最新 基因工程中常用的工具酶
- 格式:pdf
- 大小:6.82 MB
- 文档页数:42
一、限制性核酸内切酶(restriction endonuclease)1.定义:凡能识别和切割双链DNA分子内特定核苷酸序列的酶,也称为限制酶(restriction enzyme,RE)。
2.类型:来自原核生物,有三种类型。
Ⅰ型:兼具甲基化修饰和ATP参与的核酸内切酶活性,随机切割。
Ⅱ型:大多能特异识别4~6个核苷酸序列(回文结构),最大识别序列为8个核苷酸,如SfiI、NotI;但有近10种Ⅱ型限制酶的识别序列为非回文结构,如SfaNI、MnlI等,Ⅱ型限制酶均可作为基因工程的工具酶。
另有一些来源不同的限制酶的识别位点是相同的核苷酸序列,将这类酶特称为同工异源酶(isoschizomers)或同裂酶。
同工异源酶切割产生相同的末端;有一些同工异源酶对于切割位点上的甲基化碱基的敏感性有所差别,故可用来研究DNA 甲基化作用,如SmaI和XmaI;HpaII和MspI;MboI和Sau3AI是成对的同工异源酶;其中HpaII和MspI是一对同工异源酶,其识别位点是CCGG。
与同工异源酶对应的一类限制酶,它们虽然来源各异,识别序列也各不相同,但都产生出相同的粘性末端,称为同尾酶(isocaudamers)。
常用的限制酶BamHI、BclI、BglII、Sau3AI和XhoII就是一组同尾酶,它们切割DNA之后都形成由GATC4个核苷酸组成的粘性末端。
显而易见,由同尾酶所产生的DNA片段,是能够通过其粘性末端之间的互补作用而彼此连接起来的,因此在基因克隆实验中很有用处。
但必须指出,由两种同尾酶消化产生的粘性末端,重组之后所形成的序列结构再不能被原来的任何一种同尾酶所识别。
Ⅲ型:功能基本同Ⅰ型,但为特定位点切割。
三种限制酶的区别如下表所示:Ⅰ型Ⅱ型Ⅲ型DNA底物dsDNA dsDNA dsDNA辅助因子Mg2+,A TP,SAM Mg2+ Mg2+,A TP识别序列特异特异特异切割位点非特定(于识别序列前后100~1000bp范围之内)特定(切割于识别序列之中或近处,固定位点)特定(切割点在识别序列后25~75bp处)与甲基化作用的关系内切酶蛋白同时具有甲基化酶的作用酶蛋白不具有甲基化作用内切酶蛋白同时具有甲基化酶的作用3.命名:第一个字母取自产生该酶的细菌属名,用大写;第二、第三个字母是该细菌的种名,用小写;第四个字母代表株。
基因工程期末考试题及答案一、选择题(每题2分,共20分)1. 基因工程中常用的工具酶是:A. 纤维素酶B. 限制性内切酶C. 淀粉酶D. 过氧化氢酶答案:B2. 下列哪项不是基因工程的基本步骤?A. 目的基因的获取B. 基因的表达C. 基因的克隆D. 基因的测序答案:D3. 基因枪法是一种:A. 植物转基因方法B. 动物转基因方法C. 微生物转基因方法D. 所有生物的转基因方法答案:A4. 重组DNA技术中,通常使用哪种质粒作为载体?A. 质粒DNAB. 线粒体DNAC. 核糖体RNAD. 染色体DNA答案:A5. 基因工程中,目的基因的表达通常需要:A. 启动子B. 终止子C. 增强子D. 所有选项答案:D二、填空题(每空2分,共20分)1. 基因工程是指按照人们的意愿,将不同来源的基因在体外构建杂合DNA分子,然后导入到活细胞和生物体内,以改变生物的遗传特性并取得新品种或新产品。
2. 基因工程中常用的宿主细胞有大肠杆菌、酵母菌和________。
答案:哺乳动物细胞3. 基因工程中,________是连接目的基因和载体DNA的关键酶。
答案:DNA连接酶4. 目的基因的表达需要________和________的协同作用。
答案:启动子;终止子5. 基因工程产品在医学领域的应用包括生产________、________和基因治疗等。
答案:重组蛋白;单克隆抗体三、简答题(每题10分,共30分)1. 请简述基因工程在农业中的应用。
答案:基因工程在农业中的应用主要包括提高作物的抗病性、抗虫性、抗旱性和提高作物的产量和品质。
例如,通过基因工程培育的抗虫棉可以减少农药的使用,提高棉花的产量和质量。
2. 基因工程在医学领域有哪些应用?答案:基因工程在医学领域的应用包括生产重组蛋白药物、单克隆抗体、基因治疗和疫苗开发等。
例如,利用基因工程技术生产的胰岛素可以治疗糖尿病,单克隆抗体用于治疗癌症和自身免疫性疾病。
3. 请解释什么是转基因生物,并简述其潜在的风险。
基因工程工具酶引言基因工程是一门利用重组DNA技术来改变生物体遗传性状的学科。
在基因工程的过程中,基因工程工具酶发挥着关键的作用。
本文将介绍几种常用的基因工程工具酶,包括限制性内切酶、连接酶和修饰酶。
一、限制性内切酶1.1 定义限制性内切酶(Restriction Enzyme)是一类具有特异性切割DNA双链的酶。
它可以识别并切割DNA的特定序列,通常这个序列是对称的,在切割后会产生特定的片段。
1.2 工作原理限制性内切酶能够通过识别和结合DNA的特定序列来进行切割。
它们通常识别的序列是4到8个碱基对长,具有一定的对称性。
一旦内切酶与特定序列结合,它会切断DNA的链,在特定的位置形成断裂,从而将DNA切割成特定的片段。
1.3 应用限制性内切酶在基因工程中有着广泛的应用。
它们可以用于构建基因工程载体、进行DNA片段的精确克隆等。
通过选择适当的限制性内切酶,可以对DNA进行特定的切割和连接,从而实现对目标基因的定向操作。
二、连接酶2.1 定义连接酶(Ligase)是一种酶类,能够将两条DNA片段连接起来。
在基因工程中,连接酶通常被用于连接目标基因和载体。
2.2 工作原理连接酶通过催化两条DNA片段之间的磷酸二酯键的形成来连接DNA。
它可以将两条具有互补末端的DNA片段连接在一起,形成一个新的DNA分子。
2.3 应用连接酶在基因工程中的应用非常广泛。
它们可以用于构建重组DNA分子、进行目标基因的插入等。
通过连接酶的作用,可以将多个DNA片段连接起来,构建出符合需要的重组DNA分子。
三、修饰酶3.1 定义修饰酶是指能够修饰DNA分子的酶类。
在基因工程中,修饰酶通常被用于添加或去除特定的DNA序列。
3.2 工作原理修饰酶可以通过催化酸解或碱解反应来改变DNA分子的结构。
它们可以添加或去除DNA上的甲基基团、酶解酶切位点等。
3.3 应用修饰酶在基因工程中起着重要的作用。
它们可以用于DNA甲基化的分析、目标基因的修饰等。
第二章 基因工程中常用的工具酶限制性内切酶—主要用于DNA 分子的特异切割分子的特异切割DNA 甲基化酶—用于DNA 分子的甲基化分子的甲基化 核酸连接酶—用于DNA 和RNA 的连接的连接核酸聚合酶—用于DNA 和RNA 的合成的合成核酸酶—用于DNA 和RNA 的非特异性切割的非特异性切割核酸末端修饰酶—用于DNA 和RNA 的末端修饰的末端修饰其它酶类--用于生物细胞的破壁、转化、核酸纯化、检测等。
用于生物细胞的破壁、转化、核酸纯化、检测等。
§2-1 核酸内切限制酶定义:核酸内切限制酶是一类能够识别双链DNA 分子中的某种特定核苷酸序列,并由此切割DNA 双链结构的核酸内切酶。
双链结构的核酸内切酶。
到目前为止已经从许多种不同的微生物中分离出了2300种以上不同的核酸内切限制酶。
种以上不同的核酸内切限制酶。
核酸内切限制酶的发现及其生物功能(图)一 、限制修饰系统的种类(图)限制修饰系统的种类(图)二、 限制性内切酶的定义、命名1. 定义:广义指上述三个系统中的限制酶;广义指上述三个系统中的限制酶;狭义指II 型限制酶。
型限制酶。
2. 命名:限制酶由三部分构成,即菌种名、菌系编号、分离顺序。
限制酶由三部分构成,即菌种名、菌系编号、分离顺序。
例如:Hin d Ⅲ 前三个字母来自于菌种名称H. influenzae ,“d”表示菌系为d型血清型;“Ⅲ”表示分离到的第三个限制酶。
表示分离到的第三个限制酶。
Eco RI RI——Escherichia coli RI RI Hin d Ⅲ—Haemophilus influensae d ⅢSac I (II)—Streptomyces achromagenes I (Ⅱ)三、Ⅰ型和Ⅲ型核酸内切限制酶的缺点a.Ⅰ型核酸内切限制酶虽然能够识别DNA 分子中的特定序列,但它们的切割作用却是随机的,在距特异性位点至少1000bp 的地方可以随机地切割DNA 分子,因此这类酶在基因克隆中显然是没有用处的。
《基因工程的工具——酶与载体》知识清单一、基因工程简介基因工程,又称为重组 DNA 技术,是指按照人们的愿望,进行严格的设计,通过体外 DNA 重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。
它是在分子水平上对基因进行操作的复杂技术,而实现这一技术的关键就在于一系列特殊的工具,其中酶和载体起着至关重要的作用。
二、基因工程中的酶1、限制性核酸内切酶(限制酶)限制酶是能够识别双链 DNA 分子的某种特定核苷酸序列,并使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开的酶。
限制酶具有特异性,即一种限制酶只能识别一种特定的核苷酸序列,并在特定的切点上切割 DNA 分子。
例如,EcoRⅠ限制酶只能识别GAATTC 序列,并在 G 和 A 之间切断磷酸二酯键。
限制酶切割DNA 分子产生的末端有两种类型:黏性末端和平末端。
黏性末端是指被限制酶切开的 DNA 双链的切口,带有几个伸出的核苷酸,它们之间正好互补配对;平末端则是指切口平整,不带有伸出的核苷酸。
2、 DNA 连接酶DNA 连接酶的作用是将两个具有相同末端(如黏性末端或平末端)的 DNA 片段连接起来,形成一个完整的 DNA 分子。
DNA 连接酶与限制酶的作用相反,它通过催化磷酸二酯键的形成,将断开的 DNA 片段重新连接起来。
3、 DNA 聚合酶在基因工程中,DNA 聚合酶常用于 DNA 片段的扩增,如 PCR 技术(聚合酶链式反应)。
PCR 技术中使用的热稳定 DNA 聚合酶(Taq 酶)能够在高温环境下保持活性,不断地将脱氧核苷酸加到引物的 3'端,使 DNA 链得以延伸。
4、反转录酶反转录酶能够以 RNA 为模板合成互补的 DNA 链,即 cDNA。
这在获取目的基因时非常有用,例如从真核生物细胞中提取出mRNA,然后通过反转录酶合成 cDNA,再进行后续的基因操作。
三、基因工程中的载体1、载体的作用载体在基因工程中主要起到运输目的基因的作用,它能够将目的基因导入到受体细胞中,并使其在受体细胞中稳定存在和表达。
复制、转录、翻译、基因工程中常用酶限制性核酸内切酶(限制酶)主要存在于微生物(细菌、霉菌等)中。
一种限制酶只能识别一种特定的核苷酸序列,并且能在特定的切点上切割DNA分子。
是特异性地切断DNA链中磷酸二酯键的核酸酶(“分子手术刀”)。
发现于原核生物体内,现已分离出100多种,几乎所有的原核生物都含有这种酶。
是重组DNA技术和基因诊断中重要的一类工具酶。
DNA连接酶:主要是连接DNA片段之间的磷酸二酯键,起连接作用,在基因工程中起作用。
DNA聚合酶:主要是连接DNA片段与单个脱氧核苷酸之间的磷酸二酯键,在DNA复制中起做用。
DNA聚合酶只能将单个核苷酸加到已有的核酸片段的3′末端的羟基上,形成磷酸二酯键;而DNA连接酶是在两个DNA片段之间形成磷酸二酯键,不是在单个核苷酸与DNA片段之间形成磷酸二酯键。
DNA聚合酶是以一条DNA链为模板,将单个核苷酸通过磷酸二酯键形成一条与模板链互补的DNA链;而DNA连接酶是将DNA双链上的两个缺口同时连接起来。
因此DNA连接酶不需要模板。
RNA聚合酶(又称RNA复制酶、RNA合成酶)的催化活性:RNA聚合酶以完整的双链DNA为模板,转录时DNA的双链结构部分解开,转录后DNA仍然保持双链的结构。
真核生物RNA聚合酶:真核生物的转录机制要复杂得多,有三种细胞核内的RNA聚合酶:RNA 聚合酶I转录rRNA,RNA聚合酶II转录mRNA,RNA聚合酶III转录tRNA和其它小分子RNA。
在RNA复制和转录中起作用。
反转录酶:RNA指导的DNA聚合酶,具有三种酶活性,即RNA 指导的DNA聚合酶,RNA酶,DNA指导的DNA聚合酶。
在分子生物学技术中,作为重要的工具酶被广泛用于建立基因文库、获得目的基因等工作。
在基因工程中起作用。
解旋酶:是一类解开氢键的酶,由水解ATP来供给能量它们常常依赖于单链的存在,并能识别复制叉的单链结构。
在细菌中类似的解旋酶很多,都具有ATP酶的活性。