分)把正整数1,2,3,4,…,2017排列成如图所示的一个数表.(1)用一正方形在表中随意框住4个数,把其中最小的数记为x,另三个数用含x的式子表示出来,从大到小依次是,,;(2)当被框住的4个数之和等于416时,x的值是多少?(3)被框住的4个数之和能否等于622?如果能,请求出此时x的值;如果不能,请说明理由.参考答案与解析1.A 2.A 3.C 4.A 5.D 6.C 7.B 8.B 9.A10.C 解析:设图②中白色区域的面积为8x ,灰色区域的面积为3x ,由题意,得8x +3x =33,解得x =3.∴灰色部分面积为3×3=9,图①的面积为33+9=42.故选C.11.x =1 12.2 13.-5 14.7215.x =6 16.30 17.1500 18.100019.解:(1)x =-20.(5分)(2)x =72.(10分) (3)x =3.(15分)20.解:由题意,得3+a 2+⎣⎡⎦⎤-13(2a -1)-1=0,(4分)解得a =5.(8分) 21.解:设甲种票买了x 张,则乙种票买了(35-x )张,(2分)依题意有24x +18(35-x )=750,(6分)解得x =20.则35-x =15.(8分)答:甲种票买了20张,乙种票买了15张.(9分)22.解:(1)第5节套管的长度为50-4×(5-1)=34(cm).(2分)(2)第10节套管的长度为50-4×(10-1)=14(cm),(4分)因为每相邻两节套管间重叠的长度为x cm ,根据题意得(50+46+42+…+14)-9x =311,(7分)即320-9x =311,解得x =1.(9分)答:每相邻两节套管间重叠的长度为1cm.(10分)23.解:(1)由题意,得5020-92×40=1340(元).(4分)答:甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省1340元.(5分)(2)设甲班有x 名同学准备参加演出(依题意46<x <90),则乙班有(92-x )名.依题意得50x +60(92-x )=5020,解得x =50,92-x =42(名).(11分)答:甲班有50名同学,乙班有42名同学.(12分)24.解:(1)x +8 x +7 x +1(3分)(2)由题意,得x +x +1+x +7+x +8=416,解得x =100.(7分)(3)不能,(8分)因为当4x +16=622,解得x =15112,不为整数.(12分)。
一元一次方程单元测试题(时间:120分钟,总分:150分)命题人:新立中学校 谭凤一、 选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出 了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中。
1.下列等式是一元一次方程的是 ( )A .s =abB .2+5=7 C.2x +1=x -2 D .3x +2y =6 2.若x=3是方程a ﹣x=7的解,则a 的值是( )A .4B .7C .10D .3.已知等式ax=ay ,则下列变形不正确的是:( )A 、x=yB 、ax-1-ay-1C 、D 、3-ax-3-ay4.下列各式中是一元一次方程的是( )A .x+=x+1B .﹣5﹣3=﹣8C .x+3D . x ﹣1=﹣y5.某书上有一道解方程的题: +1=x ,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x=﹣2,那么□处应该是数字( )A .7B .5C .2D .﹣26.今年哥哥的年龄是妹妹年龄的2倍,4年前哥哥的年龄是妹妹年龄的3倍,若设妹妹今年x 岁,可列方程为( )A .2x ﹣4=3(x ﹣4)B .2x=3(x ﹣4)C .2x+4=3(x ﹣4)D .2x+4=3x7.学校组织了一次知识竞赛,共有25道题,每一道题答对得5分,答错或不答都扣3分,小明得了85分,那么他答对的题数是( )A .22B .20C .19D .188.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.则其中男生人数比女生人数多( )A .11人B .12人C .3人D .4人损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利10元C .亏损10元D .盈利50元10.“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )A .x (1+30%)×80%=2080B .x•30%•80%=2080C .2080×30%×80%=xD .x•30%=2080×80%二、 填空题:(本大题10个小题,每小题4分,共40分)在每小题中,请将答案直接填在题后的横线上。
七年级数学上册《第三章一元一次方程》单元测试卷-带答案(人教版)一、选择题1.若()125m m x--= 是关于x 的一元一次方程,则m 的值为( )A .-2B .-1C .1D .22.方程261x x -=-的解是( ).A .5B .52-C .5±D .533.把方程1263x x +-=去分母,下列变形正确的是( ) A .212x x -+= B .2(1)12x x -+= C .2112x x -+=D .2(1)2x x -+=4.某种商品的进价为120元,若按标价九折降价出售,仍可获利24元,该商品的标价为( )A .140元B .150元C .160元D .170元5.已知关于x 的一元一次方程20232023xa x +=的解是2022x =,关于y 的一元一次方程20232023bc a +=-的解是2021y =-(其中b 和c 是含有y 的代数式),则下列结论符合条件的是( )A .11b y c y =--=+, B .11b y c y =-=-,C .11b y c y =+=--, D .11b y c y =-=-, 6.若关于x 的方程240x a +-=的解是2x =-,则a 的值等于( )A .8B .0C .2D .8-7.下列方程变形正确的是( )A .由21x -=得2x =-B .由13x -=得31x =-C .由312x -=得23x =- D .由27x +=得72x =+8.已知关于x 的方程2x+a=1-x 与方程2x-3=1的解相同,则a 的值为( )A .2B .-2C .5D .-59. 下列方程变形中,正确的是( )A .方程1125x x--=,去分母得()51210x x --= B .方程()3251x x -=--,去括号得3251x x -=--C .方程2332t =,系数化为1得1t = D .方程3221x x -=+,移项得3212x x -=-+10.甲单位到药店购买了一箱消毒水和60元的口罩,乙单位在同一药店购买了一箱消毒水和25元的口罩,乙单位购买总价只相当于甲单位购买总价的712,一箱消毒水多少元?设一箱消毒水为x 元,则下列方程正确的是( )A .712(25+x)=60+x B .60+712x=25+x C .60-712x=25+xD .712(60+x)=25+x 二、填空题11.若关于x 的方程(1)20kk x ++=是一元一次方程,则k = . 12. 若3x m+5y 3与23x 2y n的差仍为单项式,则m+n = . 13.若()52x +与()29x -+互为相反数,则2x -的值为 .14.重百十周年店庆,小明妈妈以平时八折的优惠购买了一件衣服,节省24元,那么小明妈妈购买这件衣服实际花费了 元.三、计算题15.解方程:(1)()243x x --=(2)31142x x--= 四、解答题16.已知关于x 的方程 2312a x -= ,在解这个方程时,粗心的小琴同学误将 3x - 看成了3x + ,从而解得 3x = ,请你帮他求出正确的解.17.当x 取什么数时, 31x + 与 3x - 互为相反数。 18.已知关于x 的方程1322x x +=-与23x m mx -=+的解互为倒数,求m 的值. 19.在即将到来的“6.18年中大促”活动中,某商场计划对所有商品打折出售.已知某商品的进价是1500元,按照商品标价的八折出售时,利润率是12%,那么该商品的标价是多少元?五、综合题20.已知方程(1﹣m 2)x 2﹣(m+1)x+8=0是关于x 的一元一次方程.(1)求m 的值及方程的解.(2)求代数式 22152(2)3(2)3x xm x xm -+-+ 的值.21.如果两个方程的解相差1,则称解较大的方程为另一个方程的“后移方程”.例如:方程-20x =是方程10x -=的后移方程.(1)判断方程210x +=是否为方程230x +=的后移方程 (填“是”或“否”); (2)若关于x 的方程30x m +=是关于x 的方程()()2243x x -=-+的后移方程,求m 的值.22.卡塔尔世界杯的举办掀起了青少年校园足球热,某体育用品商店对甲、乙两种品牌足球开展促销活动,已知甲、乙两种品牌足球的标价分别是:160元/个,60元/个,现有如下两种优惠方案: 方案一:不办理会员卡,购买甲种品牌足球享受8.5折优惠;购买乙种品牌足球,5个(含5个)以上享受8.5折优惠,5个以下按标价购买.方案二:办理一张会员卡100元,购买甲、乙两种品牌足球均享受7.5折优惠.(1)若购买甲种品牌足球3个,乙种品牌足球4个,哪一种方案更优惠?多优惠多少元? (2)若购买甲种品牌足球若干个,乙种品牌足球6个,方案一与方案二所付金额相同,求购买甲种品牌的足球个数.参考答案与解析1.【答案】A【解析】【解答】解:∵()125m m x--= 是关于x 的一元一次方程∴|m|-1=1且m-2≠0 解之:m=±2且m≠2 ∴m=-2. 故答案为:A【分析】利用一元一次方程的定义:含一个未知数,含未知数项的最高次数为1,一次项的系数不等于0,可得到关于m 的方程和不等式,分别求解,可得到m 的值.2.【答案】A【解析】【解答】解:261x x -=-移项得261x x -=- 合并同类项得5x = 故答案为:A.【分析】根据解一元一次方程的解题步骤“移项、合并同类项”求出方程的解,即可得出答案.3.【答案】B【解析】【解答】解:1263x x +-=去分母,得2(1)12x x -+= 故答案为:B.【分析】由等式的性质,在方程的两边同时乘以6,右边的2也要乘以6,不能漏乘,据此即可得出答案.4.【答案】C【解析】【解答】解:设该商品的标价为x 元0.9x=120×(1+20%) 解得:x=160答:该商品的标价为160元 故答案为:C .【分析】设该商品的标价为x 元,根据题意列出方程0.9x=120×(1+20%),再求出x 的值即可。
人教版七年级数学上册第三章一元一次方程单元测试题一、选择题(本大题共6小题,每小题4分,共24分;在每小题列出的四个选项中,只有一项符合题意)1.下列方程中,解是x =5的方程是( ) A .2x -1=x B .x -3=2 C .3x =x +5D .x +3=-22.下面是小玲同学在一次课堂测验中利用等式的性质进行的变形,其中正确的是( ) A .由-13x -5=4,得13x =4+5B .由5y -3y +y =9,得(5-3)y =9C .由x +7=26,得x =19D .由-5x =20,得x =-5203.方程7(3-x )-5(x -3)=8去括号,下列正确的是( ) A .21-x -5x +15=8 B .21-7x -5x -15=8 C .21-7x -5x +15=8 D .21-x -5x -15=84.将方程x 2-x -16=6去分母,正确的是( )A .3x -(x -1)=6B .x -(x -1)=6C .6x -2(x -1)=36D .3x -(x -1)=365.某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%.设把x 公顷沙漠改造为绿洲,则可列方程为( )A .54+x =80%×108B .54+x =80%(108-x )C .54-x =80%(108+x )D .108-x =80%(54+x )6.某船顺流航行的速度为30 km/h ,逆流航行的速度为20 km/h ,则水流的速度为( )A .5 km/hB .10 km/hC .25 km/hD .50 km/h二、填空题(本大题共5小题,每小题4分,共20分) 7.若2(x -1)+3=x ,则x 的值是________. 8.若2减去3m +45的差为6,则m =________.9.若式子6⎝ ⎛⎭⎪⎫12x -4+2x 与7-⎝ ⎛⎭⎪⎫13x -1的值相等,则x =________. 10.一列匀速行驶的高铁列车在行进途中经过一条长1200米的隧道,已知列车从车头开始进入隧道到车尾离开隧道共需8秒.出隧道后与另一列长度和速度都相同的列车相遇,从车头相遇到车尾离开仅用了2秒,则该列车的长度为________米.11.明代数学家程大位的《算法统宗》中有这样一个问题(如图1),其大意为:有一群人分银子,若每人分七两,则剩余四两;若每人分九两,则还差八两.请问:所分的银子共有________两.(注:明代时1斤=16两,故有“半斤八两”这个成语)图1三、解答题(本大题共6小题,共56分) 12.(8分)解方程:(1)2(2x -3)-3=2-3(x -1); (2)x -33-1=-2x +42.13.(8分)小彬的练习册上有一道解方程的题,其中一个数字被墨水污染了,成了5x -14=2-2-x 3(“),他翻了书后的答案,知道这个方程的解为x =-1,于是他把被墨水污染的数字求了出来,请你把小彬的计算过程写出来.14.(8分)当x 取何值时,式子x -12+2x +16的值比x -13的值大1?15.(10分)某水果销售店用1000元购进甲、乙两种水果共140千克,这两种水果的进价、售价如下表所示:(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,则获得的利润是多少元?16.(10分)在五一期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时小明与爸爸的对话(如图2),试根据图中的信息,解答下列问题:图2(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱,并说明理由.17.(12分)甲仓库有水泥100吨,乙仓库有水泥80吨,要全部运到A,B两工地,已知A工地需要70吨,B工地需要110吨,甲仓库运到A,B两工地的运费分别是140元/吨,150元/吨,乙仓库运到A,B两工地的运费分别是200元/吨,80元/吨,本次运送水泥总运费为25900元,求甲仓库运到A工地水泥的吨数.(运费:元/吨表示运送每吨水泥所需的人民币)(1)设甲仓库运到A工地水泥的吨数为x吨,请在下表中用含x的式子表示出其他未知量:(2)用含x的式子表示运送甲仓库100吨水泥的运费为__________元(写出化简后的结果);(3)请根据题目中的相等关系和以上分析列出方程,并写出调运方案.1.B 2. C 3.C. 4. D 5. B 6. A 7.-1 8.[答案] -8 9.[答案] 6 10.[答案] 400 11.[答案] 4612.解:(1)2(2x -3)-3=2-3(x -1), 4x -6-3=2-3x +3, 4x +3x =2+3+3+6, 7x =14, x =2.(2)去分母,得2(x -3)-6=3(-2x +4). 去括号,得2x -6-6=-6x +12. 移项、合并同类项,得8x =24. 系数化为1,得x =3.13.解:设被墨水污染的数字为a. 把x =-1代入方程, 得5×(-1)-14=3×(-1)+a 2-2-(-1)3,解得a =2.答:被墨水污染的数字是2.14.解:根据题意,得x -12+2x +16=x -13+1,3x -3+2x +1=2x -2+6, 5x -2=2x +4,x =2.所以当x 取2时,式子x -12+2x +16的值比x -13的值大1.15.解:(1)设购进甲种水果x 千克,则购进乙种水果(140-x)千克,根据题意,得 5x +9(140-x)=1000, 解得x =65,所以140-x =75.答:购进甲种水果65千克,乙种水果75千克. (2)(8-5)×65+(13-9)×75=495(元).答:获得的利润为495元.16.解:(1)设成人人数为x ,则学生人数为12-x, 则35x +352人教版七年级上册数学第3章一元一次方程单元练习卷一.填空题(共8小题)1.若练习本每本a 元,铅笔每支b 元,那么代数式8a +3b 表示的意义是 . 2.已知x ﹣2y +3=8,那么整式2x ﹣4y ﹣2的值是 . 3.如果x 7﹣2k +2=5是关于x 的一元一次方程,那么k = . 4.若P =2y ﹣2,Q =2y +3,2P ﹣Q =3,则y 的值等于 . 5.当x = 时,代数式x +1与3x ﹣5的值互为相反数. 6.已知a 、b 、c 、d 为有理数,现规定一种新运算:=ad ﹣bc ,那么当=4时,则x = .7.七、八年级学生分别到李中水上森林公园和施耐庵纪念馆参加社会实践活动,共648人,到李中水上森林公园的人数是到施耐庵纪念纪念馆人数的2倍多48人.设到施耐庵纪念馆的人数为x ,可列方程为 .8.如图,在2018年10月的月历上,任意圈出一个由3个数组成的竖列如果它们的和为36,那么其中最小的数是2018年10月 号.二.选择题(共10小题)9.比x 的五分之三多7的数表示为( ) A .B .C .D .10.若关于x 的方程(m ﹣2)x |m ﹣1|+5m +1=0是一元一次方程,则m 的值是( ) A .0B .1C .2D .2或011.方程2x ﹣4=3x +6的解是( ) A .﹣2B .2C .﹣10D .1012.若(5x+2)与(﹣2x+7)互为相反数,则2﹣x的值为()A.﹣1B.1C.5D.﹣513.下列方程变形过程正确的是()A.由x+1=6x﹣7得x﹣6x=7﹣1B.由4﹣2(x﹣1)=3得4﹣2x﹣2=3C.由得2x﹣3=0D.由得2x=914.在有理数范围内定义运算“*”,其规则为a*b=﹣,则方程(2*3)(4*x)=49的解为()A.﹣3B.﹣55C.﹣56D.5515.根据“x的3倍与5的和比x的2倍少1”列出方程是()A.3x+5=2x+1B.3x+5=2x﹣1C.3(x+5)=2x﹣1D.3(x+5)=2x+116.一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了()天.A.10B.20C.30D.2517.如图是某运算程序,该程序是循环迭代的一种.根据该程序的指令,如果输入x的值是10,那么得到第1次输出的值是5;把第1次输出的值再次输入,那么第2次输出的值是6;把第2次输出的值再次输入,那么第3次输出的值是3;…,第2018次输出的值是()A.4B.3C.2D.118.在国道107工程施工现场,调来72名司机师傅参加挖土和运土工作,已知3名司机师傅挖出的土1名司机师傅恰好能开车全部运走,怎样分配这72名司机师傅才能使挖出的土能及时运走?解决此问题,可设:派x名司机师傅挖土,其他的人运土,列方程①=;②72﹣x=;③x+3x=72;④=3上述所列方程,正确的有()个.A.1B.2C.3D.4三.解答题(共7小题)19.解方程:(1)5x+2=3(x+2)(2)=120.如图,池塘边有一块长为18m,宽为10m的长方形土地,现在将其余三面留出宽都是xm的小路,中间余下的长方形部分做菜地,用整式表示:(1)菜地的长a=m,宽b=m;(2)菜地面积S=m2;(3)当x=0.5m时,菜地面积是多少?21.之前我们学习了一元一次方程的解法,下面是一道解一元一次方程的题:解方程﹣=1老师说:这是一道含有分母的一元一次方程,我们可以根据等式的性质,可以把方程的两边同乘以6,这样就可以去掉分母了.于是,小明按照老师说的方法进行了解答,小明同学的解题过程如下:解:方程两边同时乘以6,得×6﹣×6=1…………①去分母,得:2(2﹣3x)﹣3(x﹣5)=1………②去括号,得:4﹣6x﹣3x+15=1……………③移项,得:﹣6x﹣3x=1﹣4﹣15…………④合并同类项,得﹣9x=﹣18……………⑤系数化1,得:x=2………………⑥上述小明的解题过程从第步开始出现错误,错误的原因是.请帮小明改正错误,写出完整的解题过程.22.(1)已知3m+7与﹣10互为相反数,求m的值.(2)若a的相反数还是a,b=﹣3,c是最大的负整数,求a+b﹣c的值.23.用一段长60厘米的铁丝围成一个长方形,如果长方形的宽是长的,求这个长方形的长和宽.24.2018年的夏季特别炎热,某空调厂家研究决定多生产A、B、C三种型号的空调共2000台,其中A、B、C三种型号的空调多生产的数量比为1:6:3,问A、B、C三种型号的空调各多生产多少台?25.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动.已知点A的速度是1单位长度/秒,点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求请在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点在(1)中的位置,数轴上是否存在一点P到点A,点B的距离之和为16,并求出此时点P表示的数;若不存在,请说明理由.(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C 一直以10单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?参考答案与试题解析一.填空题(共8小题)1.若练习本每本a元,铅笔每支b元,那么代数式8a+3b表示的意义是买8本练习本和3支铅笔需要的钱数.【解答】解:8a+3b表示的意义是买8本练习本和3支铅笔需要的钱数,故答案为:买8本练习本和3支铅笔需要的钱数.2.已知x﹣2y+3=8,那么整式2x﹣4y﹣2的值是8.【解答】解:∵x﹣2y+3=8,∴x﹣2y=5,∴原式=2(x﹣2y)﹣2=10﹣2=8.故答案为:8.3.如果x7﹣2k+2=5是关于x的一元一次方程,那么k=3.【解答】解:根据题意得:7﹣2k=1,解得:k=3,故答案为:3.4.若P=2y﹣2,Q=2y+3,2P﹣Q=3,则y的值等于5.【解答】解:把P=2y﹣2,Q=2y+3,代入2P﹣Q=3,得2(2y﹣2)﹣(2y+3)=3整理,得2y=10,所以y=5.故答案为:55.当x=1时,代数式x+1与3x﹣5的值互为相反数.【解答】解:根据题意得:x+1+3x﹣5=0,移项合并得:4x=4,解得:x=1,故答案为:1.6.已知a、b、c、d为有理数,现规定一种新运算:=ad﹣bc,那么当=4时,则x=﹣0.5.【解答】解:由题意,得5(2x+3)﹣4(1﹣x)=4,解得x=﹣0.5,故答案为:x=﹣0.517.七、八年级学生分别到李中水上森林公园和施耐庵纪念馆参加社会实践活动,共648人,到李中水上森林公园的人数是到施耐庵纪念纪念馆人数的2倍多48人.设到施耐庵纪念馆的人数为x,可列方程为x+2x+48=648.【解答】解:设到施耐庵纪念馆的人数为x,则到李中水上森林公园的人数为(2x+48),根据题意得:x+2x+48=648.故答案为:x+2x+48=648.8.如图,在2018年10月的月历上,任意圈出一个由3个数组成的竖列如果它们的和为36,那么其中最小的数是2018年10月5号.【解答】解:设3个数中最小的数为x,则另外2数为x+7,x+14,根据题意得:x+(x+7)+(x+14)=36,解得:x=5.故答案为:5.二.选择题(共10小题)9.比x的五分之三多7的数表示为()A.B.C.D.【解答】解:假设出这个数为x:∵x的五分之三是为x,比x的五分之三多7的数即为:x+7;故选:A.10.若关于x的方程(m﹣2)x|m﹣1|+5m+1=0是一元一次方程,则m的值是()A.0B.1C.2D.2或0【解答】解:因为方程是关于x的一元一次方程,所以|m﹣1|=1,且m﹣2≠0解得m=0.故选:A.11.方程2x﹣4=3x+6的解是()A.﹣2B.2C.﹣10D.10【解答】解:移项,得2x﹣3x=6+4整理,得﹣x=10,系数化为1,得x=﹣10.故选:C.12.若(5x+2)与(﹣2x+7)互为相反数,则2﹣x的值为()A.﹣1B.1C.5D.﹣5【解答】解:由题意,得5x+2+(﹣2x+7)=0,解得x=﹣3,2﹣x=5,故选:C.13.下列方程变形过程正确的是()A.由x+1=6x﹣7得x﹣6x=7﹣1B.由4﹣2(x﹣1)=3得4﹣2x﹣2=3C.由得2x﹣3=0D.由得2x=9【解答】解:A、∵x+1=6x﹣7,∴x﹣6x=﹣7﹣1,选项A错误;B、∵4﹣2(x﹣1)=3,∴4﹣2x+2=3,选项B错误;C、∵,∴2x﹣3=0,选项C正确;D、∵,∴2x=﹣9,选项D错误.故选:C.14.在有理数范围内定义运算“*”,其规则为a*b=﹣,则方程(2*3)(4*x)=49的解为()A.﹣3B.﹣55C.﹣56D.55【解答】解:根据题中的新定义得:﹣×(﹣)=49,整理得:56+7x=441,解得:x=55,故选:D.15.根据“x的3倍与5的和比x的2倍少1”列出方程是()A.3x+5=2x+1B.3x+5=2x﹣1C.3(x+5)=2x﹣1D.3(x+5)=2x+1【解答】解:由题意可得:3x+5=2x﹣1.故选:B.16.一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了()天.A.10B.20C.30D.25【解答】解:设乙中途离开了x天,根据题意得:×40+×(40﹣x)=1,解得:x=25,则乙中途离开了25天.故选:D.17.如图是某运算程序,该程序是循环迭代的一种.根据该程序的指令,如果输入x的值是10,那么得到第1次输出的值是5;把第1次输出的值再次输入,那么第2次输出的值是6;把第2次输出的值再次输入,那么第3次输出的值是3;…,第2018次输出的值是()A.4B.3C.2D.1【解答】解:把x=10代入得:×10=5,把x=5代入得:5+1=6,把x=6代入得:×6=3,把x=3代入得:3+1=4,把x=4代入得:×4=2,把x=2代入得:×2=1,把x=1代入得:1+1=2,依此类推,∵(2018﹣4)÷2=1002,∴第2018次输出的结果为1.故选:D.18.在国道107工程施工现场,调来72名司机师傅参加挖土和运土工作,已知3名司机师傅挖出的土1名司机师傅恰好能开车全部运走,怎样分配这72名司机师傅才能使挖出的土能及时运走?解决此问题,可设:派x名司机师傅挖土,其他的人运土,列方程①=;②72﹣x=;③x+3x=72;④=3上述所列方程,正确的有()个.A.1B.2C.3D.4【解答】解:设挖土的人的工作量为1.∵3人挖出的土1人恰好能全部运走,∴运土的人工作量为3,∴可列方程为:①=;②72﹣x=;④=3,故①②④正确,故正确的有3个,故选:C.三.解答题(共7小题)19.解方程:(1)5x+2=3(x+2)(2)=1【分析】(1)依次经过去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次经过去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)5x+2=3(x+2),去括号得:5x+2=3x+6,移项得:5x﹣3x=6﹣2,合并同类项得:2x=4,系数化为1得:x=2,(2)﹣=1,去分母得:5(x﹣3)﹣2(4x+1)=10,去括号得:5x﹣15﹣8x﹣2=10,移项得:5x﹣8x=10+15+2,合并同类项得:﹣3x=27,系数化为1得:x=﹣9.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程是解题的关键.20.如图,池塘边有一块长为18m,宽为10m的长方形土地,现在将其余三面留出宽都是xm的小路,中间余下的长方形部分做菜地,用整式表示:(1)菜地的长a=(•18﹣2x)m,宽b=(10﹣x)m;(2)菜地面积S=(18﹣2x)(10﹣x)m2;(3)当x=0.5m时,菜地面积是多少?【分析】(1)根据题意表示出菜地的长与宽即可;(2)根据长方形面积公式表示出菜地面积S即可;(3)把x的值代入计算即可求出S的值.【解答】解:(1)根据题意得:菜地的长a=(18﹣2x)m,b=(10﹣x)m;(2)菜地的面积为S=(18﹣2x)(10﹣x)m2;(3)当x=0.5时,S=(18﹣1)×(10﹣0.5)=17×9.5=161.5(m2).故答案为:(1)(18﹣2x),(10﹣x);(2)(18﹣2x)(10﹣x)【点评】此题考查了代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.21.之前我们学习了一元一次方程的解法,下面是一道解一元一次方程的题:解方程﹣=1老师说:这是一道含有分母的一元一次方程,我们可以根据等式的性质,可以把方程的两边同乘以6,这样就可以去掉分母了.于是,小明按照老师说的方法进行了解答,小明同学的解题过程如下:解:方程两边同时乘以6,得×6﹣×6=1…………①去分母,得:2(2﹣3x)﹣3(x﹣5)=1………②去括号,得:4﹣6x﹣3x+15=1……………③移项,得:﹣6x﹣3x=1﹣4﹣15…………④合并同类项,得﹣9x=﹣18……………⑤系数化1,得:x=2………………⑥上述小明的解题过程从第①步开始出现错误,错误的原因是利用等式的性质漏乘.请帮小明改正错误,写出完整的解题过程.【分析】检查小明同学的解题过程,找出出错的步骤,以及错误的原因,写出正确的解题过程即可.【解答】解:第①步开始出现错误,错误的原因是利用等式的性质漏乘;故答案为:①;利用等式的性质漏乘;正确的解题过程为:解:方程两边同时乘以6,得:×6﹣×6=6,去分母,得:2(2﹣3x)﹣3(x﹣5)=6,去括号,得:4﹣6x﹣3x+15=6,移项,得:﹣6x﹣3x=6﹣4﹣15,合并同类项,得:﹣9x=﹣13,系数化1,得:x=.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.22.(1)已知3m+7与﹣10互为相反数,求m的值.(2)若a的相反数还是a,b=﹣3,c是最大的负整数,求a+b﹣c的值.【分析】(1)利用相反数的性质列出方程,求出方程的解即可得到m的值;(2)确定出a与c的值,代入原式计算即可求出值.【解答】解:(1)根据题意得:3m+7=10,解得:m=1;(2)根据题意得:a=0,b=﹣3,c=﹣1,则原式=0﹣3+1=﹣2.【点评】此题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.23.用一段长60厘米的铁丝围成一个长方形,如果长方形的宽是长的,求这个长方形的长和宽.【分析】根据长方形的长与宽的关系设出长与宽,根据周长为60厘米列出方程,求出方程的解即可得到结果.【解答】解:设长方形的长为x厘米,则宽为x厘米,根据题意得:2(x+x)=60,解得:x=18,×18=12(厘米),答:长方形的长为18厘米,宽为12厘米.【点评】此题考查了一元一次方程的应用,弄清关系式长方形的周长=2(长+宽)是解本题的关键.24.2018年的夏季特别炎热,某空调厂家研究决定多生产A、B、C三种型号的空调共2000台,其中A、B、C三种型号的空调多生产的数量比为1:6:3,问A、B、C三种型号的空调各多生产多少台?【分析】设A、B、C三种型号的空调多生产的数量分别为x台,6x台,3x台,根据A、B、C三种型号的空调共2000台,列出方程,求解即可.【解答】解:设A、B、C三种型号的空调多生产的数量分别为x台,6x台,3x台根据题意可得:x+6x+3x=2000解得:x=200∴6x=1200台,3x=600台答:A、B、C三种型号的空调多生产的数量分别为:200台,1200台,600台.【点评】本题考查了一元一次方程的应用,找出正确的等量关系是本题的关键.25.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动.已知点A的速度是1单位长度/秒,点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求请在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点在(1)中的位置,数轴上是否存在一点P到点A,点B的距离之和为16,并求出此时点P表示的数;若不存在,请说明理由.(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C 一直以10单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?【分析】(1)由点A,B的运动速度、运动方向及运动时间,可求出出发运动3秒时点A,B表示的数;(2)设点P表示的数为x,分x<﹣3,﹣3≤x≤12及x>12三种情况考虑,由PA+PB=16,即可得出关于x的一元一次方程,解之即可得出结论;(3)设点B需用t秒钟,才可追上点A,根据两点的速度之差×运动时间=两点间的距离,即可得出关于t的一元一次方程,解之即可得出t值,再结合点C的运动速度,即可求出点C从开始运动到停止运动行驶的路程.【解答】解:(1)∵﹣1×3=﹣3,4×3=12.∴出发运动3秒时,点A表示的数为﹣3,点B表示的数为12.将其标记在数轴上,如图所示.(2)设点P表示的数为x.当x <﹣3时,(﹣3﹣x )+(12﹣x )=16, 解得:x =﹣;当﹣3≤x ≤12时,x ﹣(﹣3)+(12﹣x )=15≠16, ∴方程无解;当x >12时,x ﹣(﹣3)+(x ﹣12)=16, 解得:x =.综上所述:数轴上存在一点P 到点A ,点B 的距离之和为16,此时点P 表示的数为﹣或.(3)设点B 需用t 秒钟,才可追上点A , 根据题意得:(4﹣1)t =12﹣(﹣3), 解得:t =5, ∴10t =50.答:点C 从开始运动到停止运动,行驶的路程是50个单位长度.人教版七年级数学上册第三章一元一次方程单元测试 (含答案)一、单选题 1.若()1280m m x -++=是一元一次方程,则m 为( )A .2B .2-C .2±D .1-2.若 是方程 的解,则代数式 的值为( ) A.-5B.-1C.1D.53.下列方程中是一元一次方程的是( ) A.B. C.D.4.下列解方程过程中,变形正确的是( ) A.由5x ﹣1=3,得5x=3﹣1 B.由,得C.由,得D.由,得2x ﹣3x=15.方程23x +=的解是( ) A .1x =;B .1x =-;C .3x =;D .3x =-.6.若代数式32x +与代数式510x -的值互为相反数,则x 的值为( )A.1B.0C.-1D.27.若x=0 是方程3x-2m=1 的解,则m 的值是()A. B.2 C.-2 D.08.根据下列条件可列出一元一次方程的是( )A.a与l的和的3倍B.甲数的2倍与乙数的3倍的和C.a与b的差的20% D.一个数的3倍是59.有一道数学的题目如图所示,两个天平都平衡,则三个球体的重量等于几个正方体的重量?()A.2B.3C.4D.510.解方程5x-3=2x+2,移项正确的是()A.5x-2x=3+2B.5x+2x=3+2C.5x-2x=2-3D.5x+2x=2-311.一辆汽车从山南泽当饭店出发开往拉萨布达拉宫.如果汽车每小时行使千米,则小时可以到达,如果汽车每小时行使千米,那么可以提前到达布达拉宫的时间是()小时.A. B. C. D.12.小明和爸爸妈妈三人玩跷跷板.三人的体重一共为千克,爸爸坐在跷跷板的一端,体重只有妈妈一半的小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地.那么小明的体重可能是()A.千克B.千克C.千克D.千克二、填空题13.已知()1240a a x--+=是关于x 的一元一次方程,则a =______.14.一列方程如下排列:1142x x -+=的解是2x =, 2162x x -+=的解是3x =, 3182x x -+=的解是4x =. ……根据观察所得到的规律,请你写出其中解是2019x =的方程是______.15.甲、乙、丙三数之比是2:3:4,甲、乙两数之和比乙、丙两数之和大30,则甲、乙、丙分别为________________________。
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?【答案】(1)解:设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据题意得:3×(2x+3x)=15,解得:x=1,∴3x=3,2x=2,答:动点A的运动速度为3个单位长度/秒,动点B的运动速度为2个单位长度/秒;(2)解:3×3=9,2×3=6,∴运动到3秒钟时,点A表示的数为﹣9,点B表示的数为6;(3)解:设运动的时间为t秒,当A、B两点向数轴正方向运动时,有|3t﹣2t﹣15|=4,解得:t1=11,t2=19;当A、B两点相向而行时,有|15﹣3t﹣2t|=4,解得:t3= 或t4= ,答:经过、、11或19秒,A、B两点之间相距4个单位长度.【解析】【分析】(1)根据已知:动点A、B的运动速度比之是3∶2,因此设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据两点相距15,列方程,求解即可。
(2)根据两点的运动速度,就快求出A、B两点运动到3秒时停止运动,就可得出它们的位置。
(3)设运动的时间为t秒,分两种情况:当A、B两点向数轴正方向运动时;当A、B两点相向而行时,分别根据A、B两点之间相距4个单位长度,列方程求出t的值。
2.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数________;(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x-3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.试探索:①:若|x-8|=2,则x =________.②:|x+12|+|x-8|的最小值为________.(3)动点P从O点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,A,P两点之间的距离为2;(4)动点P,Q分别从O,B两点,同时出发,点P以每秒5个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.【答案】(1)﹣12(2)6或10;0(3)1.2或2(4)3.2或1.6【解析】【解答】(1)数轴上B表示的数为8-20=﹣12;(2)①因为互为相反数的两个数绝对值相同,所以由│x-8│=2可得x-8=2或﹣(x-8)=2,解得x=6或10;②因为绝对值最小的数是0,所以│x+12│+│x-8│的最小值是0;(3)根据│A点在数轴上的位置-t秒后P点在数轴上的位置│=A、P两点间的距离列式得│8-5t│=2,因为互为相反数的两个数绝对值相同,所以8-5t=2或﹣(8-5t)=2,解得t=1.2或2;(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离列式得│﹣12+10t-5t│=4,因为互为相反数的两个数绝对值相同,所以﹣12+10t-5t=4或﹣(﹣12+10t-5t)=4,解得t=3.2或1.6.【分析】(1)抓住已知条件:B是数轴上位于点A左侧一点,且AB=20,且点A表示的数是8,就可求出OB的长,从而可得出点B表示的数。
(2)①根据|x-8|=2,可得出x-8=±2,解方程即可求出x的值;根据因为绝对值最小的数是0,因此可得出│x+12│+│x-8│的最小值是0。
(3)根据A,P两点之间的距离为2,可列出方程│8-5t│=2,再解方程求出t的值。
(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离,可得出方程│﹣12+10t-5t│=4,再利用绝对值等于4的是为±4,可列出﹣12+10t-5t=±4,解方程求出t的值即可。
3.数轴上,两点对应的数分别为,,且满足;(1)求,的值;(2)若点以每秒个单位,点以每秒个单位的速度同时出发向右运动,多长时间后,两点相距个单位长度?(3)已知从向右出发,速度为每秒一个单位长度,同时从向右出发,速度为每秒个单位长度,设的中点为,的值是否变化?若不变求其值;否则说明理由.【答案】(1)解:∵|a+6|+(b﹣12)2=0,∴a+6=0,b﹣12=0,∴a=﹣6,b=12(2)解:设x秒后A,B两点相距2个单位长度,根据题意得:|(2x+12)﹣(3x﹣6)|=2,解得:x1=16,x2=20.答:16秒或20秒后A,B两点相距2个单位长度(3)解:当运动时间为t秒时,点M对应的数为t﹣6,点N对应的数为2t+12.∵NO的中点为P,∴PO= NO=t+6,AM=t﹣6﹣(﹣6)=t,∴PO﹣AM=t+6﹣t=6,∴PO﹣AM为定值6.【解析】【分析】(1)根据绝对值和平方的非负性,求出a、b的值即可;(2)根据题意列出方程,求出含绝对值方程的解;(3)根据题意得到点M对应的数为t﹣6,点N对应的数为2t+12,再由NO的中点为P,得到PO、AM的代数式,得到PO﹣AM的值.4.某手机经销商购进甲,乙两种品牌手机共 100 部.(1)已知甲种手机每部进价1500 元,售价2000 元;乙种手机每部进价3500 元,售价4500 元;采购这两种手机恰好用了 27 万元 .把这两种手机全部售完后,经销商共获利多少元?(2)已经购进甲,乙两种手机各一部共用了5000 元,经销商把甲种手机加价50%作为标价,乙种手机加价 40%作为标价.从 A,B 两种中任选一题作答:A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利1570 元.求甲,乙两种手机每部的进价.B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后10 部按标价的八折全部售完.在这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.【答案】(1)解:设购进甲种手机部,乙种手机部,根据题意,得解得:元.答:销商共获利元.(2)解:A: 设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:3000元,2000元.B:乙种手机:部,甲种手机部,设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:2000元,3000元.【解析】【分析】(1)甲的单价乘以部数加上乙的单价乘以部数等于总数,根据题意列出,然后解方程得到结果。
(2)A 根据进价加利润等于甲和乙的售价,列出方程B 先求出甲乙的部数,表示出甲乙的标价,列出关系式,50部甲×甲的标价+10部甲×甲标价的八折+40部乙×乙的标价=利润率乘以成本,即可解出结果。
5.已知:如图所示,O为数轴的原点,A,B分别为数轴上的两点,A点对应的数为﹣30,B点对应的数为100.(1)A、B的中点C对应的数是________;(2)若点D数轴上A、B之间的点,D到B的距离是D到A的距离的3倍,求D对应的数.(提示:数轴上右边的点对应的数减去左边对应的数等于这两点间的距离);(3)若P点和Q点是数轴上的两个动点,当P点从B点出发,以6个单位长度/秒的速度向左运动时,Q点也从A点出发,以4个单位长度/秒的速度向右运动,设两点在数轴上的E点处相遇,那么E点对应的数是多少?【答案】(1)35(2)解:设点D对应的数是x,则由题意,得100﹣x=3[x﹣(﹣30)]解得,x=2.5所以点D对应的数是2.5.(3)解:设t秒后相遇,由题意,4t+6t=130,解得,t=13,BE=100﹣6t=78,100﹣78=22答:E点对应的数是22.【解析】【解答】解:(1)点A表示的数是﹣30,点B表示的数是100,所以AB=100﹣(﹣30)=130因为点C是AB的中点,∴AC=BC==65A、B的中点C对应的数是100﹣65=35.故答案为:35.【分析】(1)根据点A和点B的坐标,求出AB之间的距离,取其中点,找出C点对应的数字即可。
(2)根据题意,可以设点D对应的数为x,根据其与AB两点之间的距离关系,列出方程解出x的值,即可得到D点对应的坐标。
(3)根据题意设二者相遇的时间为t,根据二者运动的距离之和为线段AB的长度列出方程,解出t的值,即可得到E点对应的数。
6.已知,两正方形在数轴上运动,起始状态如图所示.A、F表示的数分别为-2、10,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,两正方形同时出发,相向而行,小正方形的速度是大正方形速度的两倍,两个正方形从相遇到刚好完全离开用时2秒.完成下列问题:(1)求起始位置D、E表示的数;(2)求两正方形运动的速度;(3)M、N分别是AD、EF中点,当正方形开始运动时,射线MA开始以15°/s的速度顺时针旋转至MD结束,射线NF开始以30°/s的速度逆时针旋转至NE结束,若两射线所在直...线.互相垂直时,求MN的长.【答案】(1)解:∵A、F表示的数分别为-2、10,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,∴D表示的数为:-2+2=0,E表示的数为:10-4=6(2)解:设小正方形的速度是2x个单位/秒,大正方形的速度是x个单位/秒,则有2(2x+x)=2+4,解得:x=1,∴小正方形的速度是2个单位/秒,故小正方形速度2个单位/秒,大正方形速度1个单位/秒(3)解:设运动时间为t,由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°,①15°t+30°t=90°,解得t=2,此时小正方形运动了4个单位,D点在数字4的位置,大正方形运动了2个单位,E点也在数字4的位置,即D,E重合,∵M、N分别是AD、EF中点,∴MN=3;②15°t+30°t=270°,解得t=6,此时小正方形运动了12个单位,D点在数字12的位置,大正方形运动了6个单位,E点在数字0的位置,∵M、N分别是AD、EF中点,∴此时M点位于数字11的位置,N点位于数字2的位置,∴MN=11-2=9;综上:当t=2时,MN=3;当t=6时,MN=9.【解析】【分析】(1)利用图象和正方形的边长即可得出;(2)设小正方形的速度是2x 个单位/秒,大正方形的速度是x个单位/秒,然后列方程计算即可;(3)由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°两种情况,根据两种情况分别讨论即可.7.如图,在数轴上点A表示数a,点C表示数c,且 .我们把数轴上两点之间的距离用表示两点的大写字母一起标记.比如,点A与点B之间的距离记作AB.(1)求AC的值;(2)若数轴上有一动点D满足CD+AD=36,直接写出D点表示的数;(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A,C在数轴上运动,点A、C的速度分别为每秒 3个单位长度,每秒4个单位长度,运动时间为t秒.①若点A向右运动,点C向左运动,AB=BC,求t的值.②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,请求出m的值.【答案】(1)解:∵|a+10|+(c-20)2=0,∴a+10=0,c-20=0,∴a=-10,c=20(2)解:当点D在点A的左侧,∵CD+AD=36,∴AD+AC+AD=36,∴AD=3,∴点D点表示的数为-10-3=-13;当点D在点A,C之间时,∵CD+AD=AC=30≠36,∴不存在点D,使CD+AD=36;当点D在点C的右侧时,∵CD+AD=36,∴AC+CD+CD=36,∴CD=3,∴点D点表示的数为20+3=23;综上所述,D点表示的数为-13或23(3)解:①∵AB=BC,∴|(1+t)-(-10+3t)|=|(1+t)-(20-4t)|∴t= 或;②∵2AB-m×BC=2×(11+4t)-m(19+3t)=(8-3m)t+22-19m,且2AB-m×BC的值不随时间t的变化而改变,∴8-3m=0,∴m= .【解析】【分析】(1)根据非负性可求出答案;(2)分三种情况:当点D在点A的左侧;当点D在点A,C之间时;当点D在点C的右侧时;进行讨论可求D点表示的数;(3)①用t的代数式表示AB,BC,列出等式可求解;②用t的代数式表示AB,BC,代入代数式可求解;8.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a-b|.利用数形结合思想回答下列问题:(1)数轴上表示1和3两点之间的距离是________(2)数轴上表示和-1的两点之间的距离表示为________(3)若表示一个有理数,且,则=________(4)若表示一个有理数,且=8,则有理数的值是________【答案】(1)2(2)或(3)6(4)-5,3【解析】【解答】解:(1)由题意得1和3两点之间的距离为;(2)和-1的两点之间的距离表示为,或;(3)∵-4<x<2, 则x-2<0, x+4>0,∴=-(x-2)+(x+4)=-x+2+x+4=6;(4)当x<-4时,则x-2<0,x+4<0,=-(x-2)-(x+4)=2-x-x-4=-2x-2=8,解得x=-5;当4≤x<2, 则x-2<0, x+4≥0,=-(x-2)+(x+4)=-x+2+x+4=6≠8,无解;当x≥2时,则x-2≥0, x+4>0,∴=x-2+x+4=2x+2=8解得x=3.【分析】(1)(2)由题意可知数轴两点间的距离即是两点所表示的数相减所得的数的绝对值,据此计算即可;(3)先根据x的范围确定绝对值里面的代数式的正负,再根据绝对值的非负性去绝对值,然后再化简计算即得结果;(4)分三种情况讨论,即把整个数轴分三部分,即x<-4, -4≤x<2, x≥2,然后分别根据绝对值的非负性去绝对值,化简计算,再根据所得的结果等于8解方程求出x即可.9.为保持水土,美化环境,W中学准备在从校门口到柏油公路的这一段土路的两侧栽一些树,并要求土路两侧树的棵数相等间距也相等,且首、尾两端均栽上树,现在学校已备好一批树苗,若间隔30米栽一棵,则缺少22棵;若间隔35米栽一棵,则缺少14棵. (1)求学校备好的树苗棵数.(2)某苗圃负责人听说W中学想在校外土路两旁栽树的上述情况后,觉得两树间距太大,既不美观,又影响防风固沙的效果,决定无偿支援W中学300棵树苗.请问,这些树苗加上学校自己备好的树苗,间隔5米栽一棵,是否够用?【答案】(1)解:设学校备好的树苗为x棵,依题意,得:30(﹣1)=35(﹣1),解得:x=36.答:学校备好的树苗为36棵.(2)解:由(1)可知,校外土路长840米.若间隔5米栽树,则共需树苗2( +1)=338(棵),300+36=336(棵),∵336<338,∴如果间隔5米栽一棵树,这些树苗不够用.【解析】【分析】(1)设树苗x棵,则根据题意可分别表示出土路的长度分别为30(﹣1)和 35(﹣1),列出方程求解即可;(2)由(1)知校外土路长,再根据间距5米栽一棵,计算出所需总树苗数,通过与已有树苗数比较即可判断是否够用。