模拟退火法
- 格式:ppt
- 大小:1.48 MB
- 文档页数:43
一、概论1.1 问题概述在自然科学以及大多数科学当中和社会生活里经常出现最大或最小的问题,我们从小学开始学习大小比较,一直到高中大学时的最优解问题,都是一种名为最优化问题.最优化问题在大多是领域中都有重要的地位,例如管理科学、计算机科学、图像处理等等需要大量数据的学科中都存在着需要解决的组合优化问题。
用我们比较容易理解的说法就是已知一组固定的函数,令这组函数所对应的函数到达最大或最小值.而我们所想到的最简单的方法便是穷举法,然而这种方式存在这大量的数据计算穷举的缺点。
优化组合问题中的NP问题是一个很麻烦的问题,它解得规模会随着问题的规模增大而增大,求解所需的时间也会随问题的规模增大而成指数级增长,而当规模过大时就会因为时间的限制而失去了可行性。
旅行商问题(TSP)是优化组合问题中最为著名的一个问题,它的特点是容易描述却难于求解.这是一个经典的图论问题,假设有n个城市,用表示.城市之间距离为,i,j=1,2,3,···,n,假设所有城市之间两两连通,要求从一个城市出发,把所有城市都走一遍,而TSP问题就是恰好所有城市都走一遍,而所走路径形成回路且路径最短.将这个问题对应在一个n个顶点的完全图上,假设图为对称图,则要从个可能的解当中找到最小的解,需要的对比则要进行次,当的数值增大时,那么需要的次数也会随之以几何数倍增长,例如每秒运算一亿次的计算机,当需要的时间也只是0.0018秒,当需要的时间却是17年,可当时所需的时间却猛增到年,这个结果是我们所不想看到的。
优化组合问题的目标函数是从组合优化问题的可行解集当中求出最优解。
组合优化问题有三个基本要素:变量,约束和目标函数,在求解过程中选定的基本参数成为标量,对于变量的取值的所有限制称之为约束,表示可行的方案的标准的函数称之为目标函数。
随着问题种类的不同以及问题规模的扩大,要找到一种能够已有限代价来求解最优化问题的通用方法一直都是一个难题,建立用最大的可能性求解全局解一直是一个重要问题。
五大常用算法模拟退火算法
模拟退火算法是一种常用的求解优化问题的算法,它可以用于解决各种实际问题。
本文将介绍模拟退火算法及其应用,同时还会介绍其他四种常用的算法。
一、模拟退火算法
模拟退火算法是一种启发式算法,适用于求解复杂的优化问题。
它源于固体物理学中的退火过程,通过模拟退火过程来寻求最优解。
模拟退火算法通过随机跳出局部最优解的过程,寻找全局最优解。
二、其他四种常用算法
1.遗传算法
遗传算法是一种模拟自然进化过程的优化方法。
它通过对可行解进行适应度评价、选择、交叉和变异等操作,将优秀的个体遗传给下一代,从而不断优化解的质量。
2.蚁群算法
蚁群算法是一种模拟蚂蚁寻找食物的行为而发展出来的算法。
它通过模拟蚂蚁在搜索过程中的信息素沉积和信息素挥发,不断优化搜索路径,从而找到最优解。
3.粒子群算法
粒子群算法是一种模拟粒子在空间中移动的算法。
它通过模拟粒子在搜索空间中的移动和互相协作,不断优化搜索路径,从而找到最优解。
4.人工神经网络
人工神经网络是一种模拟人脑神经元工作原理的算法。
它通过构建神经元之间的连接和权重来实现对输入信息的处理和输出结果的预测,可以用于分类、回归等问题的求解。
三、总结
以上介绍了五种常用的算法,它们都可以用于解决不同类型的优化问题。
在实际应用中,需要根据具体问题的特点选择合适的算法。
模拟退火算法是其中一种常用算法,具有较为广泛的应用。
模拟退火算法模拟退火是一种通用概率算法,目的是在固定时间内在一个大的搜寻空间内寻求给定函数的全局最优解。
它通常被用于离散的搜索空间中,例如,旅行商问题。
特别地,对于确定的问题,模拟退火算法一般是优于穷举法。
这是由于我们一般只需得到一个可接受的最优解,而不是精确的最优解。
退火一词来源于冶金学。
退火(见图1)是将材料加热后再经特定速率冷却,目的是增大晶粒的体积,并且减少晶格中的缺陷。
材料中的原子原来会停留在使内能有局部最小值的位置,加热使能量变大,原子会离开原来位置,而随机在其他位置中移动。
退火冷却时速度较慢,使得原子有较多可能可以找到内能比原先更低的位置。
因此,我们将热力学的理论应用到统计学上,将搜寻空间内每一点想象成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。
而模拟退火算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。
模拟退火原理最早是 S. Kirkpatrick, C. D. Gelatt 和 M. P. Vecchi 在1983年所创造的。
而 V . Černý 在1985年也独立发明了此算法。
1. 问题描述数学上的最优化问题一般描述为如下形式:()()minimize()g 0,1,2,,subject to 0,1,2,,i i f x x i m h x i p≤=⎧⎪⎨==⎪⎩ 其中,():R n f x R →称作问题的目标函数,()g 0i x ≤称作问题的不等式约束条件,()0i h x =称作问题的等式约束条件。
寻求上述问题的最优解的过程就类似于从热动力系统的任意一个初始状态向内能最小的状态转移的过程,即退火过程。
2. 模拟退火算法基本思想模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有图1 物理退火原理图序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
模拟退火法
模拟退火法(Simulated Annealing,SA)是一种常用的局部搜索优
化算法,是近几年来被广泛应用于特定问题的有效解法之一。
它模拟一种
由室温变低到固定温度的淬火过程,源自热力学中,被认为可以找到系统
能量最小值的演化算法。
模拟退火法根据物理中的概念设计,优点是能够
找到一个比较好的(比直接定值法要佳)最优解,可以解决一些概率问题,并能够使一个比较好的解脱离局部最优解,模拟退火法以当前温度作为搜
索的启动点,并以迭代的方式慢慢降低温度,从而让解的搜索收敛到全局
最优解,经过对相关因素的综合评价,模拟退火法以较少的时间,比较快
的收敛速度找到最优的局部最优解。
模拟退火法简单解释:为了找出地球上最高的山,一群兔子们开始想办法。
首先兔子们用酒将自己灌醉了,它们随机地跳了很长的时间。
在这期间,它们可能走向高处,也可能踏入平地。
但是,随着时间的流逝,它们渐渐清醒了并朝着最高的方向跳去。
最后就达到了珠穆朗玛峰。
所谓的退火是指将固体加热到足够高的温度,使分子呈随机排列状态,然后逐步降温使之冷却,最后分子以低能状态排列,固体达到某种稳定状态。
重要理解:假设材料在状态i之下的能量为E(i),那么材料在温度T时从状态i进入状态j就遵循如下规律:如果E(j)<= E(i),接受该状态被转移如果E(j)> E(i),则状态转移以如下的概率被接受: exp{[E(i)-E(j)]/KT}其中,K 是物理学中的波尔兹曼常数,T 是材料温度。
关键参数和操作的设定:从算法的流程上看,模拟退火算法包括三函数两准则,即状态产生函数、状态接受函数、温度更新函数、内循环终止准则和外循环终止准则,这些环节的设计将决定模拟退火算法的优化性能。
此外,初温的选择对模拟退火算法性能也有很大影响。
状态产生函数:原则:设计状态产生函数(领域函数)的出发点应该是尽可能保证产生的候选解遍布全部的解空间。
通常,状态产生函数由两部分组成,即产生候选解的方式和候选解产生的概率分布。
方法:在当前状态的领域结构内以一定概率方式(均匀分布、正态分布、指数分布等)产生状态接受函数:原则:函数一般以概率的方式给出,不同接受函数的差别主要在于接受概率的形式不同。
设计状态接受概率,应该遵循以下原则:(1)在固定温度下,接受使目标函数下降的候选解的概率要大于使目标函数上升的候选解概率;(2)随温度的下降,接受使目标函数上升的解的概率要逐渐减少;(3)当温度趋于零时,只能接受目标函数下降的解。
方法:状态接受函数的引入是模拟退火算法实现全局搜索的最关键的因素,模拟退火算法中通常用min[1,exp(-△C/t)]作为状态接受函数。
爬山算法与模拟退火比较在计算机科学领域,寻找最优解是一项常见的任务。
爬山算法和模拟退火算法是两种常用的优化算法,本文将对这两种算法进行比较。
一、爬山算法爬山算法是一种局部搜索算法,常用于解决最优化问题。
它的基本思想是从当前解出发,沿着梯度方向不断地移动,直到达到一个局部最优解。
爬山算法具有以下特点:1. 简单直观:爬山算法的实现相对简单,容易理解和实现。
2. 局部搜索:由于爬山算法只关注当前解的邻域,并不会全局搜索解空间,因此容易陷入局部最优解。
3. 容易受到初始解的影响:由于算法在初始解附近进行局部搜索,因此初始解的选择会直接影响搜索结果。
4. 高计算效率:爬山算法通过不断地调整当前解,找到更优的解。
由于只需计算当前解的邻域,所以计算效率较高。
二、模拟退火算法模拟退火算法是一种全局优化算法,它通过模拟固体退火的过程来进行搜索。
模拟退火算法具有以下特点:1. 全局搜索:模拟退火算法通过接受劣解的概率来跳出局部最优解,从而有机会搜索到全局最优解。
2. 逐步降温:模拟退火算法在搜索过程中逐渐减小退火温度,降低随机性,以便更好地接受优解。
3. 较复杂的参数设置:模拟退火算法需要合理地设置参数,如初始温度、退火速率等,而且不同问题可能需要不同的参数配置。
4. 高计算复杂度:由于模拟退火算法涉及到接受劣解的概率计算和随机跳转,因此其计算复杂度较高。
三、比较分析1. 搜索范围:- 爬山算法只在当前解的邻域内进行搜索,易陷入局部最优解。
- 模拟退火算法可以全局搜索,有机会找到全局最优解。
2. 算法复杂度:- 爬山算法的计算复杂度较低,因为它只需计算当前解的邻域。
- 模拟退火算法的计算复杂度较高,因为它需要多次重复计算接受劣解的概率和随机跳转。
3. 对初始解的依赖:- 爬山算法对初始解的依赖较大,不同的初始解可能导致不同的搜索结果。
- 模拟退火算法对初始解不敏感,因为算法会通过温度的逐渐降低逐渐摆脱初始解的影响。
模拟退火算法一、模拟退火算法概念模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
根据Metropolis准则,粒子在温度T 时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann 常数。
用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。
退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。
二、模拟退火算法的模型模拟退火算法可以分解为解空间、目标函数和初始解三部分。
模拟退火的基本思想:(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L(2) 对k=1,……,L做第(3)至第6步:(3) 产生新解S′(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.(6) 如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7) T逐渐减少,且T->0,然后转第2步。
算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
模拟退火遗传算法模拟退火遗传算法是一种结合了模拟退火算法和遗传算法的优化算法。
它通过模拟物理退火过程和基因遗传进化过程,来寻找最优解。
在实际应用中,它被广泛应用于组合优化、函数优化、图像处理等领域。
一、模拟退火算法1.1 原理模拟退火算法是一种基于概率的全局寻优方法。
其原理是通过随机选择一个解,并以一定的概率接受该解或者以较小的概率接受劣解,从而达到全局最优解。
1.2 步骤(1)初始化初始温度T0和初始解x0;(2)对于每个温度T,进行多次迭代,每次迭代生成一个新的解x';(3)计算新旧两个解之间的差异ΔE,并根据Metropolis准则决定是否接受新解;(4)降低温度T,并重复步骤(2)到(3),直至达到停止条件。
1.3 优缺点优点:可以跳出局部最优,具有全局搜索能力;易于实现;不需要求导数。
缺点:需要大量迭代次数;结果具有一定的随机性;需要调节参数。
二、遗传算法2.1 原理遗传算法是一种基于生物进化思想的优化算法。
其原理是通过模拟自然界中的进化过程,将问题转换为一个个个体,通过交叉、变异等操作来产生新的个体,并筛选出适应度高的个体,从而达到全局最优解。
2.2 步骤(1)初始化种群;(2)计算每个个体的适应度;(3)根据适应度选择优秀的个体进行交叉和变异操作;(4)重复步骤(2)到(3),直至达到停止条件。
2.3 优缺点优点:能够跳出局部最优,具有全局搜索能力;易于并行化处理;不需要求导数。
缺点:需要大量迭代次数;结果具有一定的随机性;容易陷入早熟现象。
三、模拟退火遗传算法3.1 原理模拟退火遗传算法是将模拟退火和遗传算法结合起来使用。
其原理是在模拟退火过程中引入了交叉和变异操作,从而增加了搜索空间,并提高了搜索效率。
3.2 步骤(1)初始化初始温度T0和初始种群;(2)对于每个温度T,进行多次迭代,每次迭代生成一个新的种群;(3)计算新旧两个种群之间的差异,并根据适应度选择优秀的个体进行交叉和变异操作;(4)降低温度T,并重复步骤(2)到(3),直至达到停止条件。
思想来源于固体退火原理,将固体加温至充分高,再让其慢慢冷却。
加温时,固体内部粒子随温度升高而变得无序,内能增大,冷却时让粒子趋于无序,在每个温度都达到平衡点,最后在常温时达到基态,内能变为最小。
定义:是一种随机寻优算法,理论上具有概率的全局最优性。
是一种赋予搜索过程一种时变且最终趋于0的概率突变性,从而避免陷入局部最优解,最终趋于全局最优解的串行结构的优化算法。
不同温度下,粒子趋于平衡的概率是不同的。
退火过程由冷却进度表构成,包含了控制参数的初值T和衰减因子t’,每个T值的迭代次数和停止条件S。
可分为:解空间,目标函数和初始解3部分。
基本思想:1、初始化,初始温度T(充分大),初始解状态S(算法迭代的起点),每个T值的迭代次数。
2、对于k=1~L,做3~6步3、产生新解S’4、计算增量t’=C(S’)-C(S),其中C是评价函数5、T’小于0,则作为新的当前解6、如果满足终止条件,则作为最优解输出7、T逐渐减小,直至趋于0。
然后转第2步产生步骤:由一个产生函数从当前解产生一个位于解空间的新解。
为了便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单变换后即可产生新解的方法。
计算由新解对于的目标函数之差。
由于目标函数的差仅有变换部分产生,所以目标函数差的计算最好按增量计算。
判断新解是否被接受。
判断依据是一个接受准则,若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。
新解被接受时,用新解替换当前解。
这只需将当前解中对应产生新解时的变换部分予以实现,同时修正目标函数。
模拟退火法是一种渐进收敛的方法。