CREE XT-E测试数据
- 格式:xls
- 大小:4.41 MB
- 文档页数:1
测试日期: 4/8/2013(1)A电源转B电源及B电源转A电源通断时间测试1. 测试条件1.1 测试方法为在A B电源的最大开距处加一块导通铜片作为导通信号。
1.2 更改合闸线圈,脱扣线圈及脱扣弹簧,合闸线圈弹簧用8TY.282.115/42图号。
1.3 动触头弹簧前端用原TBBQ6-400的弹簧,后端为增大压力弹簧。
图号见附表。
1.4 测试示意图如下:2. A电源转B电源及B电源转A电源通断时间2.1 A分B合(A B电源初始状态:A电源闭合B电源断开。
结束状态:A电源断开B电源闭合)。
2.1.1 测试条件:2.1.1.1 测试位置: A电源的N相,B电源的N相。
2.1.1.2 示波器波形“1”代表A电源的N相,“2”代表B电源的N相。
2.1.1.3 波形图中“a"“b" "c" "d"意义。
“a"代表A电源N相开始动作断开时间。
“b"代表A电源N相完全断开时间。
“c"代表B电源N相开始动作闭合时间。
“d"代表B电源N相完全时间。
2.1.2 测试数据如下:条件:未更换合闸线圈弹簧测试数据(压簧图号:8TY.282.003)a->b时间a->c时间b->c时间a->d时间18.8ms 64ms 55.2ms 76ms27.6ms 64ms 56.4ms 74.8ms312.4ms 65.6ms 53.6ms 76ms49.6ms 61.6ms 52ms 77.6ms测试报告实验次数A电源N相分开至B电源N相闭合通断时间变化曲线2.2 B分A合(A B电源初始状态: B电源闭合A电源断开。
结束状态: B电源断开A电源闭合)。
2.2.1 测试条件:2.2.1.1 测试位置: A电源的N相,B电源的N相。
2.2.1.2 示波器波形“1”代表A电源的N相,“2”代表B电源的N相。
科锐xte 中文说明
产品说明
X Lamp®X T-E采用Cree的行业标准XP/XT封装,是Cree性能最佳的以碳化硅为基底材料的LED技术。
X T-E白光LED设定了新的高性能标准,显著降低了系统成本。
X T-E宝蓝色LED是Cree性能最佳的宝蓝色光源,适用于非接触式荧光粉的应用。
Cree XL-amp LED为各类照明应用带来了卓越的照明性能与照明质量,这些应用包括非接触式荧光粉照明、变色照明、便携式照明和个人照明、室外照明、室内定向照明、运输照明、舞台照明、演播室照明、商业照明和应急车照明。
特点
·有白色、最低80-CRI白、最低
70-CRI白及宝蓝色等光色可选
·暖白色有最小显色指数85和90可
·新增特点:可以提供2200KCC
·在85°C时分档
·冷白光效最高达148 lm/W
(85°℃.350mA时)
·带墙上灯座的宝蓝色光效最高达5
(85°C、350mA时)
·视角:115-140°
·热阻:5C/W
·最大驱动电流:1.5A。
微带单极子天线设计报告设计者:郑州(2009022052)邱玲(2009022043)胡克强(2009022060)丘定升(2009022050)郭昭君(2009022081)目录1、基本原理 (3)2、设计目标 (3)3、电磁场仿真 (4)(1)3D模型 (4)(2)仿真曲线 (4)4、电路版图设计 (5)(1)、CAD 图 (5)5、安装调试 (6)(1)实物图 (6)(2)测试曲线 (6)6、分析总结 (6)1、基本原理单极子天线是由直接垂直安装在地面或导电平面上的直导体组成的天线 。
单极子天线等效为一振子天线 单极子天线(λ41=h )的方向图E 面2、设计目标⏹ 频率:1800~2200MHz⏹ 增益:0dBi⏹极化方向:垂直⏹方位:全向⏹仰角:球面覆盖⏹电压驻波比:≤2:1⏹阻抗:50ohm⏹最大输入功率:20W⏹接头:SMA-K3、电磁场仿真(1)3D模型(2)仿真曲线4、电路版图设计(1)、CAD 图5、安装调试(1)实物图(2)测试曲线6、分析总结根据最终测试结果分析,此次设计基本达到了设计指标,实物数据与仿真结果一致。
虽然此次设计已经达到要求,但仍有许多不足:(1)、在接下来的学习中,我们应更多地运用ADS、HFSS等专业软件,已达到熟练掌握的程度。
(2)、在完成设计的基础上,要更深入地理解天线的工作原理,增强理论知识。
(3)、将实验设计与实际应用相结合,以便于更好地将其投入生产生活中。
Application NoteQuickly setup your LED Lighting solution with Cree® XLamp® MC-E series Star BoardBy: Suresh ChaudhariThis application note describes how to select Cree XLamp MC-E star board series and covers the complete lighting solution include selection of driver, optics and heatsink.At the end would like to focus on some design tips and demo setup.Table of ContentsIntroduction of Cree® XLamp® MC-E High Power LED1. (1)Cree® Star board with major features and parameters2. (2)How to select Star board based on the system requirement3. (3)Suppliers recommendation for Driver4. (4)Suppliers recommendation for Optics5. (5)Suppliers recommendation for Heatsink6. (6)Design and Application tips7. (6)Demo Setup8. (7)1. Introduction of Cree® XLamp® MC-E High Power LEDThe XLamp MC-E LED is a lighting-class, multi-chip LED that provides high lumen output in a small footprint package. Compared to discrete LEDs, XLamp MC-E LEDs reduce the distance between LED die, creating a small optical source for excellent optical control and efficient color mixing. XLamp MC-E LEDs can reduce LED system complexity by reducing the number of components required.Cree XLamp LEDs bring high performance and quality of light to a wide range of lighting applications, including color-changing lighting, portable and personal lighting, outdoor lighting, indoor directional lighting, and entertainment lighting.Cree MC-E White LED Cree MC-E Color LEDFEATURES∙ Available in white (2600 K – 10,000 K CCT), EasyWhite™, or color (RGBW) ∙ ANSI-compatible neutral and warm white chromaticity bins ∙ Individually addressable LEDs∙ Maximum drive current: 700 mA per LED die ∙ Reflow solderable – JEDEC J-STD-020 ∙ Electrically neutral thermal path ∙RoHS and REACH-compliant2. Cree® Star board with major features and parametersFEATURES∙ 430 lm @ 350mA∙ 700mA - Max Drive Current∙ 12.8V - Typ. Forward Voltage @ 350mA (For series configuration) ∙ 13.6V - Typ. Forward Voltage @ 700mA (For series configuration) ∙ 4-Chip In Series and parallel Circuit ∙ 4-Chip Individually Addressable∙ Star board available in single color – Cool white, Neutral white and Warm white ∙no need of reflowBelow table shows different types of Star board LED configuration, depending on requirement customer can choose series, parallel or individual configuration. As an example we have selected 3 LED in different configuration.Each LED VF(typ)@350mAViewing Angle MCE4WT-A2-0000-00M02-STARIND Individual (Figure3) M 430 MCE4WT-A2-0000-00K02-STARSRSeries ( Figure1) K 370MCE4WT-A2-0000-00M02-STARPstar Parallel (Figure2) 2mm Cool White WC,WD,WG,WF M4303.2V 110deg3. How to select Star board based on the system requirementLED is available in single die or multi die, depending on its application and lux requirement either of them can be selected. Example, Cree MCE series having 4 die in a single chip means you will get more lumens output in a small footprint package so you can use for microscope illumination, high end strobe light like applications.While selecting LED Module please check below parameters as per your application requirement.∙Configuration – Series, parallel and Individual∙ Lumen output∙Output current∙Maximum output power∙Size and dimension∙ Efficiency∙When you selecting LED module please select radiation pattern Lambertain, batwing and side emitting which matches to your application. If the LED is not available in this pattern, then you can use optics to get the required output.Please also ensure whether for your application required binned LED or full distribution, for this example we are not using bin LED as application is not demanding. Depending on application you can select which bin you require like – forward voltage, color, and flux bin.Explained below with an example how to select MC-E star module as per system requirementExample - High Strobe lightingSpecification-1 meter @ 5000 lux.To get 5000 lux at 1 meter, need almost 330lm source.Here we consider height 1meter, viewing angle 14° and overall efficiency 70%.To get 330 lm source alteast need to use 3-4 LED and optics for each led, but with the use of MC-E LED the number of optics, size of MCPCB and manufacturing hours in assembling will reduce to bring down total system cost. Same explained in below picture.Part Number selected for design,Cree MC-E LED - MCE4WT-A2-0000-00K02-STARSRFraen lens - FRC-N1-MCE-0RFind the central spot “on-axis intensity” value from Fraen datasheet.Narrow Beam (Part Number: FRC-N1-MCE-0R), value is 14If the Fraen narrow reflector FRC-N1-MCE-0R is used on a cool white MC-E LED at 350 mA, the typical luminous flux of the “Group K” LED is 370 lumens.The calculation is:(14 candela/lumen) x (370 lumens) = 5180 candela peak on-axis.1 candela at 1-meter distance produces 1 Lux. This means the peak intensity at 1 meter will be 5180 lux.The intensity decreases as a function of the distance squared, so at 2 meters the peak intensity will be 5180 / (22) = 1295 lux. At 3 meters distance, the peak intensity will be 5180 / (32) = 575 lux.Range 1meter 2 meter 3 meter Illuminance 5180 lux 1295 lux 575 luxWith the help of effective reflector can achieve long beam distances (example- 200 meter).Beam photographsOnce you complete the testing and get required output, then you can paste star board with adhesive to heatsink. Then finally this assembly can be fixed with enclosure as a finished product.4. Suppliers recommendation for DriverIf the power consumption of an LED module is higher than the power of a single LED driver when designing, we can use several LED drivers or an external MOSFET to drive the module.LED drivers may need to work with various power supply voltages in illumination circuits, and it may therefore, be better to select an LED drivers that support a wide range of input voltage in order to mitigate any voltage fluctuation problems.Several suppliers including National Semiconductor, Maxim, Zetex and in driver module LIGHTECH and Lumidrives can offer relevant solutions to meet different applications requirements.Cree LED Array Vout, Iout, and Power driver requirements as below.Vout Iout (max) PowerMCE4WT-A2-0000-00K02-STARSR 13.6V 700mA 9.52WLED Driver Selection consideration∙Voltage and Current rating of driver to be selected as per LED’s configuration whether array configuration in Serial, parallel and Individual combination.∙ Efficiency∙Depends on input LED driver topology to be selected–Dc Input -Buck, Boost, Buck-Boost,–AC Input – Flyback, forward, LLC.Depending on the input voltage and output power the choice can be made for LED driver, canbe buck type, boost type, buck/boost type, and also charge-pump type. For power line drivensystem the buck type is chosen, for the single cell battery operated devices the boost type ischosen, for the system which run on both powerline and battery the buck/boost is chosen.Charge pump type is preferred if the output power is less and EMI and other noise issues.Table below show lists of drivers that meet Cree LED Array’s output voltage, output constantcurrent, and power requirements.LED Driver Selection Guide (Iout = 700mA)NOC FOCNational Semiconductor LM3407MY/NOPB350 mA, Constant CurrentOutput Floating BuckSwitching Converter forHigh Power LEDs from thePowerWise® Family4.5V to 30V350mA0.45V to27VBuck78M77351555100Zetex ZXLD1350ET5350mA LED driver withinternal switch7V to 30V 350mA 30V Buck05M21751226470Maxim MAX16803ATE+2MHz, High-BrightnessLED Drivers withIntegrated MOSFET andHigh-Side Current Sense6.5V to 65V700mA63 Buck89K32471552873*LIGHTECH 901010700PLED 10W driver 120-240Vac700mA15V Module73R3502 1797597* Lumidrives MDU9-SC-3570 LED Driver Power Supply 110-240Vac350/700mA4-32V Module20M5601 1712028* Note- Highlighted parts are LED module5. Suppliers recommendation for OpticsSecondary optics is used to modify the output beam of the LED such that the output beam of the finished lamp will efficiently meet the desired photometric specification.How to select the optics∙What is viewing angle required.∙Select beam ( narrow, medium, wide)∙Select radiation pattern ( Batwing, Lambertain, side emitting)∙If you know Illuminance + distance then you can calculate what is angle you need to select for lensTable below show lists of lens that suit with Cree MC-E LED.FOCLedil FA10613_LM1-RSLENS, REAL SPOT,CREE MCE ±10.5° 79R63001817542Fraen FRC-N1-MCE-0RFRC Series 35mm Diameter Reflectors14° - - Ledil FA10680 _CMC-OLENS, OVAL,CREE MCE ±21° x ±10° 79R63211817549Ledil C10686_EVA-MC-WLENS, WIDE, CREEMCE±18.2°79R6139 18175606. Suppliers recommendation for HeatsinkThermal resistance is a measure of the ability of the package to conduct heat from the chip to the environment.How to select the Heatsink∙ Heatsink thermal resistance value should be equal or lower than calculated value ofthermal resistance of board to ambient i.e. Rth(b-a). The lower the value, the higher the thermal performance.∙ Heat sinks should be designed to have a large surface area, use large number of finefins.∙ Material selection - Aluminium is the most common material used as a heat sink.Table below show lists of Heatsinks that equal or less than to Cree MC-E LED thermal resistance.COOLIANCE CML8001-52-10-101 LED HEAT SINK 3°C/W 99R47231847864 WAKEFIELD SOLUTIONS882-100ABLED HEAT SINK2.88°C/W96M8765-Heatsink can be customized as per end product design requirement.7. Design and Application tipsIn order to determine LED systems reliability the system designer must consider thepossible failure modes for each component. It is generally known that one of the weakest parts of an LED system is the LED driver due to the number and types of components they contains and so covered below point which effect LED drivers reliability.An LED drivers’ reliability depends upon:∙The number and quality of components used within the driver design∙Rated wattage of the driver.∙The maximum operating temperature of the electrolytic capacitors used in the driver.∙The overall efficiency of the AC-DC and DC-DC stages of the driver.∙Good driver design where component placement is determined by safety, EMC and thermal considerations.∙ A suitable thermal management system for the driver such as an aluminium case or forced air cooling fan if appropriate.The maximum LED junction temperature (Tj) provided in the data sheet, example Tj-150°C, so at certain ambient temperature you may need to back off the current so thatyou don’t exceed the maximum Tj, always refer d-rating curve graph to know what is the value of ambient and current on particular thermal value.LED drivers are typically constant current drivers that provide stable current for a single LED or LED array. LEDs used in the applications described are usually high-power LEDsof 1W or greater. These high power LEDs can produce a considerable amount of heat inoperation. This heat, if unmanaged, can degrade the lifetime, light output, forward voltageand most importantly dominant wavelength, which shifts with temperature and therefore itis advisable to consider this and incorporate sufficient thermal management into the design. Some of the Drivers work in conjunction with temperature sensors to achieve thethermal protection and management so as to improve the performance of LEDs in a variety of applications.8. Demo SetupBelow set up done for MC-E series star board.To complete the set up need∙Power supply source ( used 24V,1A rating)∙Constant Current LED Driver ( used LM3404 driver)∙Cree Star Board ( used MCE4WT-A2-0000-00K02-STARSR LED array )About element14element14 is a new, innovative information portal and eCommunity specifically built for electronic design engineers. It provides product data, design tools and technology information, whilst incorporating web 2.0 functionality to facilitate communication, interaction, collaboration and information sharing between colleagues around the world. Users can consult experts, discover trends, post blogs, articles and comments in this world-wide forum.element14 is another innovative offering from Premier Farnell plc (LSE:pfl), FTSE 250, a leader in multi-channel distribution and specialty services for electronic design engineers throughout Europe, the Americas and Asia Pacific. It has a stocked range of 450,000+ products, and access to 4,000,000 more items from 3,500 top manufacturers. The company has group sales of £804.4m and over 4,100 employees globally.For more information about the company, please visit 。
软件检测报告模板篇一:软件测试报告模板软件测试报告模板此页为模板文档本身的版本控制记录表,按模板生成的正式文档中不需要此页。
秘密XXXXXX软件项目系统测试报告软件测试部 200X/XX/XX目录1. 引言 ................................................ ..................... 3 2. 测试参考文档 ................................................ ............. 3 3. 测试设计简介 ................................................ . (3)测试用例设计 ................................................ ....... 3 测试环境与配置 ................................................ ..... 3 测试方........... 4 4. 测试情况 ................................................ ................. 4 测试执行情况 ................................................ ....... 4 测试覆盖 ................................................ ........... 4 缺陷的统计 ................................................ (4)缺陷汇总和分析 .............................. 错误!未定义书签。
具体的测试缺陷 .............................. 错误!未定义书签。
XLamp XP-E White LEDs (Revision 1)1. Number of LED light sources tested /LED光源数量试验See individual test reports.见测试报告2. Description of LED light sources LED光源的描述XLamp XP-E White LEDs (XPEWHT)All measurements provided are LED package measurements.3. Description of auxiliary equipment测试设备描述Instrument Systems ISP-500 Integrating SphereInstrument Systems CAS-140 Spectrometer Keithley 2420 Sourcemeter4. Operating cycle 循环周期LED packages are driven at constant current.5. Ambient conditions 环境条件LED packages are operated in environmentalcontrol chambers. The temperature of theambient air around the LED packages is activelycontrolled by air flowing through the chamber.TA : See individual test reportsRH : < 45%Air flow : 800 CFM 包装是运作了环境控制室。
周围的空气的温度在LED包是乘飞机主动控制流过室。
助教:看个人测试报告湿度,< 45%空气流动:800 CFM立方英尺每分钟6. Case temperature情况下温度The case temperature measurement point is shown inthe XLamp XP-E Soldering & Handling document(AP25). 如此的温度测量点被证明在XLamp XP-E焊接和处理文件(AP25)。
芯片测试报告模板篇一:芯片测试报告范文Power bank 20XX-4000 芯片测试报告目的:鉴于原power bank20XX-4000 芯片的输出电流不能满足不断升级、更新手机的需求,继而寻找高电流出去芯片,代替原有芯片,特针对此芯片芯片进行测试,为今后的更改做好铺垫。
测试工具:电子负载、稳压电源、万用表、电子温度计、数字电流表。
测试内容:1、输出电流不断上升,输入电压不断下降的状态下,输出效率变化分布;2、输入为恒压的状态下,不断的提高输出电流,输出效率的变化;3、输出电流不断上升时,芯片发热温度变化;测试方案:1 、控制输出电流从逐一递升变化(每);稳压电源输出为4V,以实际电路输入电压为准,并读取电子负载上的显示参数(输出电压、电流);U1I1并读取 2、控制输出电流从,不断调整输入电压,使之为定值电子负载上的显示参数(输出电压、电流);3、控制输出电流从逐一递升变化(每);芯片等周围部件的温度变化;测试数据:1、输出电流不断上升,输入电压不断下降的状态下,输出效率变化分布;2、恒压下的效率变化;输入3V恒压时,随电流的上升,转换效率的变化情况输入恒压时,随电流的上升,效率的变化情况输入4V恒压时,随电流的上升,效率的变化情况3、常温下,输出电流不断上升时,芯片发热温度变化篇二:硬件产品测试报告C××××测试报告(功能测试)1.测试设备2.测试目的3.测试用品:4.电源测试测试方法:1)将×××电源连接到××××××电源连接到×××,以上步骤简称‘上电’; 2)用×××器在各电源对应测试点上测量其×××。
测试条件:1)常温;2)芯片正常运行。
5.采样电路测试测试方法:1)×××板上电;2)在板载接口对应位置接入信号源;3)用×××器测量板上对应测试点×××;测试者:日期:6.×××上电自举测试方法:1)×××板上电;2)在×××环境下,选择×××,出现下载界面;3)选择×××打开×××,选择×××,烧写完成后,重新给×××板上电;以上步骤×××为‘烧写××× 4)观察指示灯×××是否闪烁7.×××测试测试方法:1)×××板上电;2)在程序中设定×××为输入,输入波形作为×××输出,输入为×××方波,烧写×××; 3)用×××器测量板上对应测试点波形; 4)比较测试波形是否与设定一致;8.双口×××测试测试方法:1)×××板上电;2)在×××中设定×××读写时序,向双口×××全地址空间写入数据,写入完成后读取双口×××中的数据,判断是否与写入数据一致;3)在×××中设定×××读写时序,向双口×××全地址空间写入数据,写入完成后读取双口×××M中的数据,判断是否与写入数据一致;×××测试方法:1)×××板上电; 2)烧写×××;3)将F28×××烧写到F×××中;4)将C6×××写入F28×××内部FL×××5)程序运行,如果BOOT×××,则指示灯LE×××闪烁10.外部AD测试测试方法:1)线路板上电;2)在CC×××环境下,通过仿真器向C67×××写入A ×××读写程序;3)在外部A×××输入接口加入电平信号,运行程序,在CC×××中读取采样值。
Cree® LED Lamp Reliability Test StandardCriteria for Performing LED Reliability TestsThis application note applies to the following high-brightness-LED products:• Oval and round LEDs• P4 LEDs• Surface-mount PLCC LEDsFor XLamp LED reliability information, refer to the XLamp LED Reliability Application Note (CLD-AP06).1. P2 RGB LED Lamps (2)2. P2 White LED Lamps (3)3. P4 RGB LED Lamps (4)4. P4 White LED Lamps (5)5. TOP SMD LED Lamps (6)6. TOP White and Warm White SMD LED Lamps (7)7. Power SMD and Power SMD with Lens LED Lamps (8)8. Power White SMD LED Lamps (9)9. Sideview SMD LED Lamps (10)10. Sideview White SMD LED Lamps (11)11. 6-Pin SMD LED Lamps (12)12. 6-Pin White SMD LED Lamps (13)13. Small 6-Pin SMD LED Lamps (14)14. Small 6-Pin White SMD LED Lamps (15)15. Small TOP SMD LED Lamps (16)16. Small TOP White SMD LED Lamps (17)17. Mini Sideview SMD LED Lamps (18)18. Mini Sideview White SMD LED Lamps (19)19. LN6 White SMD LED Lamps (20)20. LV6 SMD LED Lamps (21)Test Applicable Standards Test Condition Note Number ofDamagedTemperature Cycle JEITA ED-4701100 105-40°C~25°C~100°C~25°C30 mins, 5 mins, 30 mins, 5 mins100 cycles0/100Thermal Shock*MIL-STD-202G-40°C~100°C30 mins, 30 mins100 cycles0/100Moisture-Resistance Cycle JEITA ED-4701200 20325°C~65°C90% RH 24 hrs/lcycle10 cycles0/100High-Temperature Storage JEITA ED-4701200 201T A=100°C1000 hrs0/100Humidity Heat Storage JEITA ED-4701100 103TA=60°CRH=90%1000 hrs0/100Low-Temperature Storage JEITA ED-4701200 202T A=-40°C1000 hrs0/100Life Test*-TA=25°COval: IF=35 mA (GB) IF=50 mA (R)Round: IF=30 mA (GB) IF=50 mA (R)1000 hrs0/100High Humidity Heat Life Test*-60°C RH=90%IF=20 mA500 hrs0/100Low Temperature Life Test-T A=-30°CIF=20 mA1000 hrs0/100Resistance to Soldering Heat*JEITA ED-4701300 302TSOL=260(±5)°C, 10 sec(3 mm from the base of the epoxybulb)1 time0/100Solderability JEITA ED-4701300 303TSOL=235(±5)°C, 5 sec(using flux)1 time(over 95%)0/100Lead Bend Test JEITA ED-4701400 401Load 5N (0.5 kgf)0°~90°~0° bend 2 timesNo notice-able damage0/100Lead Pull Test JEITA ED-4701400 401Load 10N (1 kgf)10(±1) secNo notice-able damage0/100Electrostatic Discharge Test AEC(Q101-001)Human body model 1000 V(forward and reverse currentconduct electricity, each 1 time)0/10Item Symbol TestConditionCriteria for JudgmentMin MaxForward Voltage VF IF= 20 mA–Initial Data x 1.1Reverse Current IR VR= 5 V–100 μALuminous Flux/Intensity IV IF= 20 mA Initial Data x 0.7 (Total degradation)Initial Data x 0.5 (Single lamp degradation)–Test Applicable Standards Test Condition Note Number ofDamagedTemperature Cycle JEITA ED-4701100 105-40°C~25°C~100°C~25°C30 mins, 5 mins, 30 mins, 5 mins100 cycles0/100Thermal Shock*MIL-STD-202G-40°C~100°C30 mins, 30 mins100 cycles0/100Moisture-Resistance Cycle JEITA ED-4701200 20325°C~65°C90% RH 24 hrs/lcycle10 cycles0/100High-Temperature Storage JEITA ED-4701200 201T A=100°C1000 hrs0/100Humidity Heat Storage JEITA ED-4701100 103TA=60°CRH=90%1000 hrs0/100Low-Temperature Storage JEITA ED-4701200 202T A=-40°C1000 hrs0/100Life Test*-TA=25°COval: IF=30 mARound: IF=30 mA1000 hrs0/100High Humidity Heat Life Test*-60°C RH=90%IF=20 mA500 hrs0/100Low Temperature Life Test-T A=-30°CIF=20 mA1000 hrs0/100Resistance to Soldering Heat*JEITA ED-4701300 302TSOL=260(±5)°C, 10 sec(3 mm from the base of the epoxybulb)1 time0/100Solderability JEITA ED-4701300 303TSOL=235(±5)°C, 5 sec(using flux)1 time(over 95%)0/100Lead Bend Test JEITA ED-4701400 401Load 5N (0.5 kgf)0°~90°~0° bend 2 timesNo notice-able damage0/100Lead Pull Test JEITA ED-4701400 401Load 10N (1 kgf)10(±1) secNo notice-able damage0/100Electrostatic Discharge Test AEC(Q101-001)Human body model 1000 V(forward and reverse currentconduct electricity, each 1 time)0/10Item Symbol TestConditionCriteria for JudgmentMin MaxForward Voltage VF IF= 20 mA–Initial Data x 1.1Reverse Current IR VR= 5 V–100 μALuminous Flux/Intensity IV IF= 20 mA Initial Data x 0.7 (Total degradation)Initial Data x 0.5 (Single lamp degradation)–Test Applicable Standard Test Condition Note Number ofDamagedTemperature Cycle JEITA ED-4701100 105-40°C~25°C~100°C~25°C30 mins, 5 mins, 30 mins, 5 mins100 cycles0/100Thermal Shock*MIL-STD-202G-40°C~100°C30 mins, 30 mins100 cycles0/100Moisture-Resistance Cycle JEITA ED-4701200 20325°C~65°C90% RH 24 hrs / 1 cycle10 cycles0/100High-Temperature Storage JEITA ED-4701200 201T A=100°C1000 hrs0/100Humidity Heat Storage JEITA ED-4701100 103TA=60°CRH=90%1000 hrs0/100Low-Temperature Storage JEITA ED-4701200 202T A=-40°C1000 hrs0/100Life Test*-TA=25°CGreen, Blue: IF=30 mARed, Amber: IF=70 mA1000 hrs0/100High-Humidity Heat Life Test*-60°C RH=90%IF=20 mA500 hrs0/100Low-Temperature Life Test-Ta=-30°CIF=30 mA1000 hrs0/100Resistance to Soldering Heat*JEITA ED-4701300 302TSOL=260(±5)°C, 10 sec(3 mm from the base of the epoxybulb)1 time0/100Solder ability JEITA ED-4701300 303TSOL=235(±5)°C, 5 sec(using flux)1 time(over 95%)0/100Lead Bend Test JEITA ED-4701400 401Load 5N (0.5 kgf)0°~90°~0° bend 2 timesNo notice-able damage0/100Lead Pull Test JEITA ED-4701400 401Load 10N (1 kgf)10(±1) sec.No notice-able damage0/100Electrostatic Discharge Test AEC(Q101-001)Human body model 1000 V(forward and reverse currentconduct electricity, each 1 time)0/10Item Symbol TestConditionCriteria for JudgmentMin MaxForward Voltage VF IF= 30 mA–Initial Data x 1.2Reverse Current IR VR= 5 V–100 μALuminous Flux/Intensity IV IF= 30 mA Initial Data x 0.65 (Total degradation)Initial Data x 0.5 (Single lamp degradation)–Test Applicable Standard Test Condition Note Number ofDamagedTemperature Cycle JEITA ED-4701100 105-40°C~25°C~100°C~25°C30 mins, 5 mins, 30 mins, 5 mins100 cycles0/100Thermal Shock*MIL-STD-202G-40°C~100°C30 mins, 30 mins100 cycles0/100Moisture-Resistance Cycle JEITA ED-4701200 20325°C~65°C90% RH 24 hrs / 1 cycle10 cycles0/100High-Temperature Storage JEITA ED-4701200 201T A=100°C1000 hrs0/100Humidity Heat Storage JEITA ED-4701100 103TA=60°CRH=90%1000 hrs0/100Low-Temperature Storage JEITA ED-4701200 202T A=-40°C1000 hrs0/100Life Test*-T A=25°CIF=35 mA1000 hrs0/100High-Humidity Heat Life Test*-60°C RH=90%IF=20 mA500 hrs0/100Low-Temperature Life Test-Ta=-30°CIF=30 mA1000 hrs0/100Resistance to Soldering Heat*JEITA ED-4701300 302TSOL=260(±5)°C, 10 sec(3 mm from the base of the epoxybulb)1 time0/100Solder ability JEITA ED-4701300 303TSOL=235(±5)°C, 5 sec(using flux)1 time(over 95%)0/100Lead Bend Test JEITA ED-4701400 401Load 5N (0.5 kgf)0°~90°~0° bend 2 timesNo notice-able damage0/100Lead Pull Test JEITA ED-4701400 401Load 10N (1 kgf)10(±1) sec.No notice-able damage0/100Electrostatic Discharge Test AEC(Q101-001)Human body model 1000 V(forward and reverse currentconduct electricity, each 1 time)0/10Item Symbol Test ConditionCriteria for JudgmentMin MaxForward Voltage VF IF= 30 mA–Initial Data x 1.2Reverse Current IR VR= 5 V–100 μALuminous Intensity IV IF= 30 mA Initial Data x 0.65 (Total degradation)Initial Data x 0.5 (Single lamp degradation)–TypeTest Item Applicable StandardTest ConditionNote Number of DamagedE n v i r o n m e n t a l S e q u e n c eTemperature Cycle*JEITA ED-4701100 105-40°C~25°C~100°C~25°C 30 mins, 5 mins, 30 mins, 5 mins100 cycles 0/50Thermal Shock*MIL-STD-202G -40°C~100°C 30 mins, 30 mins 100 cycles 0/50Moisture Resistance JEITA ED-4701200 20325°C~65°C90% RH 24 hrs / 1 cycle10 cycles 0/50High-Temperature Storage JEITA ED-4701200 201T A =100°C 500 hrs 0/50Humidty Heat Storage JEITA ED-4701100 103T A =60°C RH=90%500 hrs 0/50Low-Temperature StorageJEITA ED-4701200 202T A =-40°C500 hrs 0/50O p e r a t i o n S e q u e n c eLife Test*-T A =25°CI F : R=50 mA, G=25 mA, B=25 mA 1000 hrs0/50High-Temperature Life Test*-T A =85°CI F (single chip): R=30 mA, G=15 mA,B=15 mAI F (RGB): R=15 mA, G=15 mA, B=15 mA 1000 hrs 0/50High-Temperature/High-HumidityLife Test*-T A =60°C, 90%RHI F (single chip): R=30 mA, G=15 mA,B=15 mAI F (RGB): R=15 mA, G=15 mA, B=15 mA500 hrs 0/50Low-Temperature Life Test-T A =-40°CI F : R=30 mA, G=15 mA, B=15 mA 500 hrs 0/50D e s t r u c t i v e S e q u e n c eResistance to Soldering Heat*(Reflow Soldering)JEITA ED-4701300 301T SOL =260°C, 10 sec(Pre-treatment 30°C, 70%, 168 hrs)2 times 0/50E S DElectrostatic Discharge TestAEC (Q101-001)Human body model 1000 V (forward and reverse current conduct electricity, each 1 time)0/50P h y s y i c a l S e q u e n c eVibration-VariableFrequency MIL-STD-883Method 200720G min, 20 to 2000 Hz,4 cycle, 4 mins,each X ,Y , Z0/50Item SymbolTest Condition Criteria for Judgment Min MaxForward Voltage V F I F = 20 mA –Initial Data x 1.1Reverse Current I R V R = 5 V –10 μA Luminous Intensity I VI F = 20 mA Initial Data x 0.7–Resistance to SolderingHeat I F = 20 mA No dead lamps or visual damage Vibration-variableFrequencyI F = 20 mANo dead lamps or visual damage6. TOP White and Warm White SMD LED LampsTypeTest Item Applicable StandardTest ConditionNote Number of DamagedE n v i r o n m e n t a l S e q u e n c eTemperature Cycle*JEITA ED-4701100 105-40°C~25°C~100°C~25°C 30 mins, 5 mins, 30 mins, 5 mins100 cycles 0/50Thermal Shock*MIL-STD-202G -40°C~100°C 30 mins, 30 mins 100 cycles 0/50Moisture Resistance JEITA ED-4701200 20325°C~65°C90% RH 24 hrs / 1 cycle10 cycles 0/50High-Temperature Storage JEITA ED-4701200 201T A =100°C 500 hrs 0/50Humidty Heat Storage JEITA ED-4701100 103T A =60°C RH=90%500 hrs 0/50Low-Temperature Storage JEITA ED-4701200 202T A =-40°C 500 hrs 0/50O p e r a t i o n S e q u e n c eLife Test* (1 die LV1)-T A =25°C, I F =35 mA 1000 hrs 0/50Life Test*-T A =25°C, I F =25 mA 1000 hrs 0/50High-Temperature Life Test*-T A =85°C, I F =15 mA 1000 hrs 0/50High-Temperature/High-HumidityLife Test*-T A =60°C, 90%RHI F =15 mA 500 hrs 0/50Low-Temperature Life Test-T A =-40°C, I F =15 mA500 hrs0/50D e s t r u c t i v e S e q u e n c eResistance to Soldering Heat*(Reflow Soldering)JEITA ED-4701300 301T SOL =260°C, 10 sec(Pre-treatment 30°C, 70%, 168 hrs)2 times 0/50E S DElectrostatic Discharge TestAEC (Q101-001)Human body model 1000 V (forward and reverse current conduct electricity, each 1 time)0/50P h y s y i c a l S e q u e n c eVibration-VariableFrequency MIL-STD-883Method 200720G min, 20 to 2000 Hz,4 cycle, 4 mins,each X ,Y , Z0/50Item SymbolTest Condition Criteria for Judgment Min MaxForward Voltage V F I F = 20 mA –Initial Data x 1.1Reverse Current I R V R = 5 V –10 μA Luminous Intensity I VI F = 20 mA Initial Data x 0.7–Resistance to SolderingHeat I F = 20 mA No dead lamps or visual damage Vibration-variableFrequencyI F = 20 mANo dead lamps or visual damage7. Power SMD and Power SMD with Lens LED LampsTypeTest Item Applicable StandardTest ConditionNote Number of DamagedE n v i r o n m e n t a l S e q u e n c eTemperature Cycle*JEITA ED-4701100 105-40°C~25°C~100°C~25°C 30 mins, 5 mins, 30 mins, 5 mins100 cycles 0/50Thermal Shock*MIL-STD-202G -40°C~100°C 30 mins, 30 mins 100 cycles 0/50Moisture Resistance JEITA ED-4701200 20325°C~65°C90% RH 24 hrs / 1 cycle10 cycles 0/50High-Temperature Storage JEITA ED-4701200 201T A =100°C 500 hrs 0/50Humidty Heat Storage JEITA ED-4701100 103T A =60°C RH=90%500 hrs 0/50Low-Temperature StorageJEITA ED-4701200 202T A =-40°C500 hrs 0/50O p e r a t i o n S e q u e n c eLife Test*-T A =25°CI F : R=70 mA, G=30 mA, B=30 mA 1000 hrs 0/50High-Temperature Life Test*-T A =85°CI F : R=50 mA, G=15 mA, B=15 mA 1000 hrs 0/50High-Temperature/High-HumidityLife Test*-T A =60°C, 90%RHI F : R=50 mA, G=15 mA, B=15 mA 500 hrs 0/50Low-Temperature Life Test-T A =-40°CI F : R=50 mA, G=15 mA, B=15 mA 500 hrs0/50D e s t r u c t i v e S e q u e n c eResistance to Soldering Heat*(Reflow Soldering)JEITA ED-4701300 301T SOL =260°C, 10 sec(Pre-treatment 30°C, 70%, 168 hrs)2 times 0/50E S DElectrostatic Discharge TestAEC (Q101-001)Human body model 1000 V (forward and reverse current conduct electricity, each 1 time)0/50P h y s y i c a l S e q u e n c eVibration-VariableFrequency MIL-STD-883Method 200720G min, 20 to 2000 Hz,4 cycle, 4 mins,each X ,Y , Z0/50Item SymbolTest Condition Criteria for Judgment Min MaxForward Voltage V F I F = 20 mA –Initial Data x 1.1Reverse Current I R V R = 5 V –10 μA Luminous Intensity I VI F = 20 mA Initial Data x 0.7–Resistance to SolderingHeat I F = 20 mA No dead lamps or visual damage Vibration-variableFrequencyI F = 20 mANo dead lamps or visual damage8. Power White SMD LED LampsTypeTest Item Applicable StandardTest ConditionNote Number of DamagedE n v i r o n m e n t a l S e q u e n c eTemperature Cycle*JEITA ED-4701100 105-40°C~25°C~100°C~25°C 30 mins, 5 mins, 30 mins, 5 mins100 cycles 0/50Thermal Shock*MIL-STD-202G -40°C~100°C 30 mins, 30 mins 100 cycles 0/50Moisture Resistance JEITA ED-4701200 20325°C~65°C90% RH 24 hrs / 1 cycle10 cycles 0/50High-Temperature Storage JEITA ED-4701200 201T A =100°C 500 hrs 0/50Humidty Heat Storage JEITA ED-4701100 103T A =60°C RH=90%500 hrs 0/50Low-Temperature StorageJEITA ED-4701200 202T A =-40°C 500 hrs 0/50O p e r a t i o n S e q u e n c eLife Test*-T A =25°C I F =35 mA 1000 hrs 0/50High-Temperature Life Test*-T A =85°C I F =15 mA 1000 hrs 0/50High-Temperature/High-HumidityLife Test*-T A =60°C, 90%RHI F =15 mA500 hrs 0/50Low-Temperature Life Test-T A =-40°C I F =15 mA500 hrs0/50D e s t r u c t i v e S e q u e n c eResistance to Soldering Heat*(Reflow Soldering)JEITA ED-4701300 301T SOL =260°C, 10 sec(Pre-treatment 30°C, 70%, 168 hrs)2 times 0/50E S DElectrostatic Discharge TestAEC (Q101-001)Human body model 1000 V (forward and reverse current conduct electricity, each 1 time)0/50P h y s y i c a l S e q u e n c eVibration-VariableFrequency MIL-STD-883Method 200720G min, 20 to 2000 Hz,4 cycle, 4 mins,each X ,Y , Z0/50Item SymbolTest Condition Criteria for Judgment Min MaxForward Voltage V F I F = 20 mA –Initial Data x 1.1Reverse Current I R V R = 5 V –10 μA Luminous Intensity I VI F = 20 mA Initial Data x 0.7–Resistance to SolderingHeat I F = 20 mA No dead lamps or visual damage Vibration-variableFrequencyI F = 20 mANo dead lamps or visual damage9. Sideview SMD LED LampsTypeTest Item Applicable StandardTest ConditionNote Number of DamagedE n v i r o n m e n t a l S e q u e n c eTemperature Cycle*JEITA ED-4701100 105-40°C~25°C~100°C~25°C 30 mins, 5 mins, 30 mins, 5 mins100 cycles 0/50Thermal Shock*MIL-STD-202G -40°C~100°C 30 mins, 30 mins 100 cycles 0/50Moisture Resistance JEITA ED-4701200 20325°C~65°C90% RH 24 hrs / 1 cycle10 cycles 0/50High-Temperature Storage JEITA ED-4701200 201T A =100°C 500 hrs 0/50Humidty Heat Storage JEITA ED-4701100 103T A =60°C RH=90%500 hrs 0/50Low-Temperature StorageJEITA ED-4701200 202T A =-40°C500 hrs 0/50O p e r a t i o n S e q u e n c eLife Test*-T A =25°CI F : R=30 mA, G=20 mA, B=20 mA 1000 hrs 0/50High-Temperature Life Test*-T A =85°CI F : R=20 mA, G=15 mA, B=15 mA 1000 hrs 0/50High-Temperature/High-HumidityLife Test*-T A =60°C, 90%RHI F : R=20 mA, G=15 mA, B=15 mA 500 hrs 0/50Low-Temperature Life Test-T A =-40°CI F : R=20 mA, G=15 mA, B=15 mA 500 hrs0/50D e s t r u c t i v e S e q u e n c eResistance to Soldering Heat*(Reflow Soldering)JEITA ED-4701300 301T SOL =260°C, 10 sec(Pre-treatment 30°C, 70%, 168 hrs)2 times 0/50E S DElectrostatic Discharge TestAEC (Q101-001)Human body model 1000 V (forward and reverse current conduct electricity, each 1 time)0/50P h y s y i c a l S e q u e n c eVibration-VariableFrequency MIL-STD-883Method 200720G min, 20 to 2000 Hz,4 cycle, 4 mins,each X ,Y , Z0/50Item SymbolTest Condition Criteria for Judgment Min MaxForward Voltage V F I F = 20 mA –Initial Data x 1.1Reverse Current I R V R = 5 V –10 μA Luminous Intensity I VI F = 20 mA Initial Data x 0.7–Resistance to Soldering Heat I F = 20 mA No dead lamps or visual damage Vibration-variable FrequencyI F = 20 mANo dead lamps or visual damage10. Sideview White SMD LED LampsTypeTest Item Applicable StandardTest ConditionNote Number of DamagedE n v i r o n m e n t a l S e q u e n c eTemperature Cycle*JEITA ED-4701100 105-40°C~25°C~100°C~25°C 30 mins, 5 mins, 30 mins, 5 mins100 cycles 0/50Thermal Shock*MIL-STD-202G -40°C~100°C 30 mins, 30 mins 100 cycles 0/50Moisture Resistance JEITA ED-4701200 20325°C~65°C90% RH 24 hrs / 1 cycle10 cycles 0/50High-Temperature Storage JEITA ED-4701200 201T A =100°C 500 hrs 0/50Humidty Heat Storage JEITA ED-4701100 103T A =60°C RH=90%500 hrs 0/50Low-Temperature StorageJEITA ED-4701200 202T A =-40°C 500 hrs 0/50O p e r a t i o n S e q u e n c eLife Test*-T A =25°C I F =20 mA 1000 hrs 0/50High-Temperature Life Test*-T A =85°C I F =15 mA 1000 hrs 0/50High-Temperature/High-HumidityLife Test*-T A =60°C, 90%RHI F =15 mA500 hrs 0/50Low-Temperature Life Test-T A =-40°C I F =15 mA500 hrs0/50D e s t r u c t i v e S e q u e n c eResistance to Soldering Heat*(Reflow Soldering)JEITA ED-4701300 301T SOL =260°C, 10 sec(Pre-treatment 30°C, 70%, 168 hrs)2 times 0/50E S DElectrostatic Discharge TestAEC (Q101-001)Human body model 1000 V (forward and reverse current conduct electricity, each 1 time)0/50P h y s y i c a l S e q u e n c eVibration-VariableFrequency MIL-STD-883Method 200720G min, 20 to 2000 Hz,4 cycle, 4 mins,each X ,Y , Z0/50Item SymbolTest Condition Criteria for Judgment Min MaxForward Voltage V F I F = 20 mA –Initial Data x 1.1Reverse Current I R V R = 5 V –10 μA Luminous Intensity I VI F = 20 mA Initial Data x 0.7–Resistance to Soldering Heat I F = 20 mA No dead lamps or visual damage Vibration-variable FrequencyI F = 20 mANo dead lamps or visual damage11. 6-Pin SMD LED LampsTypeTest Item Applicable StandardTest ConditionNote Number of DamagedE n v i r o n m e n t a l S e q u e n c eTemperature Cycle*JEITA ED-4701100 105-40°C~25°C~100°C~25°C 30 mins, 5 mins, 30 mins, 5 mins100 cycles 0/50Thermal Shock*MIL-STD-202G -40°C~100°C 30 mins, 30 mins 100 cycles 0/50Moisture Resistance JEITA ED-4701200 20325°C~65°C90% RH 24 hrs / 1 cycle10 cycles 0/50High-Temperature Storage JEITA ED-4701200 201T A =100°C 500 hrs 0/50Humidty Heat Storage JEITA ED-4701100 103T A =60°C RH=90%500 hrs 0/50Low-Temperature StorageJEITA ED-4701200 202T A =-40°C500 hrs 0/50O p e r a t i o n S e q u e n c eLife Test*-T A =25°CI F : R=50 mA, G=50 mA, B=50 mA 1000 hrs 0/50High-Temperature Life Test*-T A =85°CI F : R=15 mA, G=15 mA, B=15 mA 1000 hrs 0/50High-Temperature/High-HumidityLife Test*-T A =60°C, 90%RHI F : R=15 mA, G=15 mA, B=15 mA 500 hrs 0/50Low-Temperature Life Test-T A =-40°CI F : R=15 mA, G=15 mA, B=15 mA 500 hrs0/50D e s t r u c t i v e S e q u e n c eResistance to Soldering Heat*(Reflow Soldering)JEITA ED-4701300 301T SOL =260°C, 10 sec(Pre-treatment 30°C, 70%, 168 hrs)2 times 0/50E S DElectrostatic Discharge TestAEC (Q101-001)Human body model 1000 V (forward and reverse current conduct electricity, each 1 time)0/50P h y s y i c a l S e q u e n c eVibration-VariableFrequency MIL-STD-883Method 200720G min, 20 to 2000 Hz,4 cycle, 4 mins,each X ,Y , Z0/50Item SymbolTest Condition Criteria for Judgment Min MaxForward Voltage V F I F = 20 mA –Initial Data x 1.1Reverse Current I R V R = 5 V –10 μA Luminous Intensity I VI F = 20 mA Initial Data x 0.7–Resistance to Soldering Heat I F = 20 mA No dead lamps or visual damage Vibration-variable FrequencyI F = 20 mANo dead lamps or visual damageTypeTest Item Applicable StandardTest ConditionNote Number of DamagedE n v i r o n m e n t a l S e q u e n c eTemperature Cycle*JEITA ED-4701100 105-40°C~25°C~100°C~25°C 30 mins, 5 mins, 30 mins, 5 mins100 cycles 0/50Thermal Shock*MIL-STD-202G -40°C~100°C 30 mins, 30 mins 100 cycles 0/50Moisture Resistance JEITA ED-4701200 20325°C~65°C90% RH 24 hrs / 1 cycle10 cycles 0/50High-Temperature Storage JEITA ED-4701200 201T A =100°C 500 hrs 0/50Humidty Heat Storage JEITA ED-4701100 103T A =60°C RH=90%500 hrs 0/50Low-Temperature StorageJEITA ED-4701200 202T A =-40°C 500 hrs 0/50O p e r a t i o n S e q u e n c eLife Test*-T A =25°C I F =50 mA 1000 hrs 0/50High-Temperature Life Test*-T A =85°C I F =15 mA 1000 hrs 0/50High-Temperature/High-HumidityLife Test*-T A =60°C, 90%RHI F =15 mA500 hrs 0/50Low-Temperature Life Test-T A =-40°C I F =15 mA500 hrs0/50D e s t r u c t i v e S e q u e n c eResistance to Soldering Heat*(Reflow Soldering)JEITA ED-4701300 301T SOL =260°C, 10 sec(Pre-treatment 30°C, 70%, 168 hrs)2 times 0/50E S DElectrostatic Discharge TestAEC (Q101-001)Human body model 1000 V (forward and reverse current conduct electricity, each 1 time)0/50P h y s y i c a l S e q u e n c eVibration-VariableFrequency MIL-STD-883Method 200720G min, 20 to 2000 Hz,4 cycle, 4 mins,each X ,Y , Z0/50Item SymbolTest Condition Criteria for Judgment Min MaxForward Voltage V F I F = 20 mA –Initial Data x 1.1Reverse Current I R V R = 5 V –100 μA Luminous Intensity I VI F = 20 mA Initial Data x 0.7–Resistance to Soldering Heat I F = 20 mA No dead lamps or visual damage Vibration-variable FrequencyI F = 20 mANo dead lamps or visual damageTypeTest Item Applicable StandardTest ConditionNote Number of DamagedE n v i r o n m e n t a l S e q u e n c eTemperature Cycle*JEITA ED-4701100 105-40°C~25°C~100°C~25°C 30 mins, 5 mins, 30 mins, 5 mins100 cycles 0/50Thermal Shock*MIL-STD-202G -40°C~100°C 30 mins, 30 mins 100 cycles 0/50Moisture Resistance JEITA ED-4701200 20325°C~65°C90% RH 24 hrs / 1 cycle10 cycles 0/50High-Temperature Storage JEITA ED-4701200 201T A =100°C 500 hrs 0/50Humidty Heat Storage JEITA ED-4701100 103T A =60°C RH=90%500 hrs 0/50Low-Temperature StorageJEITA ED-4701200 202T A =-40°C500 hrs 0/50O p e r a t i o n S e q u e n c eLife Test*-T A =25°CI F : R=50 mA, G=40 mA, B=40 mA 1000 hrs 0/50High-Temperature Life Test*-T A =85°CI F : R=15 mA, G=15 mA, B=15 mA 1000 hrs 0/50High-Temperature/High-HumidityLife Test*-T A =60°C, 90%RHI F : R=15 mA, G=15 mA, B=15 mA 500 hrs 0/50Low-Temperature Life Test-T A =-40°CI F : R=15 mA, G=15 mA, B=15 mA 500 hrs0/50D e s t r u c t i v e S e q u e n c eResistance to Soldering Heat*(Reflow Soldering)JEITA ED-4701300 301T SOL =260°C, 10 sec(Pre-treatment 30°C, 70%, 168 hrs)2 times 0/50E S DElectrostatic Discharge TestAEC (Q101-001)Human body model 1000 V (forward and reverse current conduct electricity, each 1 time)0/50P h y s y i c a l S e q u e n c eVibration-VariableFrequency MIL-STD-883Method 200720G min, 20 to 2000 Hz,4 cycle, 4 mins,each X ,Y , Z0/50Item SymbolTest Condition Criteria for Judgment Min MaxForward Voltage V F I F = 20 mA –Initial Data x 1.1Reverse Current I R V R = 5 V –10 μA Luminous Intensity I VI F = 20 mA Initial Data x 0.7–Resistance to Soldering Heat I F = 20 mA No dead lamps or visual damage Vibration-variable FrequencyI F = 20 mANo dead lamps or visual damage14. Small 6-Pin White SMD LED LampsTypeTest Item Applicable StandardTest ConditionNote Number of DamagedE n v i r o n m e n t a l S e q u e n c eTemperature Cycle*JEITA ED-4701100 105-40°C~25°C~100°C~25°C 30 mins, 5 mins, 30 mins, 5 mins100 cycles 0/50Thermal Shock*MIL-STD-202G -40°C~100°C 30 mins, 30 mins 100 cycles 0/50Moisture Resistance JEITA ED-4701200 20325°C~65°C90% RH 24 hrs / 1 cycle10 cycles 0/50High-Temperature Storage JEITA ED-4701200 201T A =100°C 500 hrs 0/50Humidty Heat Storage JEITA ED-4701100 103T A =60°C RH=90%500 hrs 0/50Low-Temperature StorageJEITA ED-4701200 202T A =-40°C I F =40 mA 500 hrs 0/50O p e r a t i o n S e q u e n c eLife Test*-T A =25°C I F =15 mA 1000 hrs 0/50High-Temperature Life Test*-T A =85°C I F =15 mA 1000 hrs 0/50High-Temperature/High-HumidityLife Test*-T A =60°C, 90%RHI F =15 mA500 hrs 0/50Low-Temperature Life Test-T A =-40°C I F =15 mA500 hrs0/50D e s t r u c t i v e S e q u e n c eResistance to Soldering Heat*(Reflow Soldering)JEITA ED-4701300 301T SOL =260°C, 10 sec(Pre-treatment 30°C, 70%, 168 hrs)2 times 0/50E S DElectrostatic Discharge TestAEC (Q101-001)Human body model 1000 V (forward and reverse current conduct electricity, each 1 time)0/50P h y s y i c a l S e q u e n c eVibration-VariableFrequency MIL-STD-883Method 200720G min, 20 to 2000 Hz,4 cycle, 4 mins,each X ,Y , Z0/50Item SymbolTest Condition Criteria for Judgment Min MaxForward Voltage V F I F = 20 mA –Initial Data x 1.1Reverse Current I R V R = 5 V –10 μA Luminous Intensity I VI F = 20 mA Initial Data x 0.7 (Totaldegradation)–Resistance to Soldering Heat I F = 20 mA No dead lamps or visual damage Vibration-variable FrequencyI F = 20 mANo dead lamps or visual damage。
试验与结果Tests and Results试验项目参考标准测试条件Test Applicablestandardstest conditionTemperature Cycle 温度循环JEITA ED-4701100 105-40°C~25°C~100°C~25°C30 mins, 5 mins, 30 mins, 5minsThermal Shock*冷热冲击MIL-STD-202G-40°C~100°C30 mins, 30 minsMoisture-Resistance Cycle JEITA ED-4701200 20325°C~65°C90% RH 24 hrs/lcycleHigh-Temperature Storage JEITA ED-4701200 201TA=100°CHumidity Heat Storage 高湿存储JEITA ED-4701100 103TA=60°CRH=90%Low-Temperature Storage JEITA ED-4701200 202TA=-40°CLife Test*寿命测试-TA=25°COval: IF=35 mA (GB) IF=50 mA (R)Round: IF=30 mA (GB) IF=50 mA (R)High Humidity Heat LifeTest*高湿热寿命试验-60°C RH=90%IF=20 mALow Temperature Life Test低温寿命试验-TA=-30°CIF=20 mAResistance to Soldering Heat*耐高温焊接JEITA ED-4701300 302TSOL=260(±5)°C, 10 sec(3 mm from the base of theepoxySolderability 可焊性JEITA ED-4701300 303TSOL=235(±5)°C, 5 sec(using flux)Lead Bend Test 弯曲试验JEITA ED-4701400 401Load 5N (0.5 kgf)0°~90°~0° bend 2 times负载5 n(0.5公斤)0°~ 90°~ 0°弯头2次Lead Pull Test 拉伸试验JEITA ED-4701400 401Load 10N (1 kgf)10(±1) sec负载10 n(1公斤)10(±1)秒Electrostatic Discharge Test静电放电测试AEC(Q101-001)Human body model 1000 V(forward and reverse currentconduct electricity, each 1time)人体模型1000 V(正向和反向电流失效准则Item 项目Symbol符号Condition Test测试条件CREE P2 RGB LED 周期失效数量noteNumber of Damaged 100 cycles0/100100 cycles0/10010 cycles0/1001000 hrs0/1001000 hrs0/1001000 hrs 0/1001000 hrs 0/100500 hrs 0/1001000 hrs0/1001 time0/1001 time(over 95%)0/100No noticeable damage 0/100No noticeable damage 0/1000/10Min MaxCriteria for Judgment判断标准。
CXB3590-0000-00 0N0HCD35G CXB3590-0000-000N0HCD40GCXB3590-0000-000N0HCD50GCXB3590-0000-000R0HCB30GCXB3590-0000-000N0HCD40GE E .C o m /X L A m pCLD-DS126 Rev 3ACree ® XLamp ® CXB3590 LEDProDuCt DEsCriPtionThe XLamp ® CXB3590 LeD Array is the brightest member of the second generation of the CXA family that delivers up to 30% higher efficacy and up to 20% higher lumens than the first generation in the same LES. The higher performance second generation CXA LeD Arrays provide a drop-in performance upgrade to existing CXA LeD designs to shorten product development time. Available in 2‑step, 3-step and 5-step easyWhite ® bins, the CXB3590 LeD delivers high lumen output and high efficacy in a single, easy-to-use package that eliminates the need for reflow soldering.The CX Family LeD Design Guide provides basic information on the requirements to use the CXB3590 LeD successfully in luminaire designs.fEaturEs•30-mm optical source• Mechanical and optical designconsistent with CXA35 LED• Available in 70‑, 80‑ and 90‑minimum CRI options• Cree easyWhite ® 2‑, 3‑ and 5‑step binning• Forward voltage options: 36‑V class & 72-v class• 85 °C binning and characterization • Extremely uniform color over viewing angle• Top-side solder connections • Thermocouple attach point• NEMA SSL‑3 2011 standard flux bins • RoHS and ReACh compliant • UL ® recognized component(e349212)taBLE of ContEntsCharacteristics ............................................2Operating Limits ..........................................3Flux Characteristics, EasyWhite ® Order Codes and Bins ‑ 36 V .................................4Flux Characteristics, EasyWhite ® Order Codes and Bins ‑ 72 V .................................7Relative Spectral Power Distribution ......10electrical Characteristics .........................11Relative Luminous Flux ............................12Typical Spatial Distribution ......................14Performance Groups - Brightness ..........14Performance Groups - Chromaticity .......15Cree easyWhite ® Bins Plotted on the 1931 CIe Curve .........................................16Bin and Order Code Formats ...................17Mechanical Dimensions ..........................17Thermal Design ........................................18Notes ........................................................20Packaging . (21)CharaCtEristiCsoPErating LiMitsThe maximum current rating of the CXB3590 depends on the case temperature (Tc) when the LED has reached thermal equilibrium under steady‑state operation. The graphs shown below assume that the system design employs good thermal management (thermal interface material and heat sink) and may vary when poor thermal management is employed. Please refer to the Mechanical Dimensions section on page 17 for the location of the Tc measurement point.Another important factor in good thermal management is the temperature of the Light Emitting Surface (LES). Cree recommends a maximum LES temperature of 135 °C to ensure optimal LED lifetime. Please refer to the Thermal Design section on page 18 for more information on LES temperature measurement.Notes • Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRImeasurements. See the Measurements section (page 20).• Cree XLamp CXB3590 LED order codes specify only a minimum flux bin and not a maximum. Cree may ship reels in flux bins higher than the minimumspecified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code.* For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.** Flux values @ 25 °C are calculated and for reference only.fLuX CharaCtEristiCs, EasyWhitE ® Order COdes and Bins - 36 V (i f = 2400 ma, t J = 85 °C)The following table provides order codes for XLamp CXB3590 LEDs. For a complete description of the order code nomenclature, pleasesee the Bin and Order Code Formats section (page 17).Notes • Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRImeasurements. See the Measurements section (page 20).• Cree XLamp CXB3590 LED order codes specify only a minimum flux bin and not a maximum. Cree may ship reels in flux bins higher than the minimumspecified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code.* For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.**Flux values @ 25 °C are calculated and for reference only.fLuX CharaCtEristiCs, EasyWhitE ® Order COdes and Bins - 36 V (i f = 2400 ma, t J = 85 °C) - COntinuedNotes • Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRImeasurements. See the Measurements section (page 20).• Cree XLamp CXB3590 LED order codes specify only a minimum flux bin and not a maximum. Cree may ship reels in flux bins higher than the minimumspecified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code.* For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.**Flux values @ 25 °C are calculated and for reference only.fLuX CharaCtEristiCs, EasyWhitE ® Order COdes and Bins - 36 V (i f = 2400 ma, t J = 85 °C) - COntinuedNotes • Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRImeasurements. See the Measurements section (page 20).• Cree XLamp CXB3590 LED order codes specify only a minimum flux bin and not a maximum. Cree may ship reels in flux bins higher than the minimumspecified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code.* For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.** Flux values @ 25 °C are calculated and for reference only.fLuX CharaCtEristiCs, EasyWhitE ® Order COdes and Bins - 72 V (i f = 1200 ma, t J = 85 °C)The following table provides order codes for XLamp CXB3590 LEDs. For a complete description of the order code nomenclature, pleasesee the Bin and Order Code Formats section (page 17).Notes • Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRImeasurements. See the Measurements section (page 20).• Cree XLamp CXB3590 LED order codes specify only a minimum flux bin and not a maximum. Cree may ship reels in flux bins higher than the minimumspecified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code.* For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.**Flux values @ 25 °C are calculated and for reference only.fLuX CharaCtEristiCs, EasyWhitE ® Order COdes and Bins - 72 V (i f = 1200 ma, t J = 85 °C) - COntinuedNotes • Cree maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRImeasurements. See the Measurements section (page 20).• Cree XLamp CXB3590 LED order codes specify only a minimum flux bin and not a maximum. Cree may ship reels in flux bins higher than the minimumspecified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code.* For 80 CRI minimum LEDs, CRI R9 minimum is 0 with a ±2 tolerance. For 90 CRI minimum LEDs, CRI R9 typical is 60.**Flux values @ 25 °C are calculated and for reference only.fLuX CharaCtEristiCs, EasyWhitE ® Order COdes and Bins - 72 V (i f = 1200 ma, t J = 85 °C) - COntinuedrelatiVe speCtral pOwer distriButiOnThe following graph is the result of a series of pulsed measurements at 2400 mA for the 36‑V CXB3590 and 1200 mA for the 72‑V = 85 °C.CXB3590 and TJELECtriCaL CharaCtEristiCsThe following graph is the result of a series of steady‑state measurements.relatiVe luminOus FluxThe relative luminous flux values provided below are the ratio of:• Measurements of CXB3590 at steady‑state operation at the given conditions, divided by= 85 °C for the 36‑V CXB3590.• Flux measured during binning, which is a pulsed measurement at 2400 mA at TJUsing the 36‑V CXB3590 LED as an example, at steady‑state operation of Tc = 25 °C, I= 2800 mA, the relative luminous flux ratio is 120%Fin the chart below. A CXB3590 LED that measures 11,000 lm during binning will deliver 13,200 lm (11,000 * 1.2) at steady‑state operation = 2800 mA.of Tc = 25 °C, IFrelatiVe luminOus Flux - COntinuedThe relative luminous flux values provided below are the ratio of:• Measurements of CXB3590 at steady‑state operation at the given conditions, divided by= 85 °C for the 72‑V CXB3590.• Flux measured during binning, which is a pulsed measurement at 1200 mA at TJUsing the 72‑V CXB3590 LED as an example, at steady‑state operation of Tc = 25 °C, I= 1400 mA, the relative luminous flux ratio is 120%Fin the chart below. A CXB3590 LED that measures 11,000 lm during binning will deliver 13,200 lm (11,000 * 1.2) at steady‑state operation = 1400 mA.of Tc = 25 °C, IFtyPiCaL sPatiaL DistriButionperFOrmanCe GrOups - BriGhtness (36 V, i F = 2400 m a; 72 V, i F = 1200 ma, t J = 85 °C)XLamp CXB3590 LEDs are tested for luminous flux and placed into one of the following bins.= 85 °C)perFOrmanCe GrOups - ChrOmatiCity (tjXLamp CXB3590 LEDs are tested for chromaticity and placed into one of the regions defined by the following bounding coordinates.Bin anD orDEr CoDE forMatsBin codes and order codes are configured as follows:order Code Bin CodeSeries = CXA35Internal codeCRI Specification0 = Standard CRIH = 80 CRI minimumU = 90 CRI minimumY = 93 CRI minimumKit codeVf classN0 = 36-V classR0 = 72-V classPerformance classSeries = CXA35Chromaticity binVf classN0 = 36-V classR0 = 72-V classInternal codeCRI SpecificationB = 70 CRI minimumH = 80 CRI minimumU = 90 CRI minimumY = 93 CRI minimumFlux binPerformance classMEChaniCaL DiMEnsionsDimensions are in mm.Tolerances unless otherwisespecified: ±.13x° ±1°Meaning of B3590XB3590N = 36‑V CXB3590B3590R = 72‑V CXB3590B3590XthErMaL DEsignThe CXB family of LED arrays can include over a hundred different LED die inside one package, and thus over a hundred different junction temperatures (T J ). Cree has intentionally removed junction‑temperature‑based operating limits and replaced the commonplace maximum T J calculations with maximum ratings based on forward current (I F ) and case temperature (Tc). No additional calculations are required to ensure that the CXB LED is being operated within its designed limits. LES temperature measurement provides additional verification of good thermal design. Please refer to page 22 for the Operating Limit specifications.There is no need to calculate for T J inside the package, as the thermal management design process, specifically from T SP to ambient (T a ), remains identical to any other LED component. For more information on thermal management of Cree XLamp LEDs, please refer to the Thermal Management application note . For CXB soldering recommendations and more information on thermal interface materials (TIM), LES temperature measurement, and connection methods, please refer to the Cree XLamp CX Family LeDs soldering and handling document . The CX Family LeD Design Guide provides basic information on the requirements to use Cree XLamp CXB LeDs successfully in luminaire designs.To keep the CXB3590 LED at or below the maximum rated Tc, the case to ambient temperature thermal resistance (R_c‑a) must be at or below the maximum R_c‑a value shown on the following graph, depending on the operating environment. The y‑axis in each graph is a base 10 logarithmic scale.As the figure at right shows, the R_c‑a value is the sum of the thermal resistance of the TIM (R_tim) plus the thermal resistance of the heat sink (R_hs).R_j-c Tc R_timR_hs TaR_j-c TcR_c-aTathErMaL DEsign - ContinuEDnotEsMeasurementsThe luminous flux, radiant power, chromaticity, forward voltage and CRI measurements in this document are binning specifications only and solely represent product measurements as of the date of shipment. These measurements will change over time based on a number of factors that are not within Cree’s control and are not intended or provided as operational specifications for the products. Calculated values are provided for informational purposes only and are not intended or provided as specifications.pre-release Qualification testingPlease read the LED Reliability Overview for details of the qualification process Cree applies to ensure long‑term reliability for XLamp LEDs and details of Cree’s pre‑release qualification testing for XLamp LEDs.Lumen MaintenanceCree now uses standardized IES LM‑80‑08 and TM‑21‑11 methods for collecting long‑term data and extrapolating LED lumen maintenance. For information on the specific LM‑80 data sets available for this LED, refer to the public LM‑80 results document.Please read the Long-Term Lumen Maintenance application note for more details on Cree’s lumen maintenance testing and forecasting. Please read the Thermal Management application note for details on how thermal design, ambient temperature, and drive current affect the LED junction temperature.rohs ComplianceThe levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product ecology section of the Cree website..rEaCh ComplianceREACh substances of very high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up‑to‑date REACh Declaration. REACh banned substance information (REACh Article 67) is also available upon request.uL® recognized ComponentThis product meets the requirements to be considered a UL Recognized Component with Level 4 enclosure consideration. The LED package or a portion thereof has been investigated as a fire and electrical enclosure per ANSI/UL 8750.Vision advisoryWARNING: Do not look at an exposed lamp in operation. Eye injury can result. For more information about LEDs and eye safety, please refer to the LeD eye Safety application note.PaCkagingCree CXB3590 LEDs are packaged in trays of 10. Five trays are sealed in an anti‑static bag and placed inside a carton, for a total of 50 LEDs per carton. Each carton contains 50 LEDs from the same performance bin.Dimensions are in inches.Tolerances: ±.13x° ±1°LABEL WITH CREE BIN CODE, QUANTITY, LOT #BAGLABEL WITH CREE BIN CODE, QUANTITY, LOT #CXB3590-0000-00 0N0HCD35GCXB3590-0000-00 0N0HCD35G CXB3590-0000-000N0HCD40GCXB3590-0000-000N0HCD50GCXB3590-0000-000R0HCB30GCXB3590-0000-000N0HCD40G。
版权所有© 2010-2013 Cree, Inc.保留所有权利。
本文所列信息若有更改,恕不另行通知。
Cree ®、Cree 徽标和XLamp ®均为Cree, Inc.的注CLD-DS34 Rev 4Cree ® XLamp ® XP-E 高效白光LED产品说明XLamp XP-e 高效白光(HeW )LeD 将XLamp XP-e 进一步提升到领先的性能水平,适用于漫射照明应用。
XP-e HeW 的设计推动LeD 灯在对价格比较敏感的家居照明应用中迅速普及。
与标准XLamp XP-e 相比,XP-e HeW 可以将LeD 数量减少一半,但仍确保提供相同的系统性能。
Cree XLamp LeD 为各类照明应用带来了卓越的照明性能与照明质量,这些应用包括变色照明、便携式照明和个人照明、室外照明、室内定向照明、运输照明、舞台照明、演播室照明、商业照明和应急车照明。
特点• 光输出和光效与X L a m p X P -G 不相上下• 最大驱动电流:1000 mA • 低热阻:6 °C/W • 最高结温:150 °C • 宽视角:120°• 可回流焊 – 符合JeDeC J-STD-020C 标准•热电分离• 符合RoHS 和ReACh 规范•通过UL 认证的元件(e349212)目录通量特征...................................2特征 ........................................3相对光谱功率分布........................3相对通量与结温曲线图 ..................4电气特征...................................5相对通量与电流曲线图 ..................5相对色度与电流曲线图 ..................6相对色度与温度曲线图 ..................6典型光强空间分布........................7热设计 .....................................7回流焊特征 ................................8说明 ........................................9机械尺寸.................................11载带和卷盘 ..............................12包装 .. (13)W W .C R e e .C o m /X L A m PCree, Inc.= 25 °C)- 白色通量特征(TJ下表提供了XLamp XP-e HeW LeD的几个基本订购代码。
/xlampa t i o n N o t e : C L D -A P 2.004Cree ® XLamp ® XR-E and XR-C LEDBinning and LabelingThis document describes the product nomenclature required to select and order Cree’s XLamp XR-E and XR-C LEDs. XLamp XR-E and XR-C LEDs are tested and sorted into bins which are then combined into orderable kits identified by an order code.All XLamp LEDs are tested and sorted by color and brightness into a unique bin. Each bin contains LEDs from only one color and brightness group and is uniquelyidentified by a bin code. White XLamp LEDs are sorted by chromaticity (color) and luminous flux (brightness). Color XLamp LEDs are sorted by dominant wavelength (color) and luminous flux (brightness), or in the case of royal blue, radiant flux (brightness). LEDs are shipped on reels containing LEDs from one bin and are always labeled with the appropriate bin code.Kits contain LEDs from a number of similar bins and are fully defined by their order codes. A full explanation of the order codes for each family, as well as a list of standard order codes, is provided in this document.Bin- and Order-Code Format .....................................................................................................................2Performance Groups – Brightness ..............................................................................................................3Performance Groups – Chromaticity ...........................................................................................................4Performance Groups – Dominant Wavelength ..............................................................................................5Cree’s Standard Chromaticity Regions Plotted on the 1931 CIE Curve .............................................................6Standard Order Codes and Bins (XR-C Cool White) .......................................................................................7Standard Order Codes and Bins (XR-C Neutral and Warm White) .. (8)Standard Order Codes and Bins (XR-E Cool White) .......................................................................................9Standard Order Codes and Bins (XR-E Neutral White) .................................................................................10Standard Order Codes and Bins (XR-E Warm White) ...................................................................................11Standard Order Codes and Bins (XR-E Blue and Green) (12)Bin codes and order codes are configured in the following manner:Bin CodeOrder CodeSpatial patternL = LambertianChromaticity groupSpecial code (default = 0-01)Luminous or radiant flux groupViewing angleColorWHT = WhiteROY = Royal BlueBLU = BlueGRN = Green1 = 90 degrees (white),100 degrees (color)SeriesXRC = XR-CXRE = XR-ESource patternL = LambertianViewing angleColorWHT = WhiteROY = Royal BlueBLU = BlueGRN = Green1 = 90 degrees (white),100 degrees (color)Internal field (default = 0000)SeriesXRC = XR-CXRE = XR-EKit numberWhite XLamp LEDs are tested for luminous flux and placed into one of the following luminous-flux groups:Color XLamp LEDs are tested for luminous flux and placed into one of the following luminous-flux groups:Royal-blue XLamp LEDs are tested for radiant flux and placed into one of the following radiant-flux groups:White XLamp LEDs are tested for chromaticity and placed into one of the regions defined by the bounding coordinates below.White Chromaticity Region Bounding CoordinatesRoyal blue and blue XLamp LEDs are tested for dominant wavelength (DWL) and placed into one of the DWL groupsdefined below.The following tables list standard kit numbers and performance bins. Kit numbers completely describe an order code’s chromaticity regions and luminous flux range.For other flux and chromaticity combinations, contact Cree or an authorized distributor.The following tables list standard kit numbers and performance bins. Kit numbers completely describe an order code’schromaticity regions and luminous flux range.The following tables list standard kit numbers and performance bins. Kit numbers completely describe an order code’s chromaticity regions and luminous flux range.For other flux and chromaticity combinations, contact Cree or an authorized distributor.The following tables list standard kit numbers and performance bins. Kit numbers completely describe an order code’schromaticity regions and luminous flux range.The following tables list standard kit numbers and performance bins. Kit numbers completely describe an order code’schromaticity regions and luminous flux range.The following tables list standard kit numbers and performance bins. Kit numbers completely describe an order code’sdominant-wavelength range and luminous- or radiant-flux range.For other flux and dominant wavelength combinations, contact Cree or an authorized distributor.。
UL1642安全标准(锂电池)前言本标准含有覆盖UL规定的大类的产品的基本要求。
这些要求基于合理的工程原理,研究和试验结论以及现场经验,并且参考了制造商、用户、检查机构和其它一些有专业经验的机构或人士的意见。
A.遵守本标准的要求是制造商在制造产品时应具备的一个基本条件。
B.产品仅能书面满足本标准条文规定不足以断定满足本标准,比如:当检测和试验时,发现其它特征不满足本标准安全水平的要求。
C.产品采用的材料或结构与本标准技术要求不符的不能认为符合本标准。
如果该产品采用的材料或由采用不同于本标准所列的结构形成;但性能可以符合标准要求的,有可能断定符合本标准。
D.UL在执行客户的安全测试要求时,并不承诺为客户的产品负责,UL只是依据当前水平考虑到的一些实际安全限制及要求为产品提供一个专业的判断。
UL对产品造成的危害不承担义务。
E.许多本标准的测试由于其固有的危险性,必须有足够的人身及财产安全防护措施。
简介1. 领域1.1 这些要求包括一次(不可重复充电)和二次(可重复充电)锂电池。
这些电池包括金属Li或Li合金,或Li离子,以及单芯、两个或两个以上多芯串/并联结构的电池组。
1.2 这些要求包括技师可更换的和用户可更换的应用。
1.3 这些要求目的是降低锂电池在用于产品时着火或爆炸的危险。
这些电池能否接受并依赖于他们能否满足所应用的完整产品应符合的要求。
1.4 这些要求也倾向于降低用户更换的Li电池因着火或爆炸而对人身造成的危害。
1.5 这些要求覆盖含Li量≤5g的技师更换型锂电池,对于含Li大于5g的锂电池,即使能满足本规定,仍需进一步测试和检查以确定是否能够应用。
1.6 这些要求覆盖含金属锂≤4g而每个电芯含金属锂≤1g的用户更换型锂电池。
电池含金属锂量>4g或每个电芯金属锂量>1g需要求做进一步测试和验证以确定能否实际应用。
1.7 本要求不包括食入锂电池及其组成物造成的有毒危害,也不包括当电池被切开时对人造成的伤害情况。
锂铁电池核心参数测试数据表1、倍率:按照ANSI C18.3 Part 1-2008测试标准测试条件: 1.5/0.65 K 毫瓦2/28S cont. to 1.05V测试结果:脉冲时间6小时14分,次数:722次,即可拍摄1270张以上照片2、有效容量:EVE亿纬锂能锂铁电池FR6 电池与NF碱性AA电池对比:测试条件:1000mAh to 0.8v测试结果:EVE FR6 放电时间:3.2h, LR6 放电时间:0.1h对比结果显示,EVE FR6绝对容量是普通碱性电池的3倍,且放电曲线非常平滑3、寿命:使用寿命:测试条件:用E公司的LR6电池和我司FR6电池,在20度以各种功率放电到0.9V 测试结果:从250mw功率及往高功率开始,FR6使用时间相比成倍增长,贮存寿命:4、高低温性能:高温:60℃高温放电实验测试条件:1000mA CC to 0.8v测试结果:EVE FR6 容量:3130mAh,劲量L91 容量:2852mAh,比容量发挥率:97% 低温:-20℃低温放电:测试条件:先在-20度的环境下放置8H,然后恒流放电(250mA-0.8V),测试结果:容量:EVE FR6 3083mAh,劲量L91:3004mAh,容量发挥率:95%-40℃低温放电:测试条件:先在-40度的环境下放置8H,然后恒流放电(250mA-0.8V), 测试结果:容量:EVE FR6 2810mAh, L91:2760mAh,容量发挥率:95%5、常温容量:测试结果:1000mA放电容量:EVE FR6 电池:3203mAh6、脉冲性能:测试方法:ANSI C18.3-Part 1-2008关于数码相机的测试标准:1.5/0.65 W,2/28S cont. to 1.05V 测试结果:EVE电池脉冲:722次,E公司L91电池:650次7、安全测试:按照UL1642-2009对电池进行全面测试。