2019年初中数学-七年级【基本方法】代数式的值
- 格式:doc
- 大小:533.50 KB
- 文档页数:2
初中数学代数求值绝招
初中数学代数求值是一个重要且基础的环节,掌握好这一技巧可以提高学生在数学学习中的成绩。
以下是一些初中数学代数求值的绝招。
1. 多项式求值法
多项式是初中代数中常见的一个概念,其中最常见的就是二项式和三项式。
多项式求值的方法是将多项式中的未知数用已知的值代入,得到结果。
例如,求值多项式3x+4x-5,当x=2时,将x=2代入到多项式中,得到3*2+4*2-5=13。
2. 消元法
消元法是用代数式子消去其中的未知量,使得式子中只剩下一个未知量,从而求出未知量的值。
例如,求解下列方程组:
2x+3y=7
4x-5y=-3
可以采用消元法,将其中一个未知量表示成另一个未知量的函数形式,然后代入另一个方程中得到一个一元方程,从而求出另一个未知量的值,最终求出两个未知量的值。
3. 因式分解法
因式分解法是将代数式子分解成多个因式相乘的形式,从而求出未知量的值。
例如,求解下列方程:
2x+5x-3=0
可以采用因式分解法,将2x+5x-3分解成(2x-1)(x+3)=0的形式,
从而得到x=1/2或x=-3。
以上就是初中数学代数求值的绝招,通过掌握这些方法,可以提高解题效率,提高数学学习成绩。
什么叫做代数式和代数式的值?什么叫做代数式和代数式的值?用运算符号加、减、乘、除、乘方、开方把数字和表示数的字母连接起来所得的式子,叫做代数式。
特殊的,单独的一个数字或字母也可以叫做代用数代替代数式里的变数字母.计算所得的结果,叫做这个代数式的值。
的值是289。
注意事项关于代数式的分类应注意以下两点:1、要按代数式给出的初始形式分类,例如虽然可以化简为,但它仍然是分式;又如虽然可以化简为x2,但它仍然是无理式。
2、要按实施于指定的变数字母的运算分类。
例如对于变数字母x ,式子是有理式,式子是无理式。
分类在复数范围内,代数式分为有理式和根式。
有理式有理式包括整式(除数中没有字母的有理式)和分式(除数中有字母且除数不为0的有理式)。
这种代数式中对于字母只进行有限次加、减、乘、除和整数次乘方这些运算。
整式有包括单项式(数字或字母的乘积,或者是单独的一个数字或字母)和多项式(若干个单项式的和)。
1.单项式没有加减运算的整式叫做单项式。
单项式的系数:单项式中的数字因数叫做单项式(或字母因数)的数字系数,简称系数。
单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2.多项式几个单项式的代数和叫做多项式;多项式中每个单项式叫做多项式的项。
不含字母的项叫做常数项。
多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。
齐次多项式:各项次数相同的多项式叫做齐次多项式。
不可约多项式:次数大于零的有理系数的多项式,不能分解为两个次数大于零的有理数系数多项式的乘积时,称为有理数范围内不可约多项式。
实数范围内不可约多项式是一次或某些二次多项式,复数范同内不可约多项式是一次多项式。
对称多项式:在多元多项式中,如果任意两个元互相交换所得的结果都和原式相同,则称此多项式是关于这些元的对称多项式。
同类项:多项式中含有相同的字母,并且相同字母的指数也分别相同的项叫做同类项。
无理式我们把含有字母的根式、字母的非整数次乘方,或者是带有非代数运算的式子叫做无理式。
初中代数的基本运算知识点总结代数是数学中的一个重要分支,它涉及到符号、公式、方程等概念和运算。
初中代数是学习代数的起点,了解和掌握初中代数的基本运算知识点对于后续学习和解决实际问题都具有重要意义。
本文将对初中代数的基本运算知识点进行总结,分为四个部分:代数式的基本运算、整式的加减法、整式的乘法和整式的除法。
一、代数式的基本运算代数式是由变量、常数和运算符共同组成的表达式,它可以表示数、计算数和抽象概念。
代数式的基本运算包括求值、合并同类项、分解因式和展开式子等。
1. 求值:根据给定的数值代入变量,计算代数式的值。
例如,求代数式3x + 2y在x=2,y=3时的值,即将x=2,y=3带入3x + 2y,得到3×2 + 2×3 = 6 + 6 = 12。
2. 合并同类项:将含有相同变量的项合并。
例如,合并同类项2x + 3y - x + 4y,首先将2x和-x合并得到x,再将3y和4y合并得到7y,最终合并后的结果为x + 7y。
3. 分解因式:将代数式按公因式分解为多个因式的乘积。
例如,将代数式4x + 8y分解因式,首先找到4和8的最大公因数,即4,然后将每个项除以4得到x + 2y,最后分解因式的结果为4(x + 2y)。
4. 展开式子:将含有括号的代数式展开。
例如,展开代数式2(3x - y),将2分别与括号中的每一项相乘得到6x - 2y。
二、整式的加减法整式是由常数项和变量项的加减运算组成的代数式。
整式的加减法要注意保持同类项的位置不变,然后对同类项进行合并。
1. 整式的加法:对应位置上的同类项进行合并得到新的同类项。
例如,计算整式3x + 2y - 4x + 5y的结果,首先将同类项3x和-4x合并得到-x,再将2y和5y合并得到7y,最终的结果为-x + 7y。
2. 整式的减法:将减数变为相应系数的相反数,然后按整式的加法进行计算。
例如,计算整式3x + 2y - (4x - 5y)的结果,将减数4x和-5y变为-4x和5y,然后按整式的加法计算3x + 2y + (-4x) + 5y,最终的结果为-x + 7y。
第八讲代数式的值一、知识要点求代数式的值的主要方法:1、利用特殊值;2、先化简代数式,后代入求值;3、化简条件后代入代数式求值;4、同时化简代数式和条件式再代入求值;5、整体代入法;6、换元法。
二、例题示范例1、已知a为有理数,且a3+a2+a+1=0,求1+a+a2+a3+…+a2007的值。
提示:整体代入法。
例2已知a-b=5,ab=-1,求(2a+3b-2ab) -(a+4b+ab) -(3ab+2b-2a)的值。
提示:先化简,再求值。
例3、已知a+b+c=0,求(a+b)(b+c)(c+a)+abc的值。
提示:将条件式变形后代入化简。
例4、已知x2+4x=1,求代数式x5+6x4+7x3-4x2-8x+1的值。
提示:利用多项式除法及x2+4x-1=0。
例5、已知A=3x2n-8x n+ax n+1-bx n-1,B=2x n+1-ax n-3x2n+2bx n-1,A-B中x n+1项的系数为3,x n-1项的系数为-12,求3A-2B。
例6、化简:x-2x+3x-4x+5x-…+2001x-2002x。
例7、5个数-1, -2, -3,1,2中,设其各个数之和为n1,任选两数之积的和为n2,任选三个数之积的和为n3,任选四个数之积的和为n4,5个数之积为n5,求n1+n2+n3+n4+n5的值。
例8、已知y=ax5+bx3+cx+d,当x=0时,y=-3;当x=-5时,y=9。
当x=5时,求y的值。
提示:整体求值法,利用一个数的奇、偶次方幂的性质。
例9、若a,c,d是整数,b是正整数,且a+b=c,b+c=d,c+d=a,求a+b+c+d的最大值。
例10 若求x+y+z的值.提示令例11(x-3)5=ax5+bx4+cx3+dx2+ex+f,则a+b+c+d+e+f=______, b+c+d+e=_____.。
代数式求值方法运用已知条件,求代数式的值是数学学习的重要内容之一。
它除了按常规代入求值法,还要根据题目的特点,灵活运用恰当的方法和技巧,才能达到预期的目的。
下面举数例介绍常用的几种方法和技巧。
一、常值代换求值法常值代换法是指将待求的代数式中的常数用已知条件中的代数式来代换,然后通过计算或化简,求得代数式的值。
例1 已知ab=1,求221111b a +++的值 [解] 把ab=1代入,得221111b a +++ =22b ab aba ab ab +++ =ba ab a b +++ =1[评注] 将待求的代数式中的常数1,用a ·b 代入是解决该问题的技巧。
而运用分式的基本性质及运用法则,对代入后所得的代数式进行化简是解决该问题的保证。
二、运用“非负数的性质”求值法该法是指运用“若几个非负数的和为零,则每一个非负数应为零”来确定代数式中的字母的值,从而达到求代数式的值的一种方法。
例2 若实数a 、b 满足a 2b 2+a 2+b 2-4ab+1=0,求baa b +之值。
[解] ∵a 2b 2+a 2+b 2-4ab+1=(a 2b 2-2ab+1)(a 2-2ab+b 2) =(ab-1)2+(a-b)2 则有(ab-1)2+(a-b)2=0∴⎩⎨⎧==-.1,0ab b a解得⎩⎨⎧==;1,1b a⎩⎨⎧-=-=.1,1b a 当a=1,b=1时,b aa b +=1+1=2 当a=-1,b=-1时,baa b +=1+1=2[评注] 根据已知条件提供的有价信息,对其进行恰当的分组分解,达到变形为几个非负数的和为零,这一新的“式结构”是解决本题的有效策略,解决本题要注意分类讨论的方法的运用。
三、整体代入求值法整体代入法是将已条件不作任何变换变形,把它作为一个整体,代入到经过变形的待求的代数式中去求值的一种方法。
例3 若x 2+x+1=0,试求x 4+2003x 2+2002x+2004的值。
代数式求最值的方法
嘿,朋友!今天咱就来好好唠唠“代数式求最值的方法”。
先来说说配方法吧!就好比把一堆杂乱的积木整理好搭成一个漂亮的建筑。
比如x²+6x+5,咱就可以把它配成(x+3)²-4,这样不就能轻松找到最值啦!
然后呢,是利用不等式求最值,这就好像是给代数式装上了一个约束的框框。
比如说 2x+3y,咱知道x≥0,y≥0,x+y=4,那就能根据这些条件找出最值咯!
还有换元法哦!就像是玩一个变身游戏。
例如,看到根号下x²+1,可以令 t=根号下x²+1,哇,是不是顿时感觉不一样啦!
另外,判别式法也很厉害呀!就如同侦探在找线索一样。
例如对于二次函数y=ax²+bx+c,通过判别式来判断有没有最值,是不是超有趣的!
总之,这些方法各有各的奇妙之处,就看你怎么去运用啦!赶紧去试试吧,朋友!你一定会发现其中的乐趣和奥秘的!。
2019年中考数学如何求代数式的值
求代数式的值是数学中的一个重要的内容,它是和数学竞赛中的必考内容.求代数式的值的一般步骤是先代入,再计算求值.但在实际解题时,常常需要综合运用知识求值,现介绍一些求代数式的值的一些常用的方法,以供同学们参考.
一、单值代入求值
用单一的字母数值代替代数式中的字母,按代数式指明的运算,计算出结果;
例1当x=2时,求x3 x2-x 3的值.
析解:当x=2时,原式=23 22-2 3=13.
二、多值代入求值
用多个的字母数值代替代数式中的相应字母,按代数式指明的运算,计算出结果
例2当a=3,a-b=1时,代数式a2-ab的值.
析解:将a=3代入a-b=1得b=2,则原式=32-3。
初中数学重点梳理:代数式求值方法代数式求值方法知识定位学习了整式后,经常会遇到一些代数式的求值问题。
代数式涉及的求值类型、方法和技巧是比较多的,比如:特殊值、换元、配方等。
事实上,这些方法并不是绝对孤立不变的,有时需要多种方法一起使用才能灵活解决问题,解题时,要仔细观测,深入分析,以便选择合理的解题方法,做到简洁、快速解题。
知识梳理知识梳理:代数式求值常用方法1、利用非负数的性质若已知条件是几个非负数的和的形式,则可利用“若几个非负数的和为零,则每个非负数都应为零”来确定字母的值,再代入求值。
目前,经常出现的非负数有,,等。
2、化简代入法化简代入法是指先把所求的代数式进行化简,然后再代入求值,这是代数式求值中最常见、最基本的方法。
3、整体代入法当单个字母的值不能或不用求出时,可把已知条件作为一个整体,代入到待求的代数式中去求值的一种方法。
通过整体代入,实现降次、归零、约分的目的,以便快速求得其值。
4、特殊值法有些试题,用常规方法直接求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,把一般形式变为特殊形式进行判断,这时常常会使题目变得十分简单。
5、倒数法倒数法是指将已知条件或待求的代数式作倒数变形,从而求出代数式的值的一种方法。
6、参数法若已知条件以比值的形式出现,则可利用比例的性质设比值为一个参数,或利用一个字母来表示另一个字母。
7、配方法若已知条件含有完全平方式,则可通过配方,把条件转化成几个平方和的形式,再利用非负数的性质来确定字母的值,从而求得结果。
8、平方法在直接求值比较困难时,有时也可先求出其平方值,再求平方值的平方根(即以退为进的策略),但要注意最后结果的符号。
例题精讲【试题来源】【题目】已知25x=2000,80y=2000,则??+yx11=___________ 【答案】1【解析】【知识点】代数式求值方法【适用场合】当堂练习题【难度系数】2【试题来源】【题目】已知10m=20,10n=15,求293m n÷的值.【答案】81【解析】【知识点】代数式求值方法【适用场合】随堂课后练习【难度系数】2【试题来源】【题目】若2310a a -+=,求221a a+ 【答案】7 【解析】【知识点】代数式求值方法【适用场合】随堂课后练习【难度系数】2【试题来源】【题目】已知13x x-=,求441x x +的值。
代数式的值一、主要内容:1.代数式的值的概念:一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值。
注:1)字母的取值不能使代数式本身失去意义,如分母不能为零;2)不能使它所表示的实际问题失去意义,如求路程公式S=vt中,v,t不能取负数。
2.求代数式的值的方法:先代入后计算:注:1)代入时,只将相应的字换成相应的数,其它符号不变。
2)代数式中原来省略的乘号代入数值以后一定要还原。
3)对于已知一个比较复杂的代数式的值,求另一个代数式的常用的方法有整体代入法,代换法。
4)根据代数式所表示的运算顺序,按有关运算法则,计算出结果。
二、主要数学思想:代数式的值是由字母所取的值确定的,当代数式中的字母每取一个值时,代数式就表示一个确定的(数)值。
因此,求代数式的值是由一般(式)到特殊(数)的问题,通过求代数式的值,可进一步理解代数式的意义和作用。
三、例题讲解:例1 求下列代数式的值:(1) a2- +2 其中a=4, b=12,(2) 其中a= , b= .解:(1)当a=4, b=12时,a2- +2=42- +2=16-3+2=15(2)当a= ,b= 时,= = = 。
点评:(1)求代数式的值的解题步骤是:①指出代数式中的字母所取的值;②抄写原代数式;③把字母的值代入代数式中;④按规定的运算顺序进行计算。
(2)代数式的值是由代数式里字母所取的数的大小来确定的,代数式里的字母可取不同的值,但这些值必须使代数式和它所表示的实际数量有意义。
(1)题中的a不能取0,因为当a取0时,的分母为零,代数式无意义。
(2)题中a+b不能为0。
例2当a=-1,b=2,c=3时,求下列各代数式的值。
(1)(2)(a2+b2-c2)2(3)分析:求代数式在a=-1,b=2,c=3时的值,就是把代数式中的字a、b、c,分别用-1,2,3代替,按原来的运算顺序进行运算即可。
(1)(2)(a 2+b 2-c 2)2=[(-1)2+22-32]2=[-4]2=16(3)例3 已知a - =2,求代数(a - )2- +6+a 的值。
求代数式的值的方法代数式是由一个或多个数、字母和运算符号组成的数学式子。
它可以表示数学中的各种问题和关系,例如方程、不等式等。
计算代数式的值可以通过以下几种方法实现。
一、直接代入数值法:将代数式中的字母用具体数值代入,然后按照运算规则计算表达式的值。
这种方法适用于代数式中只包含基本的四则运算和整数的情况。
例如:计算2x+3y-4z的值,当x=2,y=3,z=1时,可以直接将数值代入进行计算。
2x+3y-4z=2*2+3*3-4*1=4+9-4=9二、化简代数式法:当代数式比较复杂时,可以通过化简来简化代数式,然后再通过直接代入数值法计算。
例如:计算3x^2 - 4xy + 2x - y^2的值,当x=2,y=3时,可以按照下面的步骤进行计算。
1.将代数式按照运算规则进行排列和化简:3x^2 - 4xy + 2x - y^2 = (3x^2 + 2x) + (-4xy - y^2)2.按照运算符号的优先级进行计算:(3x^2 + 2x) + (-4xy - y^2) = 3*2^2 + 2*2 + (-4*2*3 - 3^2)=12+4+(-24-9)=12+4-24-9=-17三、因式分解法:将代数式进行因式分解,然后根据因式分解的结果计算代数式的值。
例如:计算x^2-4x的值,可以进行因式分解:x^2-4x=x(x-4)当x=3时,可以代入计算:x(x-4)=3(3-4)=3*(-1)=-3四、解方程法:将代数式等于一些数,将该方程化简成一元一次方程,然后解方程得到代数式的值。
例如:计算3x+4=10的值,可以将该方程化简为一元一次方程:3x+4=103x=10-43x=6x=6/3x=2以上是计算代数式的几种常见方法,根据具体的代数式的特点和要求,也可以使用其他更为复杂的方法,如配方法、试错法等。
总之,根据代数式的特点和问题的要求,选择合适的方法来计算代数式的值。
代数式的值知识点一:代数式的值的概念如果把代数式里的字母用数代入,那么计算后得出的结果叫做代数式的值。
注意:(1)一般地,代数式的值不是固定不变的,它是随着代数式中字母取值的变化而变化的。
(2)代数式与代数式的值是两个不同的概念,代数式表述的是问题的一般规律,而代数式的值是这个一般规律下的特殊情形。
例一:下列代数式中,哪些式子的值可以为0? (1)1x ;(2)13x -. 二:填写下表,并观察下列两个代数式的值的变化情况。
(1)随着n 的值逐渐变大,两个代数式的值如何变化? (2)估计一下,哪个代数式的值先超过100?变试题:1、填写上表,并观察代数式的值随n 的变化而变化的情况:(1)随n 的值逐渐变大,两个代数式的值如何变化?当n 非常大时两个代数式的值接近于什么值?(2)当n 为何值时,两个代数式的值相等? 2、下列说法:①代数式21a+的值永远是正的;②代数式2a b+中的字母可以是任何数;③代数式2a b +只代表一个值;④代数式2x x-中字母x 可以是0以外的任何数。
其中正确的个数是( )A.1个B.2个C.3个D.4个知识点二:求代数式的值1、求代数式的值的一般步骤:(1)用数值代替代数式中的字母,简称“代入”;(2)按照代数式中给出的运算计算出结果,简称“计算”。
2、求代数式的值时应注意的事项:(1)代入时,将相应的字母换成已给定的数值,运算符号、原来的数及运算顺序都不能改变;(2)代入时恢复必要的运算符号,如省略的乘号要还原;(3)当字母取值为负数或分数时,代入时应注意将该数添上括号。
例二:当11033,,x =-时,求代数式233x x +的值。
变试题:1、当122,a b ==-时,求下列代数式的值: (1)()2a b -;(2)22b a -+;(3)22a b +2、m=2时,代数式m-2m+3m-1的值是( ) A.18B.8C.5D.125考点一、直接代入法求代数式的值例一:若a,b 互为倒数,当a=2时,求代数式()()3222b ba ab aba--+的值。
点击代数式求值方法运用已知条件,求代数式的值是数学学习的重要内容之一。
它除了按常规代入求值法,还要根据题目的特点,灵活运用恰当 的方法和技巧,才能达到预期的目的。
下面举数例介绍常用的几 种方法和技巧。
一、常值代换求值法常值代换法是指将待求的代数式中的常数用已知条件中的代数式来代换,然后通过计算或化简,求得代数式的值。
...…'11......例1 已知ab=1,求——匕——的值把ab=1代入,得ab=1[评注]将待求的代数式中的常数1,用ab 代入是解决该 问题的技巧。
而运用分式的基本性质及运用法则,对代入后所得 的代数式进行化简是解决该问题的保证。
二、运用“非负数的性质”求值法该法是指运用“若几个非负数的和为零,则每一个非负数应 为零”来确定代数式中的字母的值,从而达到求代数式的值的一种方法。
b aab ab a ab b例2 石头数a、b《两足a2b2+a2+b 2-4ab+1=0 ,求一一a b 之值。
[解].a2b2+a2+b 2-4ab+1=(a 2b2-2ab+1)(a 2-2ab+b 2)=(ab-1) 2+(a-b) 2则有(ab-1) 2+(a-b) 2=0- a b 0,♦♦ab 1.解得a 1,a1,b 1;b 1.当a=1 ,b=1 时,b-=1+1=2 a b当a=-1 , b=-1 时,-a=1+1=2 a b[评注]根据已知条件提供的有价信息,对其进行恰当的分组分解,达到变形为几个非负数的和为零,这一新的“式结构” 是解决本题的有效策略,解决本题要注意分类讨论的方法的运用。
三、整体代入求值法整体代入法是将已条件不作任何变换变形,把它作为一个整体,代入到经过变形的待求的代数式中去求值的一种方法。
例3 若x2+x+1=0,试求x4+2003x 2+2002x+2004 的值。
[解]vx4+2003x 2+2002x+2004=x 4-x+2003x 2+2003x+2003+1=x(x-1)(x 2+x+1)+2003(x 2+x+1)+1乂x2+x+1=0.x4+2003x 2+2002x+2004=1[评注],•x2+x+1=0 x不是实数,那么通过求出x的值,再求代数式x4+2003x 2+2002x+2004 之值,显然枉然无望。
初中数学说课稿:《代数式的值》天我说课的题目是:《代数式的值》。
我准备从如下几个方面展示:教材分析,教法、学法分析,教学程序设计,评价与反思。
一、教材分析(一)、教材内容的地位和作用《代数式的值》选自义务教育课程标准实验教科书(人教版)七年级数学(上)第二章,是我个人根据学生的知识基础较差、认知能力不强以及思维品质不够活跃等实际情况而在教学中加以补充的一节课。
代数学作为一门学科,它的课题首要的就是研究用字母表示式子的变形规则和解方程的方法。
因此,本节课既是算术知识的延续,又为后面知识的学习起着导航作用,即:对于代数我们研究什么?如何研究?(二)、教学目标根据新《课标》要求和上述教材分析,结合学生的情况,我制定了以下教学目标:知识、能力目标:了解代数式的值的概念,知道代数式求值的书写格式,能区分易混淆语言,清楚代数式求值过程中易出错的地方,会解决简单的问题,并在此基础上应用变式训练进行拔高。
情感目标:使学生明白数学来源于生活,学习数学是为了解决实际问题,,培养学生科学的学习态度,同时通过多媒体演示激发学生探究数学问题的兴趣。
(三)、教学重点、难点教学重点:代数式求值的书写格式。
教学难点:代数式求值的书写格式,变式训练知识的运用。
二:教法、学法分析本节课涉及的知识点不多,知识的切入点比较低,根据课标的要求,代数式的值的概念属于了解内容,所以本节课较多的时间用在代数式求值知识的运用上。
教师以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果。
而学生在教师的鼓励引导下小结方法,克服思维定势,并通过小组讨论、组际竞赛等多种方式增强学习的成就感及自信心,从而培养浓厚的学习兴趣。
三、教学程序设计教学流程设计思路与媒体应用分析(一)创设情境,引入课题同学们,是不是在座的每一位都喜欢游戏呢?下面我们就进行一个小游戏:一、传数游戏(大屏幕出示规则)(二)探索交流,获得新知引导学生回忆游戏的过程,点出课题并总结代数式的值的概念。
七年级上册数学代数式的值一、代数式的值的概念。
1. 定义。
- 用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果叫做代数式的值。
例如,对于代数式2x + 3,当x = 5时,把x = 5代入代数式2x+3中,得到2×5 + 3=10 + 3=13,13就是当x = 5时这个代数式的值。
2. 注意事项。
- 代数式中的字母取值必须使代数式有意义。
比如在代数式(1)/(x - 1)中,x≠1,因为当x = 1时,分母为0,这个代数式无意义。
- 在代入求值时,要注意运算顺序。
先算乘方,再算乘除,最后算加减,如果有括号先算括号里面的。
二、求代数式的值的步骤。
1. 步骤一:代入。
- 当已知代数式中字母的值时,将字母的值准确代入代数式中。
例如,对于代数式3a - b,已知a = 2,b=-1,就把a = 2和b = - 1代入代数式中,得到3×2-(-1)=6 + 1=7。
2. 步骤二:计算。
- 按照代数式中的运算顺序进行计算。
再如,对于代数式x^2+2x - 3,当x = - 2时,先计算x^2=(-2)^2=4,然后2x = 2×(-2)=-4,最后代入代数式计算得4+(-4)-3=-3。
三、整体代入法。
1. 概念。
- 有些代数式求值时,不一定要直接求出字母的值,而是可以把代数式中的一部分看作一个整体,用整体代入的方法求值。
2. 示例。
- 例如,已知a + b = 5,求代数式2(a + b)+3的值。
这里把a + b看作一个整体,因为a + b = 5,所以2(a + b)+3 = 2×5+3=10 + 3=13。
- 再如,已知x^2+x = 3,求代数式2x^2+2x - 5的值。
把x^2+x看作一个整体,2x^2+2x - 5=2(x^2+x)-5,因为x^2+x = 3,所以2×3-5 = 6 - 5=1。
求代数式的值的几种常见方法(一)、直接代入,巧用整体法练习1:若a=3,b=-1,则a22b -=___。
练习2:若代数式2y 2+3y +7的值是8,则9-6y -4y 2=___。
(二)、化简求值法例1:若a 1b 1-=3,求bab a b ab a ---+2232的值。
(三)、巧设比值法例2:若432z y x==,则z y x z y x 33-++-=_____。
(四)、巧用非负数的意义 例3:若,01||)3(2=-+++++x y x z y 则x +y +z =____。
练习3:若y =x -3+3-x +5,则(x -y )2=____。
(五)、巧用平方法和配方法例4:已知x =2-10,求x 2-4x -6的值。
例5:若a -b =32+,b -c =32-,求222c b a ++-ab -bc -ac 的值。
练习4:(1)若x 2+3x +1=0,则x 2+21x =____。
(2)若a2+b2+c2+26=2a+6b+8c,求222c b a abc -+的值。
(3)若x =2-3,求544942234+--+--x x x x x x 的值。
(六)、巧用倒数关系,逆向思维解题例6:已知132+-x x x =1,求16242+-x x x 的值。
练习5:(1)已知a、b、c是实数,且b a ab +=31,c a ac +=51,cb bc +=41,求ac bc ab abc ++的值。
(2)若y x xy +=1,2=+zy yz ,3=+z x xz ,求x 的值。
七)、巧用方程的解及一元二次方程根与系数的关系例7:已知a是方程x 2-3x +1=0的根,求193223+-a a a 的值。
例8:已知实数a 、b 满足a 2-2a -5=0,b 2-2b -5=0, 且a ≠b , 求abb a 222+的值。
尝试练习:已知实数a 、b 满足,0520097,072009522=++=++b b a a 且ab ≠1,则b a =_____。
代数式的值
基本方法基本能力
1.运用整体思想求代数式的值
整体思想是中学数学中的重要思想,解题难点是式子的变形,变形的依据是有理数的运算律,尤其是分配律.
运用整体思想求代数式的值时应注意以下问题:
(1)严格按求值的步骤和格式去做,根据已知条件或者已知条件的变形求代数式的值时,要特别注意符号;
(2)一个代数式中的同一个字母,只能用同一个数值代替;若有多个字母,代入时要注意对应关系,千万不能混淆;若是整体代入,就把一个代数式看成整体加上括号;
(3)在代入值时,原来省略的乘号要恢复,而数字和其他运算符号不变;
(4)求有乘方运算的代数式的值,在代入时要注意加括号;
(5)运算时要注意运算顺序.
【例2-1】如果代数式a+2b的值为5,那么代数式2a+4b-3的值等于( ).
A.7 B.2
C.-7 D.4
解析:先观察条件与所求的关系,即2a+4b-3=2(a+2b)-3,根据此关系,可以将代数式a+2b 的值整体代入所求的代数式.
即原式=2(a+2b)-3=2×5-3=7.
答案:A
【例2-2】如果代数式2x2+3x+7的值为8,那么代数式4x2+6x-9的值等于__________.
解析:观察题中的两个代数式2x2+3x和4x2+6x,可以发现4x2+6x=2(2x2+3x),因此由2x2+3x+7的值为8,求得2x2+3x=1,再代入代数式求值.
∵2x2+3x+7=8,
∴2x2+3x=1,
∴4x2+6x-9=2(2x2+3x)-9=2-9=-7.
答案:-7
解技巧利用整体代入法求代数式的值代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式2x2+3x的值,然后利用“整体代入法”求代数式的值.
2.利用代数式的值解决问题
代数式能够非常简明和灵活地表示实际问题的数量关系,当我们遇到实际问题的时候,可以先建立实际问题与某一字母之间的联系,即根据题意列出代数式,再把所要求的已知数代入所求的代数式求值,从而解决问题.
解题时,关键要先理清题目的数量关系,利用常见的数量关系式列出代数式.例如:长方形、正方形、圆等平面图形的面积公式;每天用电的度数×30=一个月的用电度数;今年产量=去年产量×(1+增产率)等.
利用代数式的值解决问题的一般步骤是:①根据题意分析题目中的数量关系;②正确列出代数式表示题目中的一般关系;③将已知的条件代入所列的代数式,求出代数式的值.
警误区代数式中字母的取值要符合实际意义代数式的值要随字母的取值而发生变化,注意字母的每一个取值都要符合实际意义.
【例3-1】某车间第一个月产值为m万元,平均每月增产率为a%,
求:(1)用代数式表示出第二个月的产值;
(2)当m=20,a=5时第二个月的产值.
分析:平均每月增产率为a%,即第二个月的产值比第一个月的产值增加m×a%万元,所以第二个月的产值为(m+m·a%)万元.
解:(1)第二个月的产值为(m+m·a%)万元或m(1+a%)万元;
(2)当m=20,a=5时,m+m·a%=20+20×5%=21(万元).
析规律增长率问题中的数量关系若每月的增产率不变,下一个月的产值就等于本月产值+本月产值×增产率.
【例3-2】下面是由一些火柴棒拼出的一系列图形,第n个图形由n个正方形组成,通过观察图形,
(1)用n表示第n个图形中火柴棒根数s的公式;
(2)当n =20时,计算s 的值.
分析:n 表示正方形的个数,每个正方形由四根火柴棒组成,而当n ≥2时,每两个正方形有一条公共边,即每个图形除第一个正方形外,其余正方形只需三根火柴棒,这样每个图形所需火柴棒是:正方形个数×3+1.
解:(1)s =3n +1.
(2)当n =20时,s =3×20+1=61(根).
思维拓展 创新应用
3.通过转化求代数式的值
有的代数式求值往往不直接给出字母的取值,而是通过告诉一个代数式的值,且已知代数式中的字母又无法具体求出来.这时,我们应想到采用整体思想解决问题.
有些题目没有直接给出字母x ,y 的值,需要我们根据已知条件把x ,y 的值先求出来,再代入含有x ,y 的代数式求值.
如果所求代数式中不含与已知条件有关的未知数,例如x ,且各项系数符号未变,可采用一般向特殊转化的方法.
【例4-1】 已知(x +1)3=ax 3+bx 2+cx +d ,求a +b +c +d 的值.
分析:显然不可能分别求出a ,b ,c ,d 的值,但仔细观察可以发现当x =1时,右边就会出现a +b
+c +d 的形式,而左边=(1+1)3正好得出结果.
解:令x =1,则(1+1)3=a +b +c +d ,
所以a +b +c +d =8.
【例4-2】 已知代数式x -12
的值是0,求代数式x 2-5x -2 011的值. 分析:代数式x -12
的值是0,所以分子x -1=0,从而x =1,再把x 的值代入所求的代数式求值. 解:根据题意得,x -1=0,
∴x =1,当x =1时,x 2-5x -2 011=1-5-2 011=-2 015.。