第三章光纤通信器件
- 格式:ppt
- 大小:1.34 MB
- 文档页数:80
《光纤通信技术》课程教学大纲、教案、课程日历第一章:光纤通信概述1.1 光纤通信的定义与发展历程1.2 光纤通信的优点与局限性1.3 光纤通信的应用领域第二章:光纤与光波导2.1 光纤的构造与类型2.2 光纤的传输原理2.3 光波导的类型与特点第三章:光纤通信器件3.1 光源与光发射器3.2 光接收器与光检测器3.3 光纤耦合器与光波分路器3.4 光放大器与光调制器第四章:光纤通信系统4.1 光纤通信系统的组成与工作原理4.2 光纤通信系统的性能评价指标4.3 光纤通信系统的分类与特点第五章:光纤通信技术的发展趋势5.1 高速光纤通信技术5.2 光纤通信网络技术5.3 新型光纤材料与器件5.4 光纤通信在5G及未来通信网络中的应用教学方法:1. 讲授:通过讲解、案例分析等方式,使学生掌握光纤通信的基本原理、技术及其应用。
2. 互动:鼓励学生提问、发表观点,提高课堂氛围,促进学生思考。
3. 实践:组织实验室参观、实践操作等活动,让学生亲身体验光纤通信技术的应用。
4. 讨论:组织小组讨论,培养学生团队合作精神,提高解决问题的能力。
教学评估:1. 平时成绩:考察学生出勤、课堂表现、作业完成情况等。
2. 期中考试:测试学生对光纤通信基本概念、原理和技术掌握程度。
3. 课程设计:要求学生完成一项与光纤通信相关的课程设计,培养实际操作能力。
4. 期末考试:全面考察学生对课程内容的掌握程度。
课程日历:第1周:光纤通信概述第2周:光纤与光波导第3周:光纤通信器件第4周:光纤通信系统第5周:光纤通信技术的发展趋势第六章:光纤通信系统的性能优化6.1 信号衰减与色散管理6.2 光纤非线性效应及其补偿6.3 光信号调制与解调技术第七章:光纤通信网络7.1 光纤通信网络的拓扑结构7.2 波分复用技术(WDM)7.3 光交换技术与光路由器7.4 光纤通信网络的规划与设计第八章:光纤通信技术的应用8.1 光纤通信在数据通信中的应用8.2 光纤通信在电信网络中的应用8.3 光纤传感器与光纤测量技术8.4 光纤医疗成像与治疗技术第九章:光纤通信技术的标准化与协议9.1 光纤通信标准化的意义与过程9.2 主要的光纤通信协议与标准9.3 光纤通信协议的发展趋势第十章:光纤通信技术的未来发展10.1 新型光纤材料与器件的研究10.2 量子光纤通信技术10.3 光纤通信在物联网中的应用10.4 光纤通信在未来通信网络中的挑战与机遇教学方法:6. 结合案例分析,深入探讨光纤通信系统的性能优化技术及其在实际应用中的作用。
1.计算一个波长为1m λμ=的光子能量,分别对1MHz 和100MHz 的无线电做同样的计算。
解:波长为1m λμ=的光子能量为834206310// 6.6310 1.991010c m s E hf hc J s J mλ---⨯===⨯⋅⨯=⨯ 对1MHz 和100MHz 的无线电的光子能量分别为346286.6310110 6.6310c E hf J s Hz J --==⨯⋅⨯⨯=⨯346266.631010010 6.6310c E hf J s Hz J --==⨯⋅⨯⨯=⨯2.太阳向地球辐射光波,设其平均波长0.7m λμ=,射到地球外面大气层的光强大约为20.14/I W cm =。
如果恰好在大气层外放一个太阳能电池,试计算每秒钟到达太阳能电池上每平方米板上的光子数。
解:光子数为3484441660.14 6.6310310101010 3.98100.710c I Ihc n hf λ---⨯⨯⨯⨯=⨯=⨯=⨯=⨯⨯ 3.如果激光器在0.5m λμ=上工作,输出1W 的连续功率,试计算每秒从激活物质的高能级跃迁到低能级的粒子数。
解:粒子数为3482161 6.6310310 3.98100.510c I Ihc n hf λ---⨯⨯⨯⨯====⨯⨯ 4.光与物质间的相互作用过程有哪些?答:受激吸收,受激辐射和自发辐射。
5.什么是粒子数反转?什么情况下能实现光放大?答:粒子数反转分布是指高能级粒子布居数大于低能级的粒子布居数。
处于粒子数反转分布的介质(叫激活介质)可实现光放大。
6.什么是激光器的阈值条件?答:阈值增益为1211ln 2th G L r r α=+其中α是介质的损耗系数,12,r r 分别是谐振腔反射镜的反射系数。
当激光器的增益th G G ≥时,才能有激光放出。
(详细推导请看补充题1、2)7.由表达式/E hc λ=说明为什么LED 的FWHM 功率谱宽度在长波长中会变得更宽些?证明:由/E hc λ=得到2hc E λλ∆=-∆,于是得到2E hc λλ∆=-∆,可见当E ∆一定时,λ∆与2λ成正比。
光纤通信用光器件介绍光纤通信是一种利用光信号传输数据的通信方式。
它利用光纤作为传输介质,通过调制光信号的强度、频率或相位来传输信息。
在光纤通信系统中,光器件起着关键的作用,它们负责产生、放大、调制和检测光信号。
本文将介绍光纤通信中常用的光器件,包括光源、放大器、调制器和光检测器。
光源是光纤通信系统中的重要组成部分,负责产生光信号。
常见的光源有半导体激光器、气体激光器和光纤激光器。
半导体激光器是最常用的光源,它具有体积小、功耗低、调制速度快等优点。
气体激光器具有宽的谱带宽和高的输出功率,但体积较大。
光纤激光器结合了两者的优点,是一种理想的光信号源。
放大器是光纤通信系统中的另一个重要组成部分,用于增强光信号的功率。
光纤放大器是常用的放大器类型,它可以放大光信号而不需要将其转换为电信号。
最常见的光纤放大器是掺铒光纤放大器(EDFA),它利用掺铒光纤中的铕原子的能级跃迁来实现光信号的放大。
EDFA具有宽的增益带宽、高增益、低噪声等优点,是目前光纤通信系统中最常用的放大器。
调制器是光纤通信系统中用于调制光信号的器件。
光电调制器是常用的调制器类型,它利用光电效应或半导体材料的光学特性来实现光信号的调制。
光电调制器分为直接调制器和外调制器。
直接调制器利用半导体材料的直接带隙特性,通过改变注入电流来调制光信号的强度。
外调制器利用半导体材料的Kerr效应或电光效应来调制光信号的相位或强度。
光电调制器具有调制速度快、带宽宽、功耗低等优点。
光检测器是光纤通信系统中用于检测光信号的器件。
光电二极管是最常用的光检测器,它利用光束的能量转变为电流。
光电二极管具有高速度、高灵敏度、低噪声等优点,是目前光纤通信系统中最常用的光检测器。
其他常用的光检测器还包括光开关和光波导耦合器。
除了以上介绍的光器件,还有一些其他的光器件在光纤通信系统中扮演着重要角色。
例如,光分路器用于将光信号分成多个通道,光耦合器用于将光信号从一根光纤传输到另一根光纤,光滤波器用于选择或剔除特定波长的光信号。
第一章 光纤通信概述1、 基本概念光纤通信:利用光导纤维传输光波信号的通信方式工作波长:目前光纤通信的实用工作波长在近红外区,即0.8—1.8um 的波长区。
对于SiO2光纤,有三个低损耗窗口,是目前光纤通信的实用工作波长,即850nm(用于多模),1310nm (单模),1550nm (单模)。
2、系统的基本组成(物理组成及各部分作用)强度调制/直接检波(IM/DD )的光纤数字通信系统。
主要由光发射机、光纤、光接收机以及长途干线上必须设置的光中继器组成。
光发射机:将电信号转换成光信号耦合进光纤。
光发射机中的重要器件半导体激光器(LD )或半导体发光二级管(LED )是能够完成电-光转换的半导体光源。
光接收机:将光纤送过来的光信号转换成电信号,然后经过对电信号的处理以后,使其恢复为原来的脉码调制信号送入电接收机。
光接收机中的重要器件光电二极管(PIN )和雪崩二极管(APD )是能够完成光-电转换的光电检测器。
光中继器:保证通信质量。
有两种形式:光-电-光转换形式的中继器和光信号上直接放大的光放大器。
3、优越性(体现在哪里)①传输频带宽,通信容量大②传输损耗小,中继距离长③在某些条件下,抗电磁干扰能力强④光纤线径细,重量轻,制作光纤的资源丰富4、 技术的现状(PDH 、SDH 、WDM 、光电收发器、EPON )PDH 、SDH 、WDH 用于语音传输,光电收发器、EPON 用于数据传输 PDH :用于低容量,近距离SDH :用于中等距离,较大容量WDM :用于远距离现在涌现出的EPON 已经商用5、 发展的发展方向(GFP 、ASON 和全光网等)第二章 光导纤维1、 光纤的结构和分类结构:石英材料做成的横截面很小的双层同心圆柱体,线芯、包层和涂敷层。
分类:按横截面折射率分布划分:阶跃型光纤和渐变性光纤;按纤芯中传输模式的多少划分:单模光纤(适用于大容量长距离光纤通信)和多模光纤(存在模色散,带宽窄,制造、耦合及连接都比单模光纤容易)2、 用射线理论分析光纤的导光原理(阶跃、渐变),推出几个重要的参数和指标阶跃:相对折射指数差:△=2122212/)(n n n - 数值孔径:∆=-==2sin 12221max n n n NA φ渐变:最佳折射指数分布:可以消除模式色散的n(r)分布。