当前位置:文档之家› 半导体器件导论_4

半导体器件导论_4

半导体器件导论_4
半导体器件导论_4

《半导体器件导论》

第4章载流子输运和过剩载流子现象

例4.1 计算给定电场强度下半导体的漂移电流密度。T=300K时,硅的掺杂浓度为N d=106cm,N a=0。电子和空穴的迁移率参见表4.1。若外加电场强度ε=35V cm

?,求漂移电流密度。

【解】

因为N d>N a,所以在室温下,半导体是n型的。若假设掺入杂质完全电离,则

n≈N d=1016cm?3

少数载流子空穴的浓度为

P=n i 2

n =(1.5×1010)

2

1016

=2.25×104cm?3

既然n?p,漂移电流密度

J drf=e(μn n+μp p)ε≈eμn nε

因此

J drf=(1.6×10?19)(1350)(1016)(35)=75.6A cm2

?

【说明】

在半导体上施加较小的电场就能获得显著的漂移电流密度。这个结果意味着非常小的半导体器件就能产生mA量级的电流。

例4.2 确定硅在不同温度下的电子和空穴迁移率。利用图4.2分别求出以下两种情况载流随机热速度增加子的迁移率。

(a) 确定(i)N d=1017cm?3,Τ=150℃及(ii)N d=1016cm?3,Τ=0℃时的电子迁移率。

(b) 确定(i)N a=1016cm?3,Τ=50℃及(ii)N a=1016cm?3,Τ=150℃时的空穴迁移率。【解】

由图4.2可知:

(a)(i)当N d=1017cm?3,Τ=150℃时,电子迁移率μn≈500cm2V?s

?;

(ii)当N d=1016cm?3,Τ=0℃时,电子迁移率μn≈1500cm2V?s

?。

(b)(i)当N a=1016cm?3,Τ=50℃时,空穴迁移率μp≈380cm2V?s

?;

(i)当N a=1017cm?3,Τ=150℃时,空穴迁移率μp≈200cm2V?s

?。

【说明】

由本例可见,迁移率随温度升高而降低。

例4.3 为了制备具有特定电流—电压特性的半导体电阻器,试确定硅在300K时的掺杂浓度。考虑一均匀受主掺杂的条形硅半导体,其几何结构如图4.5所示。若外加偏压为5V时,电流为2mA,且电流密度不大于J drf=100A cm2

?。试确定满足条件的截面积、长度及掺杂浓度。

图4.6 硅中电子浓度和电导率与温度倒数的关系曲线(引自S ze[14])

【解】

所需截面积为

I=J drf A→A=I

J drf =2×10?3

100

=2×10?5cm2

器件的电阻为

R=v

I =5

2×10?3

=2.5×103Ω→2.5kΩ

由式(4.22b),条形半导体的电阻表示为

R=L

σA ≈L

eμp pA

=L

eμp N a A

从这个关系式可知,掺杂浓度N a和长度L没有确定值。如果选择非常小的L值,掺杂浓度N a的值可能小得不合理。相反,如果选择非常大的L值,那么N a的值可能大得不合理。所以,先选择一个合理的掺杂浓度值,然而再确定器件长度。

令N a=1016cm?3,由图4.3可得,μp=400cm2V?s

?。器件长度L为

L=σAR=eμp N a AR

=(1.6×10?19)(400)(1016)(2×10?5)(2.5×103)

L=3.2×10?2cm

【说明】

需注意的是,在分析和设计过程中,必须采用与掺杂浓度对应的迁移率。

例4.4 设计一个满足电阻率和电流密度要求的p型半导体电阻器。Τ=300Κ时,硅半导体的初始掺杂为施主,且杂质浓度N d=5×1015cm?3。现掺入受主杂质,形成p型补偿半导体要求电阻器的电阻R=10 kΩ,外加偏压为5V时,电流密度J drf=50A cm2

?,外加电场不大于100 V cm

?。

【解】

在10 kΩ电阻上施加5V偏压时,总电流为

I=v

R

=

5

10

=0.5mA

若电流密度限定为50A cm2

?,则截面积为

A=I

J =0.5×10?3

50

=10?5cm

由指定电压和电场,可得电阻长度为

L=v

ε=5

100

=5×10?2cm

由式(4.22b)可知,半导体的电导率为

σ=L

RA =5×10?2

(104)(10?5)

=0.50(Ω?cm)?1

p型补偿半导体的电导率为

σ≈eμp p=eμp(N a?N d)

其中,迁移率μp是总电离杂质浓度N a+N d的函数。

反复计算得知,若N a=1.25×1016cm?3,则N a+N d=1.75×1016cm?3。由图4.3可知,空穴迁移率μp≈410cm2V?s

?。所以电导率为

σ=eμp(N a?N d)

=(1.6×10?19)(410)(1.25×1016?5×1015)=0.492(Ω?cm)?1

该结果与所求值非常接近。

【说明】

由于迁移率与总电离杂质浓度有关,所以不能由所求电导率直接计算出掺杂浓度。

例4.5 为了产生给定的扩散电流密度,试确定载流子的浓度梯度。已知Τ=300Κ时,硅中的空穴浓度从x =0到x =0.01cm 线性变化,空穴扩散系数D p =10cm 2s ?,空穴扩散电流密度J drf =20A cm 2?。若x =0处的空穴浓度p =4×1017cm ?3,求x =0.01cm 处的空穴浓度。

【解】

扩散电流密度为

J drf =?eD p d p d x ≈?eD p △p △x =?eD p [p (0.01)?p (0)0.01?0

] 或

20=?(1.6×10?19)(10)(

p (0.01)?4×10170.01?0

) 求解,可得

p (0.01)=2.75×1017cm ?3

【说明】

我们注意到,既然空穴电流是正的,那么空穴的浓度梯度必定为负,这意味着x =0.01处的空穴浓度比x =0处的低。

例4.6 已知掺杂浓度线性变化,求平衡半导体中的感应电场。假设Τ=300Κ时,n 型半导体的施主杂质浓度为

N d (x )=1016?1019x (cm ?3)

其中,x 的单位为cm ,且0≤x ≤1μm

【解】

取施主杂质浓度的微分,可得

dN d (x )d x =?10?19 (cm ?4) 由式(4.42)给出的感应电场,我们有

ε=?(ΚΤe )[1N d (x )]dN d (x )d x =?(0.00259)(?1019)(1016?1019x ) 例如,在x =0处,我们有

ε=25.9V cm ?

【说明】

由此前对漂移电流的讨论可知,很小的电场就能产生相当大的漂移电流密度,所以非均匀掺杂的感应电场可显著改变半导体器件的特性。

例 4.7 已知载流子的迁移率,求扩散系数。假设Τ=300Κ时的载流子迁移率μ为1000cm 2V ?s ?。

【解】

由爱因斯坦关系式,可得

D=(κΤe )μ=(0.00259)(1200)=31.1cm 2s ?

【说明】

尽管本例非常简单,但它给出了扩散系数和迁移率的相对量级。在室温下,扩散系数比迁移率的幅值小40倍。

例4.8 由霍尔效应参数确定多数载流子的浓度和迁移率。如图4.20所示,令L =10?1cm ,

W =10?2cm ,d =10?3cm 。设I x =1.0mA ,V x =12.5V ,B =5×10?2,V H =?6.25Mv.

【解】

由于霍尔电压为负,所以半导体为n 型。由式(4.70)可得,电子浓度为

n=?(10?3)(5×10?2)1.6×105×1012.51010=5×1021m ?3

n =5×1015cm ?3

由式(4.74)可得,电子迁移率为

μn =(10?3)(10?3)(1.6×10?19)(5×1021)(12.5)(10?4)(10?5)=0.10m 2V ?s ?=1000cm 2V ?

【说明】

注意,只有采用米?千克?秒(MKS )的国际单位制才能从霍尔效应公式中得到正确的结果。

北京科技研究生半导体材料导论复习题

1、半导体材料有哪些特征? 答:半导体在其电的传导性方面,其电导率低于导体,而高于绝缘体。 (1)在室温下,它的电导率在103~10-9S/cm之间,S为西门子,电导单位,S=1/ρ(Ω. cm) ;一般金属为107~104S/cm,而绝缘体则<10-10,最低可达10-17。同时,同一种半导体材料,因其掺入的杂质量不同,可使其电导率在几个到十几个数量级的范围内变化,也可因光照和射线辐照明显地改变其电导率;而金属的导电性受杂质的影响,一般只在百分之几十的范围内变化,不受光照的影响。 (2)当其纯度较高时,其电导率的温度系数为正值,即随着温度升高,它的电导率增大;而金属导体则相反,其电导率的温度系数为负值。 (3)有两种载流子参加导电。一种是为大家所熟悉的电子,另一种则是带正电的载流子,称为空穴。而且同一种半导体材料,既可以形成以电子为主的导电,也可以形成以空穴为主的导电。在金属中是仅靠电子导电,而在电解质中,则靠正离子和负离子同时导电。 2、简述半导体材料的分类。 答:对半导体材料可从不同的角度进行分类例如: 根据其性能可分为高温半导体、磁性半导体、热电半导体; 根据其晶体结构可分为金刚石型、闪锌矿型、纤锌矿型、黄铜矿型半导体; 根据其结晶程度可分为晶体半导体、非晶半导体、微晶半导体, 但比较通用且覆盖面较全的则是按其化学组成的分类,依此可分为:元素半导体、化合物半导体和固溶半导体三大类。 3、化合物半导体和固溶体半导体有哪些区别。 答:由两个或两个以上的元素构成的具有足够的含量的固体溶液,如果具有半导体性质,就称为固溶半导体,简称固溶体或混晶。固溶半导体又区别于化合物半导体,因后者是靠其价键按一定化学配比所构成的。固溶体则在其固溶度范围内,其组成元素的含量可连续变化,其半导体及有关性质也随之变化。 4、简述半导体材料的电导率与载流子浓度和迁移率的关系。 答:s = nem 其中: n为载流子浓度,单位为个/cm3; e 为电子的电荷,单位为C(库仑),e对所有材料都是一样,e=1.6×10-19C 。 m为载流子的迁移率,它是在单位电场强度下载流子的运动速度,单位为cm2/V.s; 电导率s的单位为S/cm(S为西门子)。 5、简述霍尔效应。 答:将一块矩形样品在一个方向通过电流,在与电流的垂直方向加上磁场(H),那么在样品的第三个方向就可以出现电动势,称霍尔电动势,此效应称霍尔效应。 6、用能带理论阐述导体、半导体和绝缘体的机理。 答:按固体能带理论,物质的核外电子有不同的能量。根据核外电子能级的不同,把它们的能级划分为三种能带:导带、禁带和价带(满带)。 在禁带里,是不允许有电子存在的。禁带把导带和价带分开,对于导体,它的大量电子处于导带,能自由移动。在电场作用下,成为载流子。因此,导体载流子的浓度很大。 对绝缘体和半导体,它的电子大多数都处于价带,不能自由移动。但在热、光等外界因素的作用下,可以使少量价带中的电子越过禁带,跃迁到导带上去成为载流子。 绝缘体和半导体的区别主要是禁的宽度不同。半导体的禁带很窄,(一般低于3eV),绝缘体的禁带宽一些,电子的跃迁困难得多。因此,绝缘体的载流子的浓度很小。导电性能很弱。实际绝缘体里,导带里的电子不是没有,并且总有一些电子会从价带跃迁到导带,但数量极少。所以,在一般情况下,可以忽略在外场作用下它们移动所形成的电流。但是,如果外场很强,束缚电荷挣脱束缚而成为自由电荷,则绝缘体就会被“击穿”而成为导体。 7、什么是本征半导体和杂质半导体? 答:当半导体主要是靠热激发产生载流子时,导电称为本征导电,这种半导体称为本征半导体,其特点是自由电子数等于空穴数。另一种导电机制是靠电活性杂质形成的载流子导电,这种导电称为杂质导电,这种半导体称为杂质

半导体器件基础测试题

第一章半导体器件基础测试题(高三) 姓名班次分数 一、选择题 1、N型半导体是在本征半导体中加入下列物质而形成的。 A、电子; B、空穴; C、三价元素; D、五价元素。 2、在掺杂后的半导体中,其导电能力的大小的说法正确的是。 A、掺杂的工艺; B、杂质的浓度: C、温度; D、晶体的缺陷。 3、晶体三极管用于放大的条件,下列说法正确的是。 A、发射结正偏、集电结反偏; B、发射结正偏、集电结正偏; C、发射结反偏、集电结正偏; D、发射结反偏、集电结反偏; 4、晶体三极管的截止条件,下列说法正确的是。 A、发射结正偏、集电结反偏; B、发射结正偏、集电结正偏; C、发射结反偏、集电结正偏; D、发射结反偏、集电结反偏; 5、晶体三极管的饱和条件,下列说法正确的是。 A、发射结正偏、集电结反偏; B、发射结正偏、集电结正偏; C、发射结反偏、集电结正偏; D、发射结反偏、集电结反偏; 6、理想二极管组成的电路如下图所示,其AB两端的电压是。 A、—12V; B、—6V; C、+6V; D、+12V。 7、要使普通二极管导通,下列说法正确的是。 A、运用它的反向特性; B、锗管使用在反向击穿区; C、硅管使用反向区域,而锗管使用正向区域; D、都使用正向区域。 8、对于用万用表测量二极管时,下列做法正确的是。 A、用万用表的R×100或R×1000的欧姆,黑棒接正极,红棒接负极,指针偏转; B、用万用表的R×10K的欧姆,黑棒接正极,红棒接负极,指针偏转; C、用万用表的R×100或R×1000的欧姆,红棒接正极,黑棒接负极,指针偏转; D、用万用表的R×10,黑棒接正极,红棒接负极,指针偏转; 9、电路如下图所示,则A、B两点的电压正确的是。 A、U A=3.5V,U B=3.5V,D截止;

半导体器件物理4章半导体中的载流子输运现象

第四章半导体中载流子的输运现象 在前几章我们研究了热平衡状态下,半导体导带和价带中的电子浓度和空穴浓度。我们知道电子和空穴的净流动将会产生电流,载流子的运动过程称谓输运。半导体中的载流子存在两种基本的输运现象:一种是载流子的漂移,另一种是载流子的扩散。由电场引起的载流子运动称谓载流子的漂移运动;由载流子浓度梯度引起的运动称谓载流子扩散运动。其后我们会将会看到,漂移运动是由多数载流子(简称多子)参与的运动;扩散运动是有少数载流子(简称少子)参与的运动。载流子的漂移运动和扩散运动都会在半导体內形成电流。此外,温度梯度也会引起载流子的运动,但由于温度梯度小或半导体的特征尺寸变得越来越小,这一效应通常可以忽略。载流子运动形成电流的机制最终会决定半导体器件的电流一电压特性。因此,研究半导体中载流子的输运现象非常必要。 4.1漂移电流密度 如果导带和价带都有未被电子填满的能量状态,那么在外加 作用下使载流子产生的运动称为“漂移运动”。载流子电荷的净 如果电荷密度为P的正方体以速度4运动,则它形成的电流 密度为 ^drf = P U d(°」)

其中°的单伎为C?cm~3, J drf的单位是Acm~2或C/cnr?s。 若体电荷是带正电荷的空穴,则电荷密度p = ep , e为电荷电量^=1.6X10-,9C(^仑),〃为载流子空穴浓度,单位为⑵尸。则空穴的漂移电流密度打场可以写成:丿"爾=⑷)%(4.2) %表示空穴的漂移速度。空穴的漂移速度跟那些因素有关呢? 在电场力的作用下,描述空穴的运动方程为 F = m a = eE(4.3) p £代表电荷电量,d代表在电场力F作用下空穴的加速度,加;代表空穴的有效质量。如果电场恒定,则空穴的加速度恒定,其漂移速度会线性增加。但半导体中的载流子会与电离杂质原子和热振动的晶格原子发生碰撞或散射,这种碰撞或散射改变了带电粒子的速度特性。在电场的作用下,晶体中的空穴获得加速度,速度增加。当载流子同晶体中的原子相碰撞后,载流子会损失大部分或全部能量,使粒子的速度减慢。然后粒子又会获得能量并重新被加速,直到下一次受到碰撞或散射,这一过程不断重复。因此,在整个过程粒子将会有一个平均漂移速度。在弱电场的情况下,平均漂移速度与电场強度成正比(言外之意,在强电场的情况下,平均漂移速度与电场强度不会成正比)。 S—E(4.4) 其中竹咼空穴迁移率,载流子迁移率是一个重要的参数,它描述了粒子在电场作用下的运动情况,迁移率的单位为cnr/V.s.将 式(4.4)带入(4.2),可得出空穴漂移电流密度的表达式:

半导体材料导论结课复习题

半导体材料复习题 1、半导体材料有哪些特征? 答:半导体在其电的传导性方面,其电导率低于导体,而高于绝缘体。 (1)在室温下,它的电导率在103~10-9S/cm之间,S为西门子,电导单位,S=1/ρ(Ω. cm) ;一般金属为107~104S/cm,而绝缘体则<10-10,最低可达10-17。同时,同一种半导体材料,因其掺入的杂质量不同,可使其电导率在几个到十几个数量级的范围内变化,也可因光照和射线辐照明显地改变其电导率;而金属的导电性受杂质的影响,一般只在百分之几十的范围内变化,不受光照的影响。 (2)当其纯度较高时,其电导率的温度系数为正值,即随着温度升高,它的电导率增大;而金属导体则相反,其电导率的温度系数为负值。 (3)有两种载流子参加导电。一种是为大家所熟悉的电子,另一种则是带正电的载流子,称为空穴。而且同一种半导体材料,既可以形成以电子为主的导电,也可以形成以空穴为主的导电。在金属中是仅靠电子导电,而在电解质中,则靠正离子和负离子同时导电。 2、简述半导体材料的分类。 答:对半导体材料可从不同的角度进行分类例如: 根据其性能可分为高温半导体、磁性半导体、热电半导体; 根据其晶体结构可分为金刚石型、闪锌矿型、纤锌矿型、黄铜矿型半导体; 根据其结晶程度可分为晶体半导体、非晶半导体、微晶半导体, 但比较通用且覆盖面较全的则是按其化学组成的分类,依此可分为:元素半导体、化合物半导体和固溶半导体三大类。 3、化合物半导体和固溶体半导体有哪些区别。 答:由两个或两个以上的元素构成的具有足够的含量的固体溶液,如果具有半导体性质,就称为固溶半导体,简称固溶体或混晶。固溶半导体又区别于化合物半导体,因后者是靠其价键按一定化学配比所构成的。固溶体则在其固溶度范围内,其组成元素的含量可连续变化,其半导体及有关性质也随之变化。 4、简述半导体材料的电导率与载流子浓度和迁移率的关系。 答:s = nem 其中: n为载流子浓度,单位为个/cm3; e 为电子的电荷,单位为C(库仑),e对所有材料都是一样,e=1.6×10-19C 。 m为载流子的迁移率,它是在单位电场强度下载流子的运动速度,单位为cm2/V.s; 电导率s的单位为S/cm(S为西门子)。 5、简述霍尔效应。 答:将一块矩形样品在一个方向通过电流,在与电流的垂直方向加上磁场(H),那么在样品的第三个方向就可以出现电动势,称霍尔电动势,此效应称霍尔效应。 6、用能带理论阐述导体、半导体和绝缘体的机理。 答:按固体能带理论,物质的核外电子有不同的能量。根据核外电子能级的不同,把它们的能级划分为三种能带:导带、禁带和价带(满带)。 在禁带里,是不允许有电子存在的。禁带把导带和价带分开,对于导体,它的大量电子处于导带,能自由移动。在电场作用下,成为载流子。因此,导体载流子的浓度很大。 对绝缘体和半导体,它的电子大多数都处于价带,不能自由移动。但在热、光等外界因素的作用下,可以使少量价带中的电子越过禁带,跃迁到导带上去成为载流子。 绝缘体和半导体的区别主要是禁的宽度不同。半导体的禁带很窄,(一般低于3eV),绝缘体的禁带宽一些,电子的跃迁困难得多。因此,绝缘体的载流子的浓度很小。导电性能很弱。实际绝缘体里,导带里的电子

半导体器件物理_复习重点

第一章 PN结 1.1 PN结是怎么形成的? 耗尽区:正因为空间电荷区内不存在任何可动的电荷,所以该区也称为耗尽区。 空间电荷边缘存在多子浓度梯度,多数载流子便受到了一个扩散力。在热平衡状态下,电场力与扩散力相互平衡。 p型半导体和n型半导体接触面形成pn结,p区中有大量空穴流向n区并留下负离子,n区中有大量电子流向p区并留下正离子(这部分叫做载流子的扩散),正负离子形成的电场叫做空间电荷区,正离子阻碍电子流走,负离子阻碍空穴流走(这部分叫做载流子的漂移),载流子的扩散与漂移达到动态平衡,所以pn 结不加电压下呈电中性。 1.2 PN结的能带图(平衡和偏压) 无外加偏压,处于热平衡状态下,费米能级处处相等且恒定不变。 1.3 内建电势差计算 N区导带电子试图进入p区导带时遇到了一个势垒,这个势垒称为内建电势差。

1.4 空间电荷区的宽度计算 n d p a x N x N = 1.5 PN 结电容的计算 第二章 PN 结二极管 2.1理想PN 结电流模型是什么? 势垒维持了热平衡。 反偏:n 区相对于p 区电势为正,所以n 区内的费米能级低于p 区内的费米能级,势垒变得更高,阻止了电子与空穴的流动,因此pn 结上基本没有电流流动。 正偏:p 区相对于n 区电势为正,所以p 区内的费米能级低于n 区内的费米能级,势垒变得更低,电场变低了,所以电子与空穴不能分别滞留在n 区与p 区,所以pn 结内就形成了一股由n 区到p 区的电子和p

区到n 区的空穴。电荷的流动在pn 结内形成了一股电流。 过剩少子电子:正偏电压降低了势垒,这样就使得n 区内的多子可以穿过耗尽区而注入到p 区内,注入的电子增加了p 区少子电子的浓度。 2.2 少数载流子分布(边界条件和近似分布) 2.3 理想PN 结电流 ?? ????-??? ??=1exp kT eV J J a s ?? ? ? ? ?+=+= 0020 11p p d n n a i n p n p n p s D N D N en L n eD L p eD J ττ 2.4 PN 结二极管的等效电路(扩散电阻和扩散电容的概念)? 扩散电阻:在二极管外加直流正偏电压,再在直流上加一个小的低频正弦电压,则直流之上就产生了个叠加小信号正弦电流,正弦电压与正弦电流就产生了个增量电阻,即扩散电阻。 扩散电容:在直流电压上加一个很小的交流电压,随着外加正偏电压的改变,穿过空间电荷区注入到n 区内的空穴数量也发生了变化。P 区内的少子电子浓度也经历了同样的过程,n 区内的空穴与p 区内的电子充放电过程产生了电容,即扩散电容。

半导体器件导论_4

《半导体器件导论》 第4章载流子输运和过剩载流子现象 例4.1 计算给定电场强度下半导体的漂移电流密度。T=300K时,硅的掺杂浓度为N d=106cm,N a=0。电子和空穴的迁移率参见表4.1。若外加电场强度ε=35V cm ?,求漂移电流密度。 【解】 因为N d>N a,所以在室温下,半导体是n型的。若假设掺入杂质完全电离,则 n≈N d=1016cm?3 少数载流子空穴的浓度为 P=n i 2 n =(1.5×1010) 2 1016 =2.25×104cm?3 既然n?p,漂移电流密度 J drf=e(μn n+μp p)ε≈eμn nε 因此 J drf=(1.6×10?19)(1350)(1016)(35)=75.6A cm2 ? 【说明】 在半导体上施加较小的电场就能获得显著的漂移电流密度。这个结果意味着非常小的半导体器件就能产生mA量级的电流。 例4.2 确定硅在不同温度下的电子和空穴迁移率。利用图4.2分别求出以下两种情况载流随机热速度增加子的迁移率。 (a) 确定(i)N d=1017cm?3,Τ=150℃及(ii)N d=1016cm?3,Τ=0℃时的电子迁移率。 (b) 确定(i)N a=1016cm?3,Τ=50℃及(ii)N a=1016cm?3,Τ=150℃时的空穴迁移率。【解】 由图4.2可知: (a)(i)当N d=1017cm?3,Τ=150℃时,电子迁移率μn≈500cm2V?s ?; (ii)当N d=1016cm?3,Τ=0℃时,电子迁移率μn≈1500cm2V?s ?。 (b)(i)当N a=1016cm?3,Τ=50℃时,空穴迁移率μp≈380cm2V?s ?; (i)当N a=1017cm?3,Τ=150℃时,空穴迁移率μp≈200cm2V?s ?。 【说明】 由本例可见,迁移率随温度升高而降低。 例4.3 为了制备具有特定电流—电压特性的半导体电阻器,试确定硅在300K时的掺杂浓度。考虑一均匀受主掺杂的条形硅半导体,其几何结构如图4.5所示。若外加偏压为5V时,电流为2mA,且电流密度不大于J drf=100A cm2 ?。试确定满足条件的截面积、长度及掺杂浓度。 图4.6 硅中电子浓度和电导率与温度倒数的关系曲线(引自S ze[14]) 【解】 所需截面积为

半导体器件物理4章半导体中的载流子输运现象

第四章 半导体中载流子的输运现象 在前几章我们研究了热平衡状态下,半导体导带和价带中的电子浓度和空穴浓度。我们知道电子和空穴的净流动将会产生电流,载流子的运动过程称谓输运。半导体中的载流子存在两种基本的输运现象:一种是载流子的漂移,另一种是载流子的扩散。由电场引起的载流子运动称谓载流子的漂移运动;由载流子浓度梯度引起的运动称谓载流子扩散运动。其后我们会将会看到,漂移运动是由多数载流子(简称多子)参与的运动;扩散运动是有少数载流子(简称少子)参与的运动。载流子的漂移运动和扩散运动都会在半导体内形成电流。此外,温度梯度也会引起载流子的运动,但由于温度梯度小或半导体的特征尺寸变得越来越小,这一效应通常可以忽略。载流子运动形成电流的机制最终会决定半导体器件的电流-电压特性。因此,研究半导体中载流子的输运现象非常必要。 4.1漂移电流密度 如果导带和价带都有未被电子填满的能量状态,那么在外加电场的作用下,电子和空穴将产生净加速度和净移位。电场力的作用下使载流子产生的运动称为“漂移运动”。载流子电荷的净漂移会产生“漂移电流”。 如果电荷密度为ρ的正方体以速度d υ运动,则它形成的电流 密度为 ()4.1d r f d J ρυ =

其中ρ的单位为3 C cm - ,drf J 的单位是2 Acm -或2 /C cm s 。 若体电荷是带正电荷的空穴,则电荷密度ep ρ=,e 为电荷电 量19 1.610 (e C -=?库仑) ,p 为载流子空穴浓度,单位为3 cm -。则空穴 的漂移电流密度/p drf J 可以写成: ()()/ 4.2p drf dp J ep υ= dp υ表示空穴的漂移速度。空穴的漂移速度跟那些因素有关呢? 在电场力的作用下,描述空穴的运动方程为 ()* 4.3p F m a eE == e 代表电荷电量,a 代表在电场力F 作用下空穴的加速度,* p m 代 表空穴的有效质量。如果电场恒定,则空穴的加速度恒定,其漂移速度会线性增加。但半导体中的载流子会与电离杂质原子和热振动的晶格原子发生碰撞或散射,这种碰撞或散射改变了带电粒子的速度特性。在电场的作用下,晶体中的空穴获得加速度,速度增加。当载流子同晶体中的原子相碰撞后,载流子会损失大部分或全部能量,使粒子的速度减慢。然后粒子又会获得能量并重新被加速,直到下一次受到碰撞或散射,这一过程不断重复。因此,在整个过程粒子将会有一个平均漂移速度。在弱电场的情况下,平均漂移速度与电场强度成正比(言外之意,在强电场的情况下,平均漂移速度与电场强度不会成正比)。 ()4.4dp p E υμ= 其中p μ是空穴迁移率,载流子迁移率是一个重要的参数,它描述了粒子在电场作用下的运动情况,迁移率的单位为2 /cm V s 。将

半导体器件物理第四章习题

第四章 金属-半导体结 4-1. 一硅肖脱基势垒二极管有0.01 cm 2的接触面积,半导体中施主浓度为1016 cm 3?。 设V 7.00=ψ,V V R 3.10=。计算 (a )耗尽层厚度, (b )势垒电容,(c )在表面处的电场 4-2. (a )从示于图4-3的GaAs 肖脱基二极管电容-电压曲线求出它的施主浓度、自建电 势势垒高度。 (b) 从图4-7计算势垒高度并与(a )的结果作比较。 4-3. 画出金属在P 型半导体上的肖脱基势垒的能带结构图,忽略表面态,指出(a )s m φφ> 和(b )s m φφ<两种情形是整流节还是非整流结,并确定自建电势和势垒高度。 4-4. 自由硅表面的施主浓度为15310cm ?,均匀分布的表面态密度为122110ss D cm eV ??=, 电中性级为0.3V E eV +,向该表面的表面势应为若干?提示:首先求出费米能级与电中性能级之间的能量差,存在于这些表面态中的电荷必定与表面势所承受的耗尽层电荷相等。 4-5. 已知肖脱基二极管的下列参数:V m 0.5=φ,eV s 05.4=χ,31910?=cm N c , 31510?=cm N d ,以及k=11.8。假设界面态密度是可以忽略的,在300K 计算: (a )零偏压时势垒高度,自建电势,以及耗尽层宽度。 (b)在0.3v 的正偏压时的热离子发射电流密度。 4-6.在一金属-硅的接触中,势垒高度为eV q b 8.0=φ,有效理查逊常数为222/10*K cm A R ?=,eV E g 1.1=,31610?=cm N d ,以及31910?==cm N N v c 。 (a )计算在300K 零偏压时半导体的体电势n V 和自建电势。 (b )假设s cm D p /152=和um L p 10=,计算多数载流子电流对少数载流子电流的注 入比。 4-7. 计算室温时金-nGaAs 肖脱基势垒的多数载流子电流对少数载流子电流的比例。已知施主浓度为10153?cm ,um L p 1=,610p s τ?=,以及R R 068.0*=。 4-8. 在一金属-绝缘体势垒中,外电场ε=104V/cm ,介电常数为(a )4,()12,k b k ==计 算φΔ和m x ,将所得的结果与4-3节中的例题进行比较。 4-9. 在一金属一绝缘体势垒中,外加电场cm V E ext /104 =,介电常数为(a )k=4及(b) k=12,

69第6章3_半导体器件物理EM3模型

半导体器件物理(1)

半导体器件物理(I ) 在E-M2模型基础上进一步考虑晶体管的二阶效应,包括基区宽度调制、小电流下复合电流的影响、大注入效应等,就成为E-M3模型. 第6章BJT模型和BJT版图6-1 E-M 模型 四、E-M3模型

半导体器件物理(I ) 1.基区宽度调制效应(Early 效应) 按照器件物理描述的方法,正向放大应用情况下,采用正向Early 电压V A (记为VA )描述c’-b’势垒区两端电压Vc’b’对有效基区宽度X b 的影响,进而导致I S 、βF 等器件特性参数的变化。 同样引入反向Early 电压(记为VB )描述反向放大状态下Ve’b’的作用。 第6章BJT模型和BJT版图6-1 E-M 模型 四、E-M3模型

半导体器件物理(I ) 考虑基区宽变效应引入两个模型参数: 正向Early 电压VA 反向Early 电压VB 这两个模型参数的默认值均为无穷大。 若采用其内定值,实际上就是不考虑基区宽度调制效应。 考虑基区宽变效应等效电路并不发生变化。 第6章BJT模型和BJT版图1.基区宽度调制效应(Early 效应) 6-1 E-M 模型 四、E-M3模型

半导体器件物理(I ) 小电流下正偏势垒区存在的复合和基区表面复合效应使基极电流增大。引入下述基区复合电流项描述正向放大情况下be 结势垒区的影响: I 2=I SE [exp(qV b’e’/Ne kT)-1] 反向放大情况下引入下述基区复合电流描述bc 结势垒区的影响: I 4=I SC [exp(qV b’c’/Nc kT)-1] 相当于等效电路中I B 增加两个电流分量。 2.小电流下势垒复合效应的表征 第6章BJT模型和BJT版图6-1 E-M 模型 四、E-M3模型

半导体导论翻译(精)

半导体导论翻译(精)

半导体导论 P124-125 CHAPTER 3 The Semiconductor in Equilibrium (d) T = 400 K, N d = 0, N a = 1014 cm-3 (e) T = 500 K, N d = 1014 cm-3, Na = 0 3.37 Repeat problem 3.36 for GaAs. 3.38 Assume that silicon, germanium, and gallium arsenide each have dopant concentrations of Nd = 1X1013 cm-3 and Na = 2.5 x 1014 cm-3 at T=300K.For each of the three materials(a) Is this material n type or p type?(b) Calculate n0 and p0. 3.39 A sample of silicon at T =450K is doped with boron at a concentration 0f 1.5x1015cm-3and with arsenic at a concentration of 8 X 1014cm-3 .(a) Is the material n type or p type? (b) Determine the electron and hole concentrations .(c) Calculate the total ionized impurity concentration. 3.40 The thermal equilibrium hole concentration in silicon at T = 300 K is p0=2x1015 cm-3 .Determine the thermal-equilibrium electron concentration .Is the material n type or p type? 3.41 In a sample of GaAs at T = 200 K, we have experimentally determined that n0 = 5 p0 and that Na = 0. Calculate n0, p0, and N d. 3.42 Consider a sample of silicon doped at N d = 1014 cm-3 and Na = 0 Calcu1ate the majority-carrier concentration at (a) T = 300 K, (b) T = 350 K,(C ) T = 400 K (d) T = 450 K, and (e) T = 500 K. 3.43 Consider a sample of silicon doped at N d = 0 and Na = 1014 cm-3 .Plot the majority-carrier concentration versus temperature over the range 200≤T≤500K. 3.44 The temperature of a sample of silicon is T = 300 K and the acceptor doping concentration is Na = 0. Plot the minority-carrier concentration (on a log-log plot) versus Nd over the range 1015≤N d≤1018 cm-3. 3.45 Repeat problem 3.44 for GaAs. 3.46 A particular semiconductor material is doped at N d = 2 x 1013 cm-3, Na = 0, and the intrinsic carrier concentration is ni = 2 x 1013cm-3. Assume complete ionization. Determine the thermal-equilibrium majority-and minority-carrier concentrations. 3.47 (a) Silicon at T = 300 K is uniformly doped with arsenic atoms at a concentration of 2 x 1016cm-3and boron atoms at a concentration of 1 x1013 cm-3. Determine the thermal-equilibrium concentrations of majority and

半导体器件物理(第六章)_93140777

半导体器件 物理进展 第六章其它特殊半导体器件简介Introduction to other Special Semiconductor Devices

本章内容提要: LDMOS、VDMOS等高压功率器件 IGBT功率器件简介 SOI器件与集成电路 电荷耦合器件的原理与应用

1. LDMOS、VDMOS功率器件 (1)MOSFET作为功率器件的优势: MOSFET为多子(多数载流子)器件,电流温度系数为负值(由迁移率随温度的变化引起),不会发生双极型功率器件的二次击穿现象(由Iceo,β随温度的升高而引起); 没有少子(少数载流子)的存贮效应,开关响应速度较快; 栅极输入阻抗较高,所需的控制功率较小; 具有一定的功率输出能力,可与控制电路集成在一起,形成Smart Power IC,例如LCD显示器的高压驱动电路(Driver)。

(2)MOSFET的击穿特性: (A)导通前的击穿: 源漏穿通: 早期的解释:随着源漏电压增大,→源漏耗尽区不断展宽,直至相碰到一起,→导致发生源漏穿通效应(这里仍然采用的是平面PN结耗尽区的概念,尽管可能不是十分准确); 目前的理解:由于DIBL效应引起的源漏穿通,与器件的沟道长度及沟道掺杂分布有关,其特点是(与PN结的击穿特性相比)击穿特性的发生不是非常急剧,换句话说,器件的击穿特性不是十分陡直的硬击穿,而是比较平缓的软击穿特性。

漏端PN结击穿: 比单纯的非MOSFET漏区的PN结击穿电压要低(原因:受场区离子注入、沟道区调开启离子注入等因素的影响),由于侧向双极型晶体管的放大作用,使得BV PN 有所下降(类似BV CEO 小于BV CBO ),不同点在于MOS器件的衬底(相当于BJT器件的基区)不是悬空的,而是接地(只是接地电阻可能偏大),这种击穿特性的特点是雪崩电流的发生比较急剧,发生雪崩效应之前的反向电流也很小。 (B )导通后的击穿:主要是由于侧向双极型晶体管效应所导致,特别是由于器件衬底电流的影响,将使源衬PN 结出现正偏现象,致使侧向双极型晶体管效应更为严重。

半导体导论翻译

半导体导论 P124-125 CHAPTER 3 The Semiconductor in Equilibrium (d) T = 400 K, N d = 0, N a = 1014 cm-3 (e) T = 500 K, N d = 1014 cm-3, Na = 0 3.37 Repeat problem 3.36 for GaAs. 3.38 Assume that silicon, germanium, and gallium arsenide each have dopant concentrations of Nd = 1X1013 cm-3 and Na = 2.5 x 1014 cm-3 at T=300K.For each of the three materials(a) Is this material n type or p type?(b) Calculate n0 and p0. 3.39 A sample of silicon at T =450K is doped with boron at a concentration 0f 1.5x1015 cm-3and with arsenic at a concentration of 8 X 1014 cm-3 .(a) Is the material n type or p type? (b) Determine the electron and hole concentrations .(c) Calculate the total ionized impurity concentration. 3.40 The thermal equilibrium hole concentration in silicon at T = 300 K is p0=2x1015cm-3.Determine the thermal-equilibrium electron concentration .Is the material n type or p type? 3.41 In a sample of GaAs at T = 200 K, we have experimentally determined that n0 = 5 p0 and that Na = 0. Calculate n0, p0, and N d. 3.42 Consider a sample of silicon doped at N d = 1014 cm-3 and Na = 0 Calcu1ate the majority-carrier concentration at (a) T = 300 K, (b) T = 350 K,(C ) T = 400 K (d) T = 450 K, and (e) T = 500 K. 3.43 Consider a sample of silicon doped at N d= 0 and Na = 1014cm-3 .Plot the majority-carrier concentration versus temperature over the range 200≤T≤500K. 3.44 The temperature of a sample of silicon is T = 300 K and the acceptor doping concentration is Na = 0. Plot the minority-carrier concentration (on a log-log plot) versus Nd over the range 1015≤N d≤1018 cm-3. 3.45 Repeat problem 3.44 for GaAs. 3.46 A particular semiconductor material is doped at N d = 2 x 1013 cm-3, Na = 0, and the intrinsic carrier concentration is ni = 2 x 1013 cm-3. Assume complete ionization. Determine the thermal-equilibrium majority-and minority-carrier concentrations. 3.47 (a) Silicon at T = 300 K is uniformly doped with arsenic atoms at a concentration of 2 x 1016 cm-3 and boron atoms at a concentration of 1 x1013 cm-3. Determine the thermal-equilibrium concentrations of majority and minority carriers. (b) Repeat part (a) if the impurity concentrations are 2 x1015 cm-3 phosphorus atoms and 3 x 1016 cm-3 boron atoms.

半导体器件习题及参考答案

第二章 1 一个硅p -n 扩散结在p 型一侧为线性缓变结,a=1019cm -4,n 型一侧为均匀掺杂,杂质浓度为3×1014cm -3,在零偏压下p 型一侧的耗尽层宽度为μm,求零偏压下的总耗尽层宽度、内建电势和最大电场强度。 解:)0(,22≤≤-=x x qax dx d p S εψ )0(,2 2n S D x x qN dx d ≤≤-=εψ 0),(2)(22 ≤≤--=- =E x x x x qa dx d x p p S εψ n n S D x x x x qN dx d x ≤≤-=- =E 0),()(εψ x =0处E 连续得x n =μm x 总=x n +x p =μm ?? =--=-n p x x bi V dx x E dx x E V 0 516.0)()( m V x qa E p S /1082.4)(25 2max ?-=-= ε,负号表示方向为n 型一侧指向p 型一侧。 2 一个理想的p-n 结,N D =1018cm -3,N A =1016cm -3,τp=τn=10-6s ,器件的面积为×10-5cm -2,计算300K 下饱和电流的理论值,±时的正向和反向电流。 解:D p =9cm 2/s ,D n =6cm 2/s cm D L p p p 3103-?==τ,cm D L n n n 31045.2-?==τ n p n p n p S L n qD L p qD J 0 += I S =A*J S =*10-16A 。 +时,I =μA , -时,I =*10-16A 3 对于理想的硅p +-n 突变结,N D =1016cm -3,在1V 正向偏压下,求n 型中性区内

图解半导体制程概论1

图解半导体制程概论(1) 第一章半导体导论 █半导体的物理特性及电气特性 【半导体】具有处于如铜或铁等容易导电的【导体】、与如橡胶或玻璃等不导电的【绝缘体】中间的电阻系数、该电阻比会受到下列的因素而变化。如: 杂质的添加·温度 光的照射·原子结合的缺陷 █半导体的材料 硅(Si)与锗(Ge)为众所周知的半导体材料.这些无素属于元素周期素中的第IV族,其最外壳(最外层的轨道)具有四个电子.半导体除以硅与锗的单一元素构成之处,也广泛使用两种以上之元素的化合物半导体. ●硅、锗半导体 (Si、Ge Semiconductor) 单结晶的硅、其各个原子与所邻接的原子共价电子(共有结合、共有化)且排列得井井有条。利用如此的单结晶,就可产生微观性的量子力学效果,而构成半导体器件。

●化合物半导体 (Compound Semiconductor) 除硅(Si)之外,第III族与第V族的元素化合物,或者与第IV族元素组成的化合物也可用于半导体 材料。 例如,GaAs(砷化镓)、Gap(磷化砷)、AlGaAs(砷化镓铝)、GaN(氮化镓)SiC(碳化硅)SiGe(锗化硅)等均是由2个以上元素所构成的半导体。

█本征半导体与自由电子及空穴 我们将第IV族(最外层轨道有四个电子)的元素(Si、Ge等),以及和第IV族等价的化合物(GaAs、GaN等),且掺杂极少杂质的半导体的结晶,称之为本征半导体(intrinsic semiconductor)。 ●本征半导体(intrinsic semiconductor) 当温度十分低的时候,在其原子的最外侧的轨道上的电子(束缚电子(bound electrons)用于结合所邻接的原子,因此在本征半导体内几乎没有自由载子,所以本征半导体具有高电阻比。

智慧树知到《半导体技术导论》章节测试题【完整答案】

智慧树知到《半导体技术导论》章节测试题 【完整答案】 2020智慧树知到《半导体技术导论》章节测试答案 第一章 1、现代电子器件大多是基于半导体材料制备的? 对 错 答案: 对 第二章 1、p型硅掺杂IV族元素,n型硅掺杂III族元素。 对 错 答案: 错 2、半导体中电流由电子电流和空穴电流构成。 对 错 答案: 对 3、以能带隙种类区分,硅属于直接能带隙半导体。 对 错 答案: 对 4、以下哪种结构不是固体常见的微观结构类型?

单晶体 多晶体 非晶体 结晶体 答案: 结晶体 5、从能级角度上看,导体就是禁带宽度很小的半导体。 对 错 答案: 错 6、半导体的电导率一般要大于绝缘体的电导率。 对 错 答案: 对 7、在半导体中的空穴流动就是电子流动。 对 错 答案: 错 8、通常来说,晶格常数较大的半导体禁带宽度也较大。 对 错 答案: 错 9、温度为300K的半导体费米能级被电子占据的几率为()?

1/4 1/2 1 答案: 1/2 10、通常对于同种半导体材料,掺杂浓度越高,载子迁移率越低。 对 错 答案: 对 第三章 1、通常情况下,pn结p区和n区的半导体材料不相同。 对 错 答案:错 2、pn结加反偏压时,总电流为0。 对 错 答案:错 3、平衡状态下pn结的能带图中,p区和n区的费米能级是分开的。 对 错

4、金属与n型半导体接触形成欧姆接触,此时金属的功函数应当大于半导体的功函数。 对 错 答案:错 5、欧姆接触也称为整流接触。 对 错 答案:错 6、通常,超晶格结构是基于异质结设计的。 对 错 答案:对 7、n型增强型MOSFET的基底是n型半导体。 对 错 答案:错 8、MOSFET的饱和漏极电流大小是由漏极电压决定的。 对 错

半导体器件第六章

▲理想MOS 二极管的工作原理。(说明栅极电压分别为负,零及其正偏电压)。 答:当一理想MOS 二极管偏压为负时,半导体表面可能会出现三种情况,P 型半导体而言,当一负电压施加于金属平板上时,Si SiO -2界面将产生超量的空穴,接近半导体表面的能带向上弯曲,如图,对理想二极管而言,不论外加电压为多少,器件内部均无电流流动,所以半导体内部的费米能级将维持为一个常数,在半导体内部的载流子密度与能级差成指数关系,即____________________。 半导体表面向上弯曲的能带使得的能级差i F E E -变大,进而提升空穴的浓度,而在氧化层与半导体的界面处产生空穴堆积,称为积累现象。其相对应的电荷分布如图所示,当外加更大的正电压时,能带向下弯曲的更严重,使得表面的本征能级i E 越过费米能级F E ,如图,正栅极电压将在 Si SiO -2界面处吸引更多的负载流子(电子),半导体中电子的浓度与能 差i F E E -成指数关系,即_________________________________。 ▲MOS 二极管出现反型标志,强反型标志各是什么?出现强反型时,导电 沟道厚度特点。 答:①当外加一小量正电压于理想MOS 二极管时,靠近半导体表面的能带将向下弯曲,使i F E E =形成多数载流子(空穴)耗尽,称为耗尽现象。在半导体中,单位面积的空间电荷SC Q 的值为W qN A ,其中W 为表面耗 尽区的宽度。②图略 ③随着正偏电压的增大,Ef-Ei>0,在半导体表面上的电子浓度将 于i n ,而空穴浓度将小于i n ,即表面载流子呈现反型,称为反型现象。 ④起初,因电子浓度较小,表面处于弱反型的状态,当能带持续弯曲,使得导带的边缘接近费米能级,当靠近SiO2~Si 由界面的电子浓度等于衬底的掺杂量时,开始产生强反型,在此之后,大部分在半导体中额外的负电荷是由电子在很窄的n 型反型层(i x x ≤≤0)中产生的电荷Qn ,如图所示,组成,其中i x 为反型层的宽度,i x 典型值的范围从1nm~10nm ,且通常远远小于表面耗尽的区域。 ▲MOS 二极管半导体表面耗尽层厚度与半导体表面静电势之间的函数关系?在强反型时两者之间的函数关系呢?并弄够从泊松方程进行推导。 答:电势距离为函数,可由一维的泊松方程求得为______________________。 其中)(x s ρ为位于x 处的单位体积电荷密度,而s ε为介电常数。 下面采用耗尽近似法分析,p-n 结,当半导体耗尽区宽度达到W 时,半导体内的电荷为W qN A s -=ρ,积分泊松方程可得距离x 的函数的表面耗尽区的静电势分布:________。 表面电势______________。注意此电势分布与单边的n p -+ 结相同。当 B S ??>时表面即发生反型,然而,我们需要一个准则来表示强反型的起

相关主题
文本预览
相关文档 最新文档