人教版七年级下册数学:用适当方法解二元一次方程组
- 格式:ppt
- 大小:390.00 KB
- 文档页数:14
《消元——解二元一次方程组》教案2江西师大附中荣齐辉教学设计说明:本课以贴近学生生活实际的问题为情境,引导学生分别列二元一次方程组和一元一次方程解决问题,通过观察、对比,发现二元一次方程组和一元一次方程的联系,思考如何将二元一次方程组转化为一元一次方程,实现消元,渗透化归的数学思想.通过丰富的例题和问题,使学生熟练掌握二元一次方程组的解法,并能运用二元一次方程组解决一些实际问题,体会方程思想.(1)教材分析二元一次方程组是在《一元一次方程》的基础之上学习的,它是解决含有两个未知数的问题的有力工具,同时,二元一次方程组也是解决后续一些问题的基础,其解法将为解决这些问题提供运算的工具,如用待定系数法求一次函数解析式,在平面直角坐标系中求两条直线的交点等.解二元一次方程组就是要通过代入法和加减法把“二元”化归为“一元”,这也是解三元(多元)一次方程组的基本思路,是通法.(2)学情分析学生的知识技能基础:学生已学过一元一次方程的解法,经历过由具体问题抽象出一元一次方程的过程,具备了学习二元一次方程的基本技能.学生活动经验基础:在相关知识的学习过程中,学生已经经历了很多观察、对比、发现的学习程,具有了一定的发现式学习的经验和数学思考,具备了一定的合作与交流的能力.教学目标1.用代入法、加减法解二元一次方程组.2.了解解二元一次方程组时的“消元思想”,“化未知为已知”的化归思想.3.会用二元一次方程组解决实际问题.4.在列方程组的建模过程中,强化方程的模型思想,培养学生列方程解决实际问题的意识和能力.教学重点、难点重点:会用代入法和加减法解简单的二元一次方程组,会用二元一次方程组解决简单的实际问题,体会消元思想和方程思想.难点:理解“二元”向“一元”的转化,掌握代入法和加减法解二元一次方程组的一般步骤.课时设计四课时.教学策略本节课主要通过创设问题情境,引导学生观察迁移、采用发现法、探究法、练习法为辅的教学方法.教学过程一、创设问题情境,引入课题问题1 篮球联赛中每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.某队10场比赛中得到16分,那么这个队胜、负场数应分别是多少?你能根据问题中的等量关系列出二元一次方程组吗?师生活动:学生回答:设胜x 场,负y 场.根据题意,得⎩⎨⎧=+=+16210y x y x ,教师引出本节课内容:这是我们在引言中探讨的问题,我们在上节课列出了方程组,并通过列表找公共解的方法得到了这个方程组的解⎩⎨⎧==46y x ,显然这样的方法需要一个个尝试,有些麻烦,不好操作,所以我们这节课就来探究如何解二元一次方程组.教师追问(1):这个实际问题能用一元一次方程求解吗?师生活动:学生回答:设胜x 场,则负)10(x -场.根据题意,得16)10(2=-+x x . 教师追问(2):对比方程和方程组,你能发现它们之间的关系吗?师生活动:通过对实际问题的分析,认识方程组中的两个方把二元一次方程组转化为一元一次方程,先求出一个未知数,再求出另一个未知数.教师总结:这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想程.【设计意图】用引言中的问题引入本节课内容,先列二元一次方程组,再列一元一次方程,对比方程和方程组,发现方程组的解法.二、探究新知问题2 对于二元一次方程组10 216 x y x y ⎧+=⎨+=⎩①②你能写出求x 的过程吗? 师生活动:学生回答:由①,得x y -=10.③把③代入②,得16)10(2=-+x x .解得6=x【设计意图】通过解具体的方程明确消元的过程.教师追问:把③代入①可以吗?师生活动:学生把③代入①,观察结果.【设计意图】由于方程③是由方程①得到的,它只能代入方程②,不能代入方程①,让学生实际操作,得到恒等式,更好地认识这一点.问题3 怎样求y 的值?师生活动:学生回答:把6=x 代入③,得4=y .教师追问(1):代入①或②可不可以?哪种方法更简便?师生活动:学生回答:代入③更简便.教师追问(2):你能写出这个方程组的解,并给出问题的答案吗?师生活动:学生回答:这个方程组的解是⎩⎨⎧==46y x ,这个队胜6场,负4场. 【设计意图】让学生考虑求另一个未知数的过程,并思考如何让优化解法.问题4 你能总结出上述解法的基本步骤吗?其中,哪一步是最关键的步骤?师生活动:教师引导学生总结:变、代、求、写,学生回答:“代入”是最关键的步骤,教师总结:这种方法叫做代入消元法,简称代入法.【设计意图】使学生明确代入法解二元一次方程组的基本步骤,并明确关键步骤是“代入”,将二元一次方程组转化为一元一次方程.问题5 是否有办法得到关于y 的一元一次方程?师生活动:学生具体操作.【设计意图】 让学生尝试不同的代入消元方法,并为后面学生选择简单的代入方法作铺垫.三、应用新知例 用代入法解方程组⎩⎨⎧=-=-14833y x y x师生活动:学生写出用代入法解这个方程组的过程,教师巡视,个别点拨.【设计意图】使学生熟悉代入法解二元一次方程组的步骤,巩固新知.四、加深认识练习 用代入法解下列二元一次方程组:(1)⎩⎨⎧=+=+15253t s t s (2)⎩⎨⎧=-=+33651643y x y x 师生活动:学生写出代入法解这些方程组的过程.【设计意图】本题需要先分析方程组的结构特征,再选择适当的解法,通过此练习,使学生熟练掌握用代入法解二元一次方程组.五、学以致用例 根据市场调查,某种消毒液的大瓶装(500g )和小瓶装(250g ),两种产品的销售数量(按瓶计算)的比为 ,某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶两种产品各多少瓶?师生活动:教师引导学生列出二元一次方程组,学生写出解这个方程组的过程. 教师追问:上述解方程组的过程能用一个框图表示出来吗?师生活动:教师与学生一起尝试用下列框图表示解方程组的过程:【设计意图】这是一个实际问题,需要先根据题意设两个未知数,列二元一次方程组,再用代入5:2法解这个方程组,体现应用方程组分析、解决实际问题的全过程,增强学生的应用意识.并通过框图形式形象地表示代入法解二元一次方程组的过程,使学生加深理解.六、再探新知问题4 前面我们用代入法求出了方程组10 216 x y x y ⎧+=⎨+=⎩①② 的解,这个方程组的两个方程中,y 的系数有什么关系?你能利用这种关系发现新的消元方法吗?师生活动:学生回答:这两个方程中y 的系数相等,②-①可消去未知数y ,得6=x . 把6=x 代入 ①得,4=y所以这个方程组的解为⎩⎨⎧==46y x .教师追问:①-②也能消去未知数y ,求得x 吗?师生活动:学生具体操作,发现求得的解跟上面相同.【设计意图】让学生发现除代入法以外的其它消元方法:通过两个方程相减实现消元.问题5 联系上面的解法,想一想怎样解方程组⎩⎨⎧=-=+.81015,8.2103y x y x 师生活动:学生回答:由于这两个方程中y 的系数相反,将两个方程相加,可消去未知数y ,求得x ,进而求得y .教师总结:当两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.【设计意图】让学生再次发现新的消元方法:通过两方程相加实现消元,并总结出加减消元法.七、应用新知例 用加减法解方程组⎩⎨⎧=-=+33651643y x y x问题6 上述方程组能直接通过加减消元吗?为什么?师生活动:学生回答:不能,因为同一未知数的系数既不相等也不相反.教师追问:那该怎样变形才能实现消元?师生活动:可以在方程两边同时乘适当的数,使同一未知数的系数相等或相反,再通过将两个方程相加或相减,实现消元.【设计意图】让学生掌握加减消元法的基本步骤,加深对加减法的认识.八、巩固提高练习 用加减法解下列方程组:(1)⎩⎨⎧-=-=+12392y x y x (2)⎩⎨⎧=+=+15432525y x y x 【设计意图】让学生熟练掌握加减消元法解二元一次方程组的步骤,巩固提高.九、学以致用例 2台大收割机和5台小收割机工作2小时收割小麦3.6公顷;3台大收割机和2台小收割机工作5小时收割小麦8公顷.1台大收割机和1台小收割机工作1小时各收割小麦多少公顷?【设计意图】这是一个实际问题,需要先根据题意设两个未知数,列二元一次方程组,再用加减法解这个方程组,体现应用方程组分析、解决实际问题的全过程,增强学生的应用意识,同时加深和巩固对加减法解二元一次方程组的认识.十、归纳总结回顾本节课的学习过程,并回答以下问题:(1)代入法和加减法解二元一次方程组有哪些步骤?(2)解二元一次方程组的基本思路是什么?(3)在探究解法的过程中用到了什么思想方法?你还有哪些收获?【设计意图】让学生总结本节课的主要内容,提炼思想方法.十一、布置作业课本习题教学反思1.应用意识贯穿始终:从问题的提出,到最后的练习,多出环节以实际问题为背景,为解决问题的需要而学习,最后回归到用新知识解决实际问题,既解决了为什么要学习二元一次方程组的解法的问题,同时,由于目标明确具体,学生探究时容易把握方向,在一定程度上分解了难点,提高了学生学习的兴趣.2.循序渐进原则的运用:学生对消元思想的理解很难一步到位,所以采用结合具体问题逐步渗透、感悟,然后提炼升华的方式学习,类似地,对二元一次方程组的解法,经历了从特殊到一般,从简单到复杂的循环上升过程,学生对数学思想的理解随之加深.。
《8.2.2加减消元法---解二元一次方程组》说课稿尊敬的各位领导,各位老师:大家好!我今天说课的题目是《加减消元法---解二元一次方程组》,下面我将从以下五个板块展开说课,分别是说教材分析、说教法学法、说教学过程、说板书设计等五个板块进行说课。
一、说教材分析1、教材的地位和作用本课选自人民教育出版社中学数学七年级下册第八章第二节第二课时,本课是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。
本节课是在学生学习了代入法解二元一次方程组的基础上,继续学习另一种消元的方法---加减消元,它是学生系统学习二元一次方程组知识的前提和基础。
通过加减来达到消元的目的,让学生从中充分体会化未知为已知的转化过程,理解并掌握解二元一次方程组的最常用的基本方法,为以后函数等知识的学习打下基础。
2、教学目标通过对新课程标准的研究与学习,结合我校学生的实际情况,我把本节课的三维教学目标确定如下:(一)知识与技能目标:会用加减消元法解简单的二元一次方程组。
理解加减消元法的基本思想,体会化未知为已知的化归思想方法。
(二)过程与方法目标:通过经历加减消元法解方程组,让学生体会消元思想的应用,经过引导、讨论和交流让学生理解根据加减消元法解二元一次方程组的一般步骤。
(三)情感态度及价值观:通过交流、合作、讨论获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,培养学生养成认真倾听他人发言的习惯和勇于克服困难的意志。
3、教学重点、难点:由于七年级的学生年龄较小,在学习解二元一次方程组的过程中容易进行简单的模仿,往往不注意方程组解法的形成过程更无法真正理解消元的思想方法。
而大家都知道,数学的思想与方法才是数学的精髓,是联系各类数学知识的纽带,所以我将本节课的重点和难点确定如下:重点:用加减法解二元一次方程组。
难点: 灵活运用加减消元法的技巧,把“二元”转化为“一元”二、说教法结合七年级学生的年龄特征和认知特点,这一阶段的学生有极强的求知欲,在教学中我主要评价激励法,对学生所反馈的学习情况,我将予以点评,并给予鼓励。
第八章 二元一次方程(组)8.3 二元一次方程(组)的解法Ⅱ——加减法(基础巩固)【要点梳理】知识点一、加减消元法解二元一次方程组两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.要点诠释:用加减消元法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)将这个求得的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,并把求得的两个未知数的值用“大括号”联立起来,就是方程组的解.要点二、选择适当的方法解二元一次方程组解二元一次方程组的基本思想(一般思路)是消元,消元的方法有两种:代入消元和加减消元,通过适当练习做到巧妙选择,快速消元.【典型例题】类型一、加减法解二元一次方程组例1. 直接加减:已知21x y =⎧⎨=⎩是二元一次方程组21mx ny nx my +=⎧⎨-=⎩的解,则3m n +的值为 .【思路点拨】方程组利用加减消元法即可确定出3m n +的值.【答案】3.【解析】解:把21x y =⎧⎨=⎩代入21mx ny nx my +=⎧⎨-=⎩,得2 2 2 1 m n n m +=⎧⎨-=⎩①②,①+②得:3=3m n +【总结升华】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.例2.先变系数后加减:25214323x y x y -=-⎧⎨+=⎩①② 【思路点拨】注意到方程组中x 的系数成2倍关系,可将方程①的两边同乘2,使两个方程中x 的系数相等,然后再相减消元.【答案与解析】解:②-①×2,得13y =65.解得y =5.将y =5代入①,得2x -5×5=-21,解得x =2.所以原方程组的解为25x y =⎧⎨=⎩.【总结升华】如果两个方程中未知数的系数的绝对值不相等,但某一未知数的系数成整数倍,可将一个方程的系数进行变化,使这个未知数的系数的绝对值相等.举一反三:【变式】已知关于x ,y 的二元一次方程组的解满足x ﹣y=a ,求该方程组的解.【答案】 解:, ②×2﹣①得, y=a ﹣, 把y=a ﹣代入②得, x=a ﹣, 则a ﹣﹣(a ﹣)=a , 解得,a=5方程组的解为:.例3.建立新方程组后巧加减:解方程组2511 524x yx y+=⎧⎨+=-⎩①②【思路点拨】注意到两个方程中两个未知数的系数的和相等、差互为相反数,所以可将两个方程分别相加、相减,从而得到一个较简单的二元一次方程组.【答案与解析】解:①+②,得7x+7y=7,整理得x+y=1.③②-①,得3x-3y=-15,整理得x-y=-5.④解由③、④组成的方程组1,5,x yx y+=⎧⎨-=-⎩得原方程组的解为23.xy=-⎧⎨=⎩【总结升华】解方程组时,我们应根据方程组中未知数的系数的特点,通过将两个方程相加或相减,把原方程组转化为更简单的方程组来解.例4.先化简再加减:解方程组0.10.3 1.3123x yx y+=⎧⎪⎨-=⎪⎩①②【思路点拨】方程组中未知数的系数是分数或小数,一般要先化成整数后再消元.【答案与解析】解:①×10,②×6,得313, 326,x yx y+=⎧⎨-=⎩③④③×3-④,得11y=33,解得y=3.将y=3代入③,解得x=4.所以原方程组的解为4,3. xy=⎧⎨=⎩【总结升华】当二元一次方程组的形式比较复杂时,通常是先通过变形(如去分母、去括号等),将它化为形式简单的方程组,再消元求解.类型二、用适当方法解二元一次方程组例5. (1)323112x y x y-=⎧⎨=-⎩ (2)5(1)2(3)2(1)3(3)m n m n -=+⎧⎨+=-⎩ 【思路点拨】观察方程特点选择方法:(1)代入消元法;(2)先化简再加减或代入消元法.【答案与解析】解:(1)323112x y x y -=⎧⎨=-⎩①② 由①得32y x =- ③将③代入②得3112(32)x x =-- 解得:53x =将53x =代入③得3y = ∴原方程组的解为:533x y ⎧=⎪⎨⎪=⎩.(2)原方程组可化为:52112311m n m n -=⎧⎨-=-⎩①② ①+②,得75m n =,即57m n = ③ 将③代入①得7n =,代入③得5m =∴原方程组的解为:57m n =⎧⎨=⎩. 【总结升华】方程组的解法不唯一,只是有的计算简便,有的繁琐.举一反三:【变式】用两种方法解方程组29(1)321(2)x y x y +=⎧⎨-=-⎩ 【答案】解:法Ⅰ:由(1):2y=9-x将其整体..代入(2):3x -(9-x)=-1 解得x=2∴2y=9-x=7∴原方程组的解为:272x y =⎧⎪⎨=⎪⎩ 法Ⅱ:(1)+(2):4x=8,x=2,代入(1):2+2y=9,2y=7, 72y =. ∴原方程组的解为:272x y =⎧⎪⎨=⎪⎩.【巩固练习】一、选择题1.用加减消元法解二元一次方程组时,必须使这两个方程中( )A .某个未知数的系数是1B .同一个未知数的系数相等C .同一个未知数的系数互为相反数D .某一个未知数的系数的绝对值相等2.已知2|21|(27)0x y x y --++-=,则3x y -的值是( )A .3B .1C .﹣6D .8 3.用加减消元法解二元一次方程组231543x y x y +=⎧⎨-=⎩①②,下列步骤可以消去未知数x 的是( ) A .①×4+②×3 B .①×2-②×5 C .①×5+②×2 D .①×5-②×24.解方程组①3759y x x y =-⎧⎨+=-⎩,②3512,215 6.x y x y +=⎧⎨-=-⎩比较简便的方法是( )A .均用代入法B .均用加减法C .①用代入法,②用加减法D .①用加减法,②用代入法5.方程组231498x y x y +=-⎧⎨-=⎩的解是( )A .013x y =⎧⎪⎨=-⎪⎩B .20x y =⎧⎨=⎩C .1223x y ⎧=⎪⎪⎨⎪=-⎪⎩D .1223x y ⎧=-⎪⎪⎨⎪=-⎪⎩6.若关于x ,y 的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k 的值为( )A .﹣B .C .D .﹣二、填空题7.用加减法解方程组3634x y x y -=⎧⎨+=-⎩①②时,①+②得________,即________;②-①得________,即________,所以原方程组的解为________.8.已知二元一次方程1432x y +=,用含x 的代数式表示y 为________. 9.如果x=1,y=2 满足方程114ax y +=,那么a=________. 10.已知二元一次方程组2728x y x y +=⎧⎨+=⎩,则x-y =________,x+y =________. 11.若522325m n x y ++与632134m n x y ---的和是单项式,则m =_______,n =_______. 12.已知关于x ,y 的方程组271x y x y +=⎧⎨-=-⎩满足3x y +=,则k = . 三、解答题13.解下列二元一次方程组(1)5(1)2(3)2(1)3(3)x y x y -=+⎧⎨+=-⎩(2)232235297x y x y y -=⎧⎪-+⎨+=⎪⎩14. 若关于x 、y 的二元一次方程组的解满足x+y >﹣,求出满足条件的m 的所有正整数值.15.代数式23ax bx ++,当x =-2时,代数式的值为4;当x =2时,代数式的值为10,则x =-1时,求代数式的值.【答案与解析】一、选择题1. 【答案】D ;【解析】当相同字母的系数相同时,用作差法消元,当相同字母的系数互为相反数时,用求和法消元.2. 【答案】D;【解析】由题意可得210270x yx y--=⎧⎨+-=⎩,①+②得:38x y-=.3. 【答案】D;4. 【答案】C;【解析】方程组②中将5y看作一个整体.5. 【答案】C;【解析】将选项代入验证.6.【答案】B.【解析】,①+②得:2x=14k,即x=7k,将x=7k代入①得:7k+y=5k,即y=﹣2k,将x=7k,y=﹣2k代入2x+3y=6得:14k﹣6k=6,解得:k=.二、填空题7. 【答案】6x=2,13x=, 2y=-10, y=-5,135xy⎧=⎪⎨⎪=-⎩;8.【答案】634xy-=;9.【答案】12;【解析】将x=1,y=2 代入114ax y+=,得112a+=,即12a=.10.【答案】-1,5;11.【答案】1,12 -;【解析】52263321m nm n++=⎧⎨=--⎩,解得112mn=⎧⎪⎨=-⎪⎩.12.【答案】2.【解析】23 3+4=2+1 x y k x y k +=⎧⎨⎩①② ,①×3﹣②×2得,y =﹣k ﹣2, 把y 值代入①得,x =2k +3,∵x+y =3,∴2k+3﹣k ﹣2=3,解得:k =2;三、解答题13.【解析】解:(1)5(1)2(3)2(1)3(3)x y x y -=+⎧⎨+=-⎩①②将①②去括号,整理得52112311x y x y -=⎧⎨-=-⎩③④ ③+④得750x y -=,即57x y =, 将57x y =代入④得,523117y y ⨯-=-,解得7y =, 将7y =代入57x y =得5x =, 所以原方程组的解为57x y =⎧⎨=⎩.(2)将“23x y -”看作整体,232235297x y x y y -=⎧⎪⎨-++=⎪⎩①② 将①代入②得,25297y ++=,解得4y =, 将4y =代入①得,7x =,所以原方程组的解为74x y =⎧⎨=⎩. 14.【解析】解:,①+②得:3(x+y )=﹣3m+6,即x+y=﹣m+2,代入不等式得:﹣m+2>﹣,解得:m <,则满足条件m 的正整数值为1,2,3.15.【解析】解:由题意可得:423442310a b a b -+=⎧⎨++=⎩解得,31,2a b ==, ∴ 代数式为2332x x ++, 将x =-1代入,得223353(1)(1)3222x x ++=-+⨯-+=.。
七年级下册数学二元一次方程
对于七年级下册数学中的二元一次方程,我们可以通过给定的方程进行推理和解析,来寻找变量的解。
下面是一份详细的内容概述:
1、方程的定义和解的概念:首先,我们要明确二元一次方程的定义。
二元一次方程是指含有两个未知数x和y,且每个未知数的次数为1的方程。
接着,我们要理解解的概念,即满足方程未知数的具体值。
2、代入法求解:代入法是一种常用的求解二元一次方程的方法。
基本步骤是将一个未知数表示为另一个未知数的函数,然后将其代入原方程中求解。
例如,对于方程组 {x + y = 3, y = 2x},我们可以将第二个方程代入第一个方程中,得到一个只包含x的一元一次方程,从而求解出x的值。
3、消元法求解:消元法是通过消去一个未知数的方式,将二元一次方程组转化为一个一元一次方程,然后求解。
例如,对于方程组{x + y = 3, x - y = 9},我们可以将两个方程相加或相减,消去其中一个未知数,得到一个只包含另一个未知数的一元一次方程,从而求解出该未知数的值。
4、线性组合法求解:线性组合法是通过对方程进行线性组合的方式,消去一个未知数,然后求解。
例如,对于方程组 {x + y = 3, 2x - y = 1},我们可以将第一个方程乘以2后与第二个方程相加,消去y,得到一个只包含x的一元一次方程,从而求解出x的值。
通过以上三种方法的学习和练习,我们可以逐步掌握二元一次方程的求解技巧,并进一步解决数学中与二元一次方程相关的其他问题。
这将为我们在八年级学习一元二次方程、线性代数和解析几何等课程打下坚实的基础。
初一数学教学设计消元——二元一次方程组的解法(代入消元法)教学设计思路在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。
讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。
知识目标通过探索,领会并总结解二元一次方程组的方法。
根据方程组的情况,能恰当地应用“代入消元法”解方程组;会借助二元一次方程组解简单的实际问题;提高逻辑思维能力、计算能力、解决实际问题的能力。
能力目标通过大量练习来学习和巩固这种解二元一次方程组的方法。
情感目标体会解二元一次方程组中的“消元” 思想,即通过消元把解二元一次方程组转化成解两个一元一次方程。
由此感受“划归”思想的广泛应用。
教学重点难点疑点及解决办法重点是用代入法解二元一次方程组。
难点是代入法的灵活运用,并能正确地选择恰当方法(代入法)解二元一次方程组。
疑点是如何“消元”,把“二元”转化为“一元”。
解决办法是一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形。
教学方法:引导发现法,谈话讨论法,练习法,尝试指导法课时安排: 1 课时。
教具学具准备:电脑或投影仪。
教学过程教 师 活动学生活动(一)创设情境,激趣导入在 8.1 中我们已经看到,直接设两个未知数( 设胜 x 场,负 yx y 22看图,分析已知条2x y40表示本章引言中场 ) ,可以列方程组件问题的数量关系。
如果只设一个未知数 ( 设胜 x 场 ) , 思考 这个问题也可以用一元一次方程________________________[1] 来解。
师生互动分析: [1]2x + (22 - x)=40 。
列式解答观察思考,同 上面的二元一次方程组和一元一次方程有什么关系?[2]桌交流 [2] 通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方 总结程。
学校教师备课笔记学校教师备课笔记茄子西红柿FECADB教学环节教学活动设计意图让学生感受列表法的直观,体会用列表法梳理数量关系的好处,培养学生使用列表法的意识.学生交流解法,碰撞思维火花,体会一题多解的问题情境,学会从多种角度考虑问题.考查学生对探究问题的理解程度,同时让学生体会数学来源于生活,又服务于生活.教师活动学生活动备用图(1)学生先齐读,再小声读题,划出关键词句,明确问题让我们做什么.(2)学生分享找出的关键词句.(3)小组合作交流,完成三个任务:①找出等量关系;②设出恰当的未知数;③列出方程组.(4)学生代表板演解题过程并讲解.(5)学生讲完解法一后,教师引导学生重新回顾解法一,并给出下面的表格,由表格可以清楚地看出各个数据和等量关系,然后提倡学生采用列表法梳理等量关系.2.类比延展请加入生活中的其它实际背景(如:消毒液、花坛、黑板、墙报、窗户等)对这道题进行改编并写在下面的横线上.______________________________________________________四、当堂检测1.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使一个螺栓配套两个螺帽,应如何分配工人才能使螺栓和螺帽刚好配套?设生产螺栓x人,生产螺帽y人,列方程组为( )茄子西红柿未知边长x y种植面积10x10y单位产量之比 1 2总产量之比10x2×10y法二:解:如图1,一种种植方案为:茄子、西红柿的种植区域分别为长方形AEFD和BCFE.设AE=x m,BE=y m.(31):(42)3:2÷÷=则⎩⎨⎧==+2:310:1020yxyx解这个方程组得⎩⎨⎧==812yx答:过长方形土地的长边上离一端12 m处,把这块地分为两个长方形.较大一块地种茄子,较小一块地种西红柿.学生自由发言根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为2:5.某厂每天生产这种消毒液22.5t,这些消毒液应该分装大、小瓶两种产品各多少瓶?教学环节教学活动设计意图教师活动学生活动A.⎩⎨⎧==+yxyx241590B.⎩⎨⎧==yxyx4548-90C.⎩⎨⎧==+yxyx243090D.⎩⎨⎧=-=yxyx24)15(2-902.如图,8块相同的长方形地砖拼成一个大长方形,大长方形的宽为60 cm,每块长方形地砖的长和宽分别是多少?五、归纳总结PPT回放几张重点幻灯片,引导学生回顾本节所学内容,谈一谈有哪些收获.六、布置作业必做题:1.课本P102 习题8.3 4、5选做题:课本P102 习题8.3 7学生讲解1.C2.解:设长方形的长为xcm,宽为ycm根据题意,列方程组⎩⎨⎧=++=6032yxyxx解这个方程组,得⎩⎨⎧==1545yx答:长方形的长为45cm,宽为15cm。