(完整版)12.3《角平分线的性质》教学设计
- 格式:doc
- 大小:94.21 KB
- 文档页数:3
人教版数学八年级上册教学设计12.3《角的平分线的性质》一. 教材分析《角的平分线的性质》是人教版数学八年级上册的教学内容。
本节课主要让学生掌握角的平分线的性质,即角的平分线上的点到角的两边的距离相等。
这一性质是几何中的基本概念,对于学生理解和掌握几何知识体系具有重要意义。
教材通过引入角的平分线,引导学生探究角的平分线的性质,从而培养学生的观察能力、推理能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了角的概念、线段的概念以及一些基本的几何性质。
但是,对于角的平分线的性质,学生可能较为陌生。
因此,在教学过程中,教师需要从学生的实际出发,通过引导、探究、实践等方式,帮助学生理解和掌握角的平分线的性质。
三. 教学目标1.知识与技能:使学生理解和掌握角的平分线的性质,能够运用角的平分线的性质解决一些简单的问题。
2.过程与方法:通过观察、操作、探究等方法,培养学生的几何思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:角的平分线的性质。
2.难点:如何运用角的平分线的性质解决实际问题。
五. 教学方法1.引导法:教师通过提问、设疑等方式,引导学生思考和探究角的平分线的性质。
2.实践操作法:学生通过实际操作,观察和总结角的平分线的性质。
3.合作交流法:学生分组讨论,共同解决问题,培养团队合作意识。
六. 教学准备1.教师准备:教材、PPT、几何模型等教学资源。
2.学生准备:笔记本、尺子、圆规等学习工具。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本的课题,如:“在平面上有两个点A和B,如何找到一点C,使得AC=BC?”引导学生思考和探讨。
2.呈现(10分钟)教师通过PPT展示角的平分线的性质,引导学生观察和总结。
同时,教师可以通过实际操作,让学生直观地感受角的平分线的性质。
3.操练(10分钟)学生分组讨论,运用角的平分线的性质解决实际问题。
12.3 《角的平分线的性质》教案台前县吴坝镇中学李桂香一、教学背景的分析1、教学内容本节课是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的。
内容包括角平分线的作法、角平分线的性质及初步应用。
作角的平分线是基本作图,角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础。
因此,本节内容在数学知识体系中起到了承上启下的作用。
同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律。
2、学生刚进入八年级的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导。
根据学生的认知特点和接受水平,我把第一课时的教学任务定为:掌握角平分线的画法及会用角平分线的性质定理解题,同时为下节判定定理的学习打好基础。
3、教学环境利用多媒体技术可以方便地创设、改变和探索某种数学情境,在这种情境下,通过思考和操作活动,研究数学现象的本质和发现数学规律。
4、教学重点、难点本节课的教学重点为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用。
教学难点是:1、对角平分线性质定理中点到角两边的距离的正确理解;2、对于性质定理的运用。
教学难点突破方法:(1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习。
二、教学目标的确定1、知识与技能:(1)掌握用尺规作已知角的平分线的方法(2)理解角的平分线的性质并能初步运用。
2、数学思考:通过让学生经历观察演示,动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力。
3、解决问题:(1)初步了解角的平分线的性质在生产、生活中的应用。
人教版八年级上册 12.3 角平分线的性质教案角的平分线的性质(一)教学目标1、应用三角形全等的知识,解释角平分线的原理.2.会用尺规作一个已知角的平分线.教学重点利用尺规作已知角的平分线.教学难点角的平分线的作图方法的提炼.教学过程Ⅰ.知识回顾问题1:三角形中有哪些重要线段.问题2:你能作出这些线段吗?Ⅱ.合作探究思考:右图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?要说明AC是∠DAC的平分线,其实就是证明∠CAD=∠CAB.∠CAD和∠CAB分别在△CAD和△CAB中,那么证明这两个三角形全等就可以了.看看条件够不够在△ABC和△ADC.因为所以△ABC≌△ADC(SSS).所以∠CAD=∠CAB.即射线AC就是∠DAB的平分线.这种平分角的方法告诉了我们一种作已知角的平分线的方法。
作已知角的平分线的方法:已知:∠AOB.求作:∠AOB的平分线.作法:(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.证的结论是这个点到这个角两边的距离相等。
为了更直观清楚地表达题意,我们通常在证明之前画出图片,并用符号表示已知和求证如图,∠BAO=∠CAO,OE⊥AB,OD⊥AC,垂足分别为E,D。
求证OE=OD 证明:因为OE⊥AB,OD⊥AC。
所以∠OEA=ODA=90°在△EAO和△DAO中,因为∠EAO=∠DAO∠OEA=∠ODAAO=AO所以△EAO≌△DAO(AAS)所以OE=OD一般情况下,我们要证明一个几何命题时,可以按照类似的步骤进行,即1.明确命题中的已知和求证;2.根据题意,画出图形,并用符号表示已知和求证;3.经过分析,找出由已知推出要证的结论的途径,写出证明过程Ⅳ.随堂练习。
课本练习.Ⅴ.课时小结本节课中我们利用已学过的三角形全等的知识,•探究得到了角平分线仪器的操作原理,由此归纳出角的平分线的尺规画法,并进一步探究到角平分线的性质.VI.课后作业课本习题。
《角的平分线的性质》教学设计《角的平分线的性质》教学设计精选2篇(一)教学设计:《角的平分线的性质》一、教学目标:1. 理解角的平分线的概念;2. 掌握角的平分线的性质;3. 能够应用角的平分线的性质解决相关问题。
二、教学内容:1. 角的平分线的定义;2. 角的平分线的性质;3. 角的平分线的应用。
三、教学过程:Step 1 引入新知识:1. 通过展示一张含有角及其平分线的图片,引发学生对角的平分线的兴趣和思考;2. 学生根据图片,描述角的平分线的特点。
Step 2 角的平分线的定义与性质:1. 引导学生观察,讨论两个相邻的、边相等的角之间的关系;2. 引导学生总结出“两个相邻的、边相等的角之间存在一个角的平分线”的性质;3. 学生互相交流,理解并记忆角的平分线的定义与性质。
Step 3 角的平分线的应用:1. 通过给出一些已知条件,让学生找出角的平分线;2. 学生自主解决问题,教师引导学生应用角的平分线的性质解决问题;3. 学生举例子,解决多种情况的问题。
Step 4 练习巩固:1. 教师布置角的平分线的练习题,提供多种类型的问题;2. 学生独立完成练习,教师适时给予指导和帮助;3. 学生互相交流,共同解决问题。
四、教学评价:1. 教师观察学生的学习情况和参与程度,做好记录;2. 根据学生的表现和回答问题的情况,了解学生对角的平分线的掌握程度;3. 通过学生的解决问题的方式和结果,评价学生的学习成果。
五、教学延伸:1. 可以介绍更多与角的平分线相关的性质;2. 可以引导学生进行角的平分线相关的探究性实验;3. 可以让学生设计角的平分线相关的问题,互相出题和解答。
《角的平分线的性质》教学设计精选2篇(二)教学目标:1. 了解角的概念和基本术语2. 学会如何测量角的大小3. 掌握角的度量单位和换算教学步骤:步骤一:引入通过展示一些角的图形和实际生活中的角的例子,引起学生对角的兴趣,并让学生尝试描述角的特征和表达自己对角的理解。
《12. 3角的平分线的性质》教案教学目标1.掌握角平分线的画法.2.应用三角形全等的知识,解释角平分线的原理.3.掌握、运用角的平分线的性质.教学重难点1.利用直尺和圆规作己知角的平分线.2.角平分线的性质及其应用.教学过程一、提岀问题,思考引入下图是一个平分角的仪器,其中AB^AD, BC二DC.将点A放在角的顶点,和AD沿着角的两边放下,沿AC画一条射线AE, AE就是角平分线.你能说明它的道理吗?A要说明AC^ZDAC的平分线,其实就是证明ZCAD=ZCAB.ZCAD和ZC4B分别在△CAD和△CAB中,那么证明这两个三角形全等就可以了.(利用“边边边”定理证明)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.(分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性)讨论结果展示,作已知角的平分线的方法.已知:ZAOB.求作:ZAOB的平分线.作法:(1)以0为圆心,适当长为半径作弧,分別交04、03于M、N.(2)分别以M、N为圆心,大于丄MN的长为半径作弧.两弧在ZA0B内部交于点C.(3)作射线0C,射线0C即为所求.MA二、思考、探索同学阅读教材48页的第二个思考,量一量,冋答问题.我们发现PD=PE,于是我们猜想:角的平分线上的点到角的两边的距离相等.我们做出了猜想,下一步我们来验证这个猜想是否正确.证明:・・・PQ丄OA, PE丄0B.・•・ ZPDO=ZPEO二90° .在△PDO和△PEO中,ZPDO=ZPEO, ZAOC=ZBOC, OP=OP,A APDO^APEO(AAS). :. PD=PE.这样我们验证了我们的猜想,通过⑴明确已知和所求;(2)根据题意,画出图形,并用数学符号表示己知和求证;(3)经过分析,找出由已知推出结论的途径,写出证明过程.这样的步骤,我们证明了一个儿何命题,得到了角的平分线的性质:角的平分线上的点到角的两边的距离相等.下面请同学们思考一个问题.思考:如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1: 20000) ?(学生以小组为单位讨论,教师可深入到学生中,及时引导)引导学生总结出:角的内部到角的两边的距离相等的点在角的平分线上.利用这一结论解答上题.三、例题如图,AABC的角平分线BM、CN相交于点P.求证:点P到三边AB、BC、CA的距离相等.A教师板书,解释说明证明过程.四、随堂练习课本第50页的练习第1、2题.五、课堂小结今天,我们学习了角平分线的画法和性质:角平分线上的点到角的两边的距离相等;到角的两边距离相等的点在角的平分线上.同学们要灵活运用性质,解决问题.六、课后作业课本第51页习题12. 3的第2、3、4、5题.。
12.3 《角的平分线的性质》教学设计
(第1课时)
授课教师:
教学目标 知识与技能:
1、掌握用尺规作已知角的平分线的方法;
2、理解角的平分线的性质并能初步运用。
过程与方法:
通过让学生经历观察演示,动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力。
情感态度与价值观:
培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情。
教学重点:
掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用。
教学难点:
1、对角平分线性质定理中点到角两边的距离的正确理解;
2、对于性质定理的运用。
教学过程: 一、创设情景
生活中有很多数学问题:
小明家居住在通州区一栋居民楼的一楼,刚好位于一条暖气和天然气管道所成角的平分线上的P 点,要从P 点建两条管道,分别与暖气管道和天然气管道相连。
问题1:怎样修建管道最短?
问题2:新修的两条管道长度有什么关系,画来看一看。
二、探究体验
要研究角的平分线的性质我们必须会画角的平分线,工人师傅常用如图所示的简易平分角的仪器来画角的平分线。
出示仪器模型,介绍仪器特点(有两对边相等),将A
点放在角
的顶点处,AB 和AD 沿角的两边放下,过AC 画一条射线AE ,AE 即为∠BAD 的平分线。
学生口述,用三角形全等的方法证明AE 是∠BAD 的平分线。
多媒体展示实验过程。
把简易平分角的仪器放在角的两边时,平分角的仪器两边相等,从几何作图角度怎么画?BC =DC ,从几何作图角度怎么画?
让学生用纸剪一个角,把纸片对折,使角的两边叠合在一起,把对折后的纸片继续折一次,折出一个直三角形(使第一次的折痕为斜边),然后展开,观察两次折叠形成的三条折痕。
问题1:第一次的折痕和角有什么关系?为什么?
问题2:第二次折叠形成的两条折痕与角的两边有何关系,它们的长度有何关系? 如图:按照折纸的顺序画出角及折纸形成的三条折痕.让学生分组讨论、交流,再利用几何画板软件验证结论,并用文字语言阐述得到的性质.(角的平分线上的点到角两边的距离相等)
结合图形写出已知,求证,分析后写出证明过程.教师归纳,强调定理的条件和作用.
三、合作交流
判断正误,并说明理由:
(1)如图1,P 在射线OC 上,PE ⊥OA ,PF ⊥OB ,则PE =PF .
(2)如图2,P 是∠AOB 的平分线OC 上的一点,E 、F 分别在OA 、OB 上,则PE =PF . (3)如图3,在∠AOB 的平分线OC 上任取一点P ,若P 到OA 的距离为3cm ,则P 到OB 的距离边为3cm .
让学生运用本节课所学的知识回答课前引例中的问题: 问题:引例中两条管道的长度有什么关系?理由是什么? 四、例题讲解
O
B A
O
B
P E
F
图2
图3
A
O
B
P E
A
O
B
P E
F
图1
A
F
C
D
B
E
例1 如图,在△ABC 中,AD 是它的角平分线,且BD =CD ,DE ⊥AB ,DF ⊥AC ,垂足分别是
E ,
F .求证:EB =FC .
变题1:如图,△ABC 中,∠C =90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,且BD =DF ,求证:CF =EB .
变题2:如图,△ABC 中,∠C =90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,BC =8,BD =5
,求DE .
五、课堂小结
这节课你本节课学习了哪些知识?学会了什么方法? 六、作业
教材第51页第2、3题 七、板书设计:
A
F C
D
B
E。