16 A ANOVA
- 格式:ppt
- 大小:1.01 MB
- 文档页数:70
Single(7)单因素单向分组方差分析例1、北京农业大学从南斯拉夫引进15个T型恢复材料,为了研究其应用价值,以农大139为对照,进行了个农艺性状表现的观察。
其中6个恢复材料和农大139各5个单株抽穗期观察结果如表1:表1 引进恢复系抽穗期观察资料恢复系单株抽穗期1 2 3 4 5PI277016 11 11 10 12 11Lot-1 13 13 12 14 14Texas 12 12 13 12 12 zgR2806-78 13 12 12 13 13zgR2268-78 18 19 18 18 19vk-64-28 19 18 20 19 19农大139 10 11 10 11 10 例2、5个玉米品种的盆栽试验,调查了穗长(cm)性状,得资料如下表2,试检验品种穗长间有无差异。
(各处理的重复数不等)表2 5个玉米品种的穗长品种穗长(cm)重复数B121.5 19.5 20 22 18 20 6B216 18.5 17 15.5 20 16 6B319 17.5 20 18 17 5B421 18.5 19 20 4B515.5 18 17 16 4例3、表3为同一公猪配种的3头母猪所产的各头仔猪的断奶时体重(斤),试分析母猪对仔猪体重效应的差异显著性。
(每组样本容量不等)表3 三头母猪的仔猪断奶时体重母猪别n i观察值No.1 8 24 22.5 24 20 22 23 22 22.5No.2 7 19 19.5 20 23.5 19 21 16.5No.3 9 16 16 15.5 20.5 14 17.5 14.5 15.5 19单因素双向分组方差分析小区内没有重复观察值例4、5个水稻品种的产量比较试验,随机区组设计,4次重复,获得每个小区产量(Kg)资料如表4所示:试分析这5个水稻品种间产量水平有无显著差异。
表4 水稻5个品种的每区产量(Kg)品种区组(重复)ⅠⅡⅢⅣ农林130 61 57 55 56西海67 53 52 50 51十石52 58 55 57农林87 58 56 53 53农林18 53 51 54 55 例5、将一种生长激素配成M1、M2、M3、M4、M5五种浓度,并用H1、H2、H3、三种时间浸渍某大豆品种的种子,45天后得各处理每一植株的平均干物重(g)于下表5,试作方差分析。
第7章ANCOV A(协方差分析):非参数和随机方法Peter S. PetraitisSteven J. BeaupreArthur E. Dunham7.1生态学问题生态学参数往往不能满足参数假定的要求。
当这种情况发生时,随机方法是更常用的参数方法,比如协方差分析(ANCOV A)和回归分析的一个很好的替代选择。
使用随机方法很简单,并且由于标准参数ANCOV A为生态学家所熟知,我们用它来激发对非参数和随机方法的优点和存在问题的讨论。
我们通过对检验随机和非参数方法分析性别和生境影响响尾蛇种群的个体大小来进行讨论,年龄在这里被作为一个混淆(confounding)因素考虑。
个体大小的变异常见于许多动物中(即, 无脊椎动物: Paine 1976; Lynch1977; Sebens 1982; Holomuzki 1989; 两栖动物: Nevo 1973; Berven1982;Bruce和Hairson 1990; 有鳞的爬行动物:Tinkle 1972;Dunham 1982; Schwaner 1985; Dunham等1989; 哺乳动物:Boyce 1978;Melton 1982; Ralls和Harvey 1985), 并且由于其与许多繁殖特征, 比如成熟年龄,子代个体的数量和大小,和亲代对子代的投入, 有协变关系,从而引起进化生态学家的极大兴趣,(Stearns 1992; Roff 180, 1992)。
对个体大小变异的解释包括资源的季节性,质量和可利用性(如,Case 1978; Palmer 1984; Schwaner和Sarre 1988), 基于个体大小的捕食性(Paine 1976), 种群密度(Sigurjonsdottir 1984), 特性替代(Huey和Pianka 1974; Huey 等1974)和生长速率的渐变变异(Roff 1980)。
然而个体大小的地理变异可能常由于个体大小决定的生长速率和种群年龄结构的相互作用所致。
页脚内容1页脚内容2页脚内容3页脚内容4页脚内容5页脚内容6页脚内容7(6)分析:根据方差分析的多重比较结果,分别进行了两两比较,以A2品种与A1、A3、A4的比较为例。
A2品种与A1、A3、A4种的均值相差分别为-31.70000、-7.02500、-16.82500,而且所有的相伴概率sig=0.000<0.05,这说明了A2种与其他三种饲料均具有显著性差异,而且从产量均值的差异上看Mean Difference (I-J)均低于其他3种品种,说明A2种的效果没有其他品种的效果好。
第二题:某公司希望检测四种类型的轮胎A,B,C,D的寿命(由行驶的里程数决定),见表6.18(单位:千英里)(数据文件为data6-5.sav),其中每种轮胎应用在随机选择的6辆汽车上。
在显著性水平0.05下判断不同类型轮胎的寿命间是否存在显著性差异?(数据来源:《统计学(第三版)》,M.R.斯皮格尔,科学出版社)表6.18 四种轮胎的寿命数据页脚内容8页脚内容9页脚内容10Sum of Squares dfMeanSquare F Sig.Between Groups 77.500325.8332.388.099WithinGroups216.3332010.817 Total293.83323(3)均值折线图页脚内容11页脚内容12页脚内容13页脚内容143A344A44土地1B142B243B344B44(2)多因素方差分析及交互检验结果表Tests of Between-Subjects Effects Dependent Variable:产量SourceType IIISum of Squares dfMeanSquare F Sig.CorrectedModel1571.938a15104.796..页脚内容15页脚内容16(4)分析:有最终的交互影响折线图来看,A2品种在B1土地上种植最终的产量最高。
One-Way Analysis of V ariance (ANO V A): Comparing More than Two MeansO V E R V I E WIn this lab, you will be using a one-way analysis of variance (ANOVA) to compare more than two population means.OBJECTIVESBy the end of this laboratory, you will be able to:•Perform and interpret a one-way analysis of variance using Minitab•Perform and interpret a multiple comparison procedure to find which groups are significantly different from each other.EQUIPMENT•PC with Minitab•Computer diskette to save filesB AC K G R O U ND M A TE R I A LStatistical Terms and Topics•Response variable or dependent variable •Factors •Quantitative factors •Qualitative factors •Factor levels •Treatments •Experimental unit •Designed experiment •Observational experiment•Sum of Squares for Treatment (SST)•Sum of Squares for Error (SSE)•Mean Square for Treatments (MST)•Mean Square for Error (MSE)• “F” test statistic•Multiple comparison procedure •Tukey’s Method1-W a yA N O V AL a b o r a t o r yP S Y C H O L O G Y S T A T I S T I C S L A B O R A T O R Y – 1-W A Y A N O V A ScenarioForty students (10 freshmen, 10 sophomores, 10 juniors, and 10 seniors) were asked to report their GPA to one decimal point.ExerciseI N S T R U C T I O N S1. How do your believe that the data from the groups should relate. *Hint: Do you haveany concrete evidence that the average of the data from any one group should be specifically larger or smaller than the average of the data from any other group.Write out your hypothesis below._______________________________________________________________________________________________________________________________________________________________________________________________________________2. Now formulate the hypothesis using statistical notation.The null hypothesis is denoted H o .The alternative / research hypothesis is denoted H a .The general forms of the null and alternative hypotheses are:H o : µ1 = µ2 = …µkH a : at least two of the k treatments differNow write the specific null and alternative hypothesis for the present scenario.3. The test statistic for ANOVA is the F statistic. The formula to find F is:)()(MSE Error MeanSquare MST Treatment MeanSquare F =Look back at you definitions for MST and MSE and write out why this makes sense.(*Hint: It may help to draw a diagram of the groups.)__________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________D A T AFreshman Sophomores Juniors Seniors2.5 2.33.5 2.32.2 1.6 2.9 2.51.42.8 1.6 2.02.63.2 3.3 3.12.4 2.43.6 2.71.4 3.4 3.1 3.92.4 2.43.2 3.02.63.4 2.6 3.92.33.0 3.7 3.82.93.4 3.8 3.8COMPUTER EXERCISE1.Enter the data into the columns and name them Fresh, Soph, Junior, and Senior.2.Run descriptive statistics on the sets of data.What are the means and standard deviations for each set of data?Fresh: mean _____standard deviation _____Soph: mean _____standard deviation _____Junior: mean _____standard deviation _____Senior: mean _____standard deviation _____3.The assumptions for ANOVA are listed below. For each assumption, indicatewhether or not you think the assumption is reasonable for this scenario.1.Samples are selected randomly and independently from the respectivepopulations. _______________2.All k population probability distributions are normal. ____________3. The k population variances are equal. ___________4.First, choose a maximum value of α that you are willing to tolerate.α = _____5.Perform the ANOVA on Minitab.•Go to Stat>ANOVA>One-way (Unstacked)•Select each of the four columns•Click OkF test statistics = _____p-value = _____df = _____6.Interpret the results of the one-way ANOVA.If the observed significance level (p-value) of the F-test statistic is less than the chosen value of α, reject the null hypothesis in favor of the alternative. Otherwise, do not reject the null hypothesis.*Note that rejecting the null hypothesis only lets you know that at least one mean is significantly different. You don’t know which mean is significantly different, or how many means are different from each other.Based on the p-value and α, what do you conclude about the test?_____________________________________________________________________ 7.Go back to step number 5 and look at the means and standard deviations of the threesets of data. Also, look back over your answer to number 3. Based on all of this information, which group(s) look as if they may be significantly different from each other? Why?_____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ 8.[Multiple comparison procedures are higher-level statistical processes that are usedto determine whether the means are different for all possible pairs of the factors.These multiple comparisons are used as a follow-up when significant differences are detected in population means.]Since there was a significant difference found between at least two population means for the ANOVA test, you will be using a multiple comparison procedure to determine which of the population means were significantly different from each other. Tukey’s multiple comparison test is used when the sample sizes of the treatments are equal. Therefore, we will be using Tukey’s test.*Note: there are other tests to use if the sample sizes of the treatments are equal.9.Perform the Tukey test.To use a multiple comparison procedure in Minitab, the data must be stacked.First, stack the data•Go to MANIP > STACK•Select the columns that you want to stack.•Mark Store Stacked Data in Column of worksheet.•Check Use variable names in subscript columns.•Click OK.•Name the response column “GPA”, and the factor column “Factor”.Next, run the ANOVA on the stacked data.•Go to Stat >ANOVA > One-way•Select GPA for Response•Select Factor for Factor•Click Comparison Button•Select Tukey•Enter 5 in the family error•Click OKLook at the confidence intervals for each of the pairs of factors. Which pair(s) contain a significant difference? (*Note: Recall that if an interval does not contain zero, there is a statistically significant difference between the corresponding means. If the interval does contain zero, the difference between the means is not statistically significant.)µ1 - µ2 = _______µ2 - µ3 = _______µ1 - µ3 = _______µ3 - µ4 = _______µ1 - µ4 = _______µ2 - µ4 = _______Family error rate = _____10. Use complete sentences to state the conclusions of this analysis.P S Y C H O L O G Y S T A T I S T I C S L A B O R A T O R Y–1-W A Y A N O V AApplication to PsychologyThe power of the test is stronger if the number of data points is the same in each factor. Ethics ApplicationKeep the identities of the individuals separate from the data, which is in this case the GPA's。
《卓越绩效评价准则》测试题(3)一、单选题(每题2分, 共40分)1、《卓越绩效评价准则》中,“产品与服务结果”是对应于()的结果。
[单选题] *A、领导B、战略C、顾客与市场(正确答案)D、资源2、利润总额和总资产贡献率可看作()结果的测量指标。
[单选题] *A、人力资源B、市场C、战略D、财务(正确答案)3、一般来说,在下面过程中()属于主要价值创造过程。
[单选题] *A、财务与会计B、交付与服务(正确答案)C、设备管理D、公共关系4、标杆是指针对相似的活动,其过程和结果()最佳的运作实践和绩效。
[单选题] *A、代表组织所在行业的内部和外部B、仅代表组织所在行业内部C、仅代表组织所在行业外部D、代表组织所在行业的内部或外部(正确答案)5、战略目标实现率和实施计划完成率属于:()。
[单选题] *A、顾客与市场的结果B、财务结果C、过程有效性结果D、领导方面的结果(正确答案)6、在进行顾客满意度调查时,如果组织的产品和服务是通过中间商交付给顾客的,则:()。
[单选题] *A、只需要向中间商调查B、只需要调查最终用户C、向中间商和最终用户同样调查D、分别向中间商和最终用户调查(正确答案)7、GB/T19580-2012引用了下面的哪些标准?() [单选题] *A、GB/T19000(正确答案)B、GB/T19001C、GB/T19004D、A+C8、GB/T19580-2012共有多少个评分项?() [单选题] *A、22个B、23个(正确答案)C、20个D、25个9、组织应根据()确定目标顾客群。
[单选题] *A、自身的核心价值观B、顾客对自身产品的感知C、自身产品的特点和服务优势(正确答案)D、顾客的忠诚度10、重复多次购买组织产品或服务并积极向他人推荐的顾客属于组织的()。
[单选题] *A、直接顾客B、最终顾客C、忠诚顾客(正确答案)D、消费者11、DOE常用于下列哪些场合:() [单选题] *A、产品研发B、工艺优化C、过程控制D、A+B(正确答案)12、QC小组的特点有自主性、民主性、科学性、()。
方差分析简介1. 引言方差分析(analysis of variance,简称ANOV A)是一种假设检验方法,即基本思想可概述为:把全部数据的总方差分解成几部分,每一部分表示某一影响因素或各影响因素之间的交互作用所产生的效应,将各部分方差与随机误差的方差相比较,依据F分布作出统计推断,从而确定各因素或交互作用的效应是否显著。
因为分析是通过计算方差的估计值进行的,所以称为方差分析。
方差分析的主要目标是检验均值间的差别是否在统计意义上显著。
如果只比较两个均值,事实上方差分析的结果和t检验完全相同。
只所以很多情况下采用方差分析,是因为它具有如下两个优点:(1)方差分析可以在一次分析中同时考察多个因素的显著性,比t检验所需的观测值少;(2)方差分析可以考察多个因素的交互作用。
方差分析的缺点是条件有些苛刻,需要满足如下条件:(1)各样本是相互独立的;(2)各样本数据来自正态总体(正态性:normality);(3)各处理组总体方差相等(方差齐性:homogeneity of variance)。
因此在作方差分析之前,要作正态性检验和方差齐性检验,如不满足上述要求,可考虑作变量变换。
常用的变量变换方法有平方根变换,平方根反正弦变换、对数变换及倒数变换等。
方差分析在医药、制造业、农业等领域有重要应用,多用于试验优化和效果分析中。
2. 单因素方差分析2.1 基本概念(1)试验指标:在一项试验中,用来衡量试验效果的特征量称为试验指标,有时简称指标,也称试验结果,通常用y表示。
它类似于数学中的因变量或目标函数。
试验指标用数量表示称为定量指标,如速度、温度、压力、重量、尺寸、寿命、硬度、强度、产量和成本等。
不能直接用数量表示的指标称为定性指标。
如颜色,人的性别等。
定性指标也可以转化为定量指标,方法是用不同的数表示不同的指标值。
(2)试验因素:试验中,凡对试验指标可能产生影响的原因都称为因素(factor),也称因子或元,类似于数学中的自变量。
anova计算公式
ANOVA(方差分析)是一种统计方法,用于比较两个或多个组之间的平均值是否显著不同。
下面是ANOVA的计算公式:
总平方和(SST)= 组间平方和(SSB)+ 组内平方和(SSW)
其中,SST表示总平方和,表示所有数据离均值的偏离程度。
SSB 表示组间平方和,表示组间数据离总平均值的偏离程度。
SSW表示组内平方和,表示组内每个数据离组内平均值的偏离程度。
方差比(F)= 组间平方和(SSB)/组内平方和(SSW)
方差比用于比较组间方差和组内方差的大小关系,如果F值大于1,则说明组间方差较大,组内方差较小,组间差异显著。
反之,如果F值小于1,则说明组间方差较小,组内方差较大,组间差异不显著。
ANOVA的结果通常会得出F值和P值。
F值表示组间变异和组内变异的比值,P值表示该比值的显著性,一般来说,如果P值小于0.05,则认为组间差异显著。
- 1 -。